1
|
Shen J, Ding X, Charyyev S, Liang X, Oancea C, Wang P, Rule WG, Liu W, Bues M, Lin L. Time structures of proton pencil beam scanning delivery on a microsecond scale measured with a pixelated semiconductor detector Timepix3. J Appl Clin Med Phys 2024; 25:e14486. [PMID: 39137008 PMCID: PMC11492390 DOI: 10.1002/acm2.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 06/21/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE The time structures of proton spot delivery in proton pencil beam scanning (PBS) radiation therapy are essential in many clinical applications. This study aims to characterize the time structures of proton PBS delivered by both synchrotron and synchrocyclotron accelerators using a non-invasive technique based on scattered particle tracking. METHODS A pixelated semiconductor detector, AdvaPIX-Timepix3, with a temporal resolution of 1.56 ns, was employed to measure time of arrival of secondary particles generated by a proton beam. The detector was placed laterally to the high-flux area of the beam in order to allow for single particle detection and not interfere with the treatment. The detector recorded counts of radiation events, their deposited energy and the timestamp associated with the single events. Individual recorded events and their temporal characteristics were used to analyze beam time structures, including energy layer switch time, magnet switch time, spot switch time, and the scanning speeds in the x and y directions. All the measurements were repeated 30 times on three dates, reducing statistical uncertainty. RESULTS The uncertainty of the measured energy layer switch times, magnet switch time, and the spot switch time were all within 1% of average values. The scanning speeds uncertainties were within 1.5% and are more precise than previously reported results. The measurements also revealed continuous sub-milliseconds proton spills at a low dose rate for the synchrotron accelerator and radiofrequency pulses at 7 µs and 1 ms repetition time for the synchrocyclotron accelerator. CONCLUSION The AdvaPIX-Timepix3 detector can be used to directly measure and monitor time structures on microseconds scale of the PBS proton beam delivery. This method yielded results with high precision and is completely independent of the machine log files.
Collapse
Affiliation(s)
- Jiajian Shen
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyCorewell Health Beaumont University HospitalRoyal OakMichiganUSA
| | - Serdar Charyyev
- Department of Radiation OncologyStanford UniversityPalo AltoCaliforniaUSA
| | - Xiaoying Liang
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | | | - Peilong Wang
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - William G. Rule
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Wei Liu
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Martin Bues
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Liu W, Feng H, Taylor PA, Kang M, Shen J, Saini J, Zhou J, Giap HB, Yu NY, Sio TS, Mohindra P, Chang JY, Bradley JD, Xiao Y, Simone CB, Lin L. NRG Oncology and Particle Therapy Co-Operative Group Patterns of Practice Survey and Consensus Recommendations on Pencil-Beam Scanning Proton Stereotactic Body Radiation Therapy and Hypofractionated Radiation Therapy for Thoracic Malignancies. Int J Radiat Oncol Biol Phys 2024; 119:1208-1221. [PMID: 38395086 PMCID: PMC11209785 DOI: 10.1016/j.ijrobp.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/25/2023] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona.
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei, China; Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| | - Paige A Taylor
- Imaging and Radiation Oncology Core Houston Quality Assurance Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center and Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Huan B Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Terence S Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Pranshu Mohindra
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey D Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Liang X, Liu C, Shen J, Flampouri S, Park JC, Lu B, Yaddanapudi S, Tan J, Furutani KM, Beltran CJ. Impact of proton PBS machine operating parameters on the effectiveness of layer rescanning for interplay effect mitigation in lung SBRT treatment. J Appl Clin Med Phys 2024; 25:e14342. [PMID: 38590112 PMCID: PMC11244664 DOI: 10.1002/acm2.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Chunbo Liu
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiajian Shen
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Stella Flampouri
- Department of Radiation OncologyWinship Cancer InstituteEmory UniversityAtlantaUSA
| | - Justin C. Park
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Bo Lu
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | | | - Jun Tan
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| | | | - Chris J. Beltran
- Department of Radiation OncologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
4
|
Liu C, Furutani KM, Shen J, Wan Chan Tseung H, Tan HQ, Li H, Whitaker TJ, Beltran CJ, Liang X. Investigation of dosimetric effect of beam current fluctuations in synchrotron-based proton PBS continuous scanning. Phys Med Biol 2024; 69:135013. [PMID: 38862000 DOI: 10.1088/1361-6560/ad56f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current. This study investigated the dosimetric implications of such beam current fluctuations during proton PBS continuous scanning.Approach.Using representative clinical proton PBS plans, we performed simulations to mimic a worst-case clinical delivery environment with beam current varies from 50% to 250% of the nominal values. The simulations used the beam delivery parameters optimized for the best beam delivery efficiency of the upcoming particle therapy system at Mayo Clinic Florida. We reconstructed the simulated delivered dose distributions and evaluated the dosimetric impact of beam current fluctuations.Main results.Despite significant beam current fluctuations resulting in deviations at each spot level, the overall dose distributions were nearly identical to those assuming a stable beam current. The 1 mm/1% Gamma passing rate was 100% for all plans. Less than 0.2% root mean square error was observed in the planning target volume dose-volume histogram. Minimal differences were observed in all dosimetric evaluation metrics.Significance.Our findings demonstrate that with our beam delivery system and clinical planning practice, while significant beam current fluctuations may result in large local move monitor unit deviations at each spot level, the overall impact on the dose distribution is minimal.
Collapse
Affiliation(s)
- Chunbo Liu
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States of America
| | - Hok Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America
| | - Thomas J Whitaker
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| |
Collapse
|
5
|
Tang X, Wan Chan Tseung H, Moseley D, Zverovitch A, Hughes CO, George J, Johnson JE, Breen WG, Qian J. Deep learning based linear energy transfer calculation for proton therapy. Phys Med Biol 2024; 69:115058. [PMID: 38714191 DOI: 10.1088/1361-6560/ad4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
Objective.This study aims to address the limitations of traditional methods for calculating linear energy transfer (LET), a critical component in assessing relative biological effectiveness (RBE). Currently, Monte Carlo (MC) simulation, the gold-standard for accuracy, is resource-intensive and slow for dose optimization, while the speedier analytical approximation has compromised accuracy. Our objective was to prototype a deep-learning-based model for calculating dose-averaged LET (LETd) using patient anatomy and dose-to-water (DW) data, facilitating real-time biological dose evaluation and LET optimization within proton treatment planning systems.Approach. 275 4-field prostate proton Stereotactic Body Radiotherapy plans were analyzed, rendering a total of 1100 fields. Those were randomly split into 880, 110, and 110 fields for training, validation, and testing. A 3D Cascaded UNet model, along with data processing and inference pipelines, was developed to generate patient-specific LETddistributions from CT images and DW. The accuracy of the LETdof the test dataset was evaluated against MC-generated ground truth through voxel-based mean absolute error (MAE) and gamma analysis.Main results.The proposed model accurately inferred LETddistributions for each proton field in the test dataset. A single-field LETdcalculation took around 100 ms with trained models running on a NVidia A100 GPU. The selected model yielded an average MAE of 0.94 ± 0.14 MeV cm-1and a gamma passing rate of 97.4% ± 1.3% when applied to the test dataset, with the largest discrepancy at the edge of fields where the dose gradient was the largest and counting statistics was the lowest.Significance.This study demonstrates that deep-learning-based models can efficiently calculate LETdwith high accuracy as a fast-forward approach. The model shows great potential to be utilized for optimizing the RBE of proton treatment plans. Future efforts will focus on enhancing the model's performance and evaluating its adaptability to different clinical scenarios.
Collapse
Affiliation(s)
- Xueyan Tang
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Hok Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Douglas Moseley
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | | | - Cian O Hughes
- Google Inc, Mountain View, CA, United States of America
| | - Jon George
- Google Inc, Mountain View, CA, United States of America
| | - Jedediah E Johnson
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| | - Jing Qian
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States of America
| |
Collapse
|
6
|
Feng H, Holmes JM, Vora SA, Stoker JB, Bues M, Wong WW, Sio TS, Foote RL, Patel SH, Shen J, Liu W. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad0b64. [PMID: 37944480 PMCID: PMC11009986 DOI: 10.1088/1361-6560/ad0b64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Purpose. To enhance an in-house graphic-processing-unit accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS).Methods and materials. A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3 cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4 cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45 mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 c.c. with range of 0.4-43.3 c.c.). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC.Results. In the water phantoms, 3D gamma passing rate (2%/2 mm/10%) between VPMC and MCsquare was 99.71 ± 0.23%. In the patient geometries, 3D gamma passing rates (3%/2 mm/10%) between VPMC/MCsquare and RayStation MC were 97.79 ± 2.21%/97.78 ± 1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45 ± 114.08 s (MCsquare) to 8.20 ± 6.42 s (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 s and the subsequent on-the-fly 'trial-and-error' optimization procedure took only 71.4 s on average for the selected three patients.Conclusion. VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.
Collapse
Affiliation(s)
- Hongying Feng
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei 443002, People’s Republic of China
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, 510555, People’s Republic of China
| | - Jason M Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Joshua B Stoker
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Terence S Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, United States of America
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| |
Collapse
|
7
|
Liang X, Beltran CJ, Liu C, Park C, Lu B, Yaddanapudi S, Tan J, Furutani KM. Selecting Optimal Proton Pencil Beam Scanning Plan Parameters to Reduce Dose Discrepancy between Discrete Spot Plan and Continuous Scanning: A Proof-of-Concept Study. Cancers (Basel) 2023; 15:4084. [PMID: 37627112 PMCID: PMC10452710 DOI: 10.3390/cancers15164084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pencil beam scanning delivered with continuous scanning has several advantages over conventional discrete spot scanning. Such advantages include improved beam delivery efficiency and reduced beam delivery time. However, a move dose is delivered between consecutive spots with continuous scanning, and current treatment planning systems do not take this into account. Therefore, continuous scanning and discrete spot plans have an inherent dose discrepancy. Using the operating parameters of the state-of-the-art particle therapy system, we conducted a proof-of-concept study in which we systematically generated 28 plans for cubic targets with different combinations of plan parameters and simulated the dose discrepancies between continuous scanning and a planned one. A nomograph to guide the selection of plan parameters was developed to reduce the dose discrepancy. The effectiveness of the nomograph was evaluated with two clinical cases (one prostate and one liver). Plans with parameters guided by the nomograph decreased dose discrepancy than those used standard plan parameters. Specifically, the 2%/2 mm gamma passing rate increased from 96.3% to 100% for the prostate case and from 97.8% to 99.7% for the liver case. The CTV DVH root mean square error decreased from 2.2% to 0.2% for the prostate case and from 1.8% to 0.9% for the liver case. The decreased dose discrepancy may allow the relaxing of the delivery constraint for some cases, leading to greater benefits in continuous scanning. Further investigation is warranted.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chunbo Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunjoo Park
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bo Lu
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jun Tan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
8
|
Liang X, Beltran CJ, Liu C, Shen J, Li H, Furutani KM. Technical note: Delivery benefit and dosimetric implication of synchrotron-based proton pencil beam scanning using continuous scanning mode. Med Phys 2023; 50:5252-5261. [PMID: 37115647 DOI: 10.1002/mp.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Discrete spot scanning (DSS) is the commonly used method for proton pencil beam scanning (PBS). There is lack of data on the dose-driven continuous scanning (DDCS). PURPOSE To investigate delivery benefits and dosimetric implications of DDCS versus DSS for PBS systems. METHODS The irradiation duty factor, beam delivery time (BDT), and dose deviation were simulated for eight treatment plans in prostate, head and neck, liver, and lung, with both conventional fractionation and hypofractionation schemes. DDCS results were compared with those of DSS. RESULTS The DDCS irradiation duty factor (range, 11%-41%) was appreciably improved compared to DSS delivery (range, 4%-14%), within which, hypofractionation schemes had greater improvement than conventional fractionation. With decreasing stop ratio constraints, the DDCS BDT reduction was greater, but dose deviation also increased. With stop ratio constraints of 2, 1, 0.5, and 0, DDCS BDT reduction reached to 6%, 10%, 12%, and 15%, respectively, and dose deviation reached to 0.6%, 1.7%, 3.0%, and 5.2% root mean square error in PTV DVH, respectively. The 3%/2-mm gamma passing rate was greater than 99% with stop ratio constraints of 2 and 1, and greater than 95% with a stop ratio of 0.5. When the stop ratio constraint was removed, five of the eight treatment plans had a 3%/2-mm gamma passing rate greater than 95%, and the other three plans had a 3%/2-mm gamma passing rate between 90% and 95%. CONCLUSIONS The irradiation duty factor was considerably improved with DDCS. Smaller stop ratio constraints led to shorter BDTs, but with the cost of larger dose deviations. Our finding suggested that a stop ratio of 1 constraint seems to yield acceptable DDCS dose deviation.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chunbo Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
9
|
Holmes J, Liu Z, Zhang L, Ding Y, Sio TT, McGee LA, Ashman JB, Li X, Liu T, Shen J, Liu W. Evaluating large language models on a highly-specialized topic, radiation oncology physics. Front Oncol 2023; 13:1219326. [PMID: 37529688 PMCID: PMC10388568 DOI: 10.3389/fonc.2023.1219326] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs. Methods We developed an exam consisting of 100 radiation oncology physics questions based on our expertise. Four LLMs, ChatGPT (GPT-3.5), ChatGPT (GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical physicists and non-experts. The performance of ChatGPT (GPT-4) was further explored by being asked to explain first, then answer. The deductive reasoning capability of ChatGPT (GPT-4) was evaluated using a novel approach (substituting the correct answer with "None of the above choices is the correct answer."). A majority vote analysis was used to approximate how well each group could score when working together. Results ChatGPT GPT-4 outperformed all other LLMs and medical physicists, on average, with improved accuracy when prompted to explain before answering. ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer choices across a number of trials, whether correct or incorrect, a characteristic that was not observed in the human test groups or Bard (LaMDA). In evaluating deductive reasoning ability, ChatGPT (GPT-4) demonstrated surprising accuracy, suggesting the potential presence of an emergent ability. Finally, although ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow for further improvement when scoring based on a majority vote across trials. In contrast, a team of medical physicists were able to greatly outperform ChatGPT (GPT-4) using a majority vote. Conclusion This study suggests a great potential for LLMs to work alongside radiation oncology experts as highly knowledgeable assistants.
Collapse
Affiliation(s)
- Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, GA, United States
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Lisa A. McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Jonathan B. Ashman
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Xiang Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA, United States
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
10
|
Ma C, Yang X, Chang CW, Liu R, Bohannon D, Lin L, Liu T, Tian S, Zhou J. Feasibility study of hybrid inverse planning with transmission beams and single-energy spread-out Bragg peaks for proton FLASH radiotherapy. Med Phys 2023; 50:3687-3700. [PMID: 36932635 DOI: 10.1002/mp.16370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (FLASH) proton planning with only transmission beams (TBs) has limitations in normal tissue sparing. The single-energy spread-out Bragg peaks (SESOBPs) of the FLASH dose rate have been demonstrated feasible for proton FLASH planning. PURPOSE To investigate the feasibility of combining TBs and SESOBPs for proton FLASH treatment. METHODS A hybrid inverse optimization method was developed to combine the TBs and SESOBPs (TB-SESOBP) for FLASH planning. The SESOBPs were generated field-by-field from spreading out the BPs by pre-designed general bar ridge filters (RFs) and placed at the central target by range shifters (RSs) to obtain a uniform dose within the target. The SESOBPs and TBs were fully placed field-by-field allowing automatic spot selection and weighting in the optimization process. A spot reduction strategy was conducted in the optimization process to push up the minimum MU/spot assuring the plan deliverability at beam current of 165 nA. The TB-SESOBP plans were validated in comparison with the TB only (TB-only) plans and the plans with the combination of TBs and BPs (TB-BP plans) regarding 3D dose and dose rate (dose-averaged dose rate) distributions for five lung cases. The FLASH dose rate coverage (V40Gy/s ) was evaluated in the structure volume receiving > 10% of the prescription dose. RESULTS Compared to the TB-only plans, the mean spinal cord D1.2cc drastically reduced by 41% (P < 0.05), the mean lung V7Gy and V7.4 Gy moderately reduced by up to 17% (P < 0.05), and the target dose homogeneity slightly increased in the TB-SESOBP plans. Comparable dose homogeneity was achieved in both TB-SESOBP and TB-BP plans. Besides, prominent improvements were achieved in lung sparing for the cases of relatively large targets by the TB-SESOBP plans compared to the TB-BP plans. The targets and the skin were fully covered with the FLASH dose rate in all three plans. For the OARs, V40Gy/s = 100% was achieved by the TB-only plans while V40Gy/s > 85% was obtained by the other two plans. CONCLUSION We have demonstrated that the hybrid TB-SESOBP planning was feasible to achieve FLASH dose rate for proton therapy. With pre-designed general bar RFs, the hybrid TB-SESOBP planning could be implemented for proton adaptive FLASH radiotherapy. As an alternative FLASH planning approach to TB-only planning, the hybrid TB-SESOBP planning has great potential in dosimetrically improving OAR sparing while maintaining high target dose homogeneity.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Ruirui Liu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Duncan Bohannon
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Sibo Tian
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Hamaide V, Souris K, Dasnoy D, Glineur F, Macq B. Real-time image-guided treatment of mobile tumors in proton therapy by a library of treatment plans: a simulation study. Med Phys 2023; 50:465-479. [PMID: 36345808 DOI: 10.1002/mp.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To improve target coverage and reduce the dose in the surrounding organs-at-risks (OARs), we developed an image-guided treatment method based on a precomputed library of treatment plans controlled and delivered in real-time. METHODS A library of treatment plans is constructed by optimizing a plan for each breathing phase of a four dimensional computed tomography (4DCT). Treatments are delivered by simulation on a continuous sequence of synthetic computed tomographies (CTs) generated from real magnetic resonance imaging (MRI) sequences. During treatment, the plans for which the tumor are at a close distance to the current tumor position are selected to deliver their spots. The study is conducted on five liver cases. RESULTS We tested our approach under imperfect knowledge of the tumor positions with a 2 mm distance error. On average, compared to a 4D robustly optimized treatment plan, our approach led to a dose homogeneity increase of 5% (defined as 1 - D 5 - D 95 prescription $1-\frac{D_5-D_{95}}{\text{prescription}}$ ) in the target and a mean liver dose decrease of 23%. The treatment time was roughly increased by a factor of 2 but remained below 4 min on average. CONCLUSIONS Our image-guided treatment framework outperforms state-of-the-art 4D-robust plans for all patients in this study on both target coverage and OARs sparing, with an acceptable increase in treatment time under the current accuracy of the tumor tracking technology.
Collapse
Affiliation(s)
| | | | - Damien Dasnoy
- ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Benoît Macq
- ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Chang C, Charyyev S, Harms J, Slopsema R, Wolf J, Refai D, Yoon T, McDonald MW, Bradley JD, Leng S, Zhou J, Yang X, Lin L. A component method to delineate surgical spine implants for proton Monte Carlo dose calculation. J Appl Clin Med Phys 2023; 24:e13800. [PMID: 36210177 PMCID: PMC9859997 DOI: 10.1002/acm2.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Metallic implants have been correlated to local control failure for spinal sarcoma and chordoma patients due to the uncertainty of implant delineation from computed tomography (CT). Such uncertainty can compromise the proton Monte Carlo dose calculation (MCDC) accuracy. A component method is proposed to determine the dimension and volume of the implants from CT images. METHODS The proposed component method leverages the knowledge of surgical implants from medical supply vendors to predefine accurate contours for each implant component, including tulips, screw bodies, lockers, and rods. A retrospective patient study was conducted to demonstrate the feasibility of the method. The reference implant materials and samples were collected from patient medical records and vendors, Medtronic and NuVasive. Additional CT images with extensive features, such as extended Hounsfield units and various reconstruction diameters, were used to quantify the uncertainty of implant contours. RESULTS For in vivo patient implant estimation, the reference and the component method differences were 0.35, 0.17, and 0.04 cm3 for tulips, screw bodies, and rods, respectively. The discrepancies by a conventional threshold method were 5.46, 0.76, and 0.05 cm3 , respectively. The mischaracterization of implant materials and dimensions can underdose the clinical target volume coverage by 20 cm3 for a patient with eight lumbar implants. The tulip dominates the dosimetry uncertainty as it can be made from titanium or cobalt-chromium alloys by different vendors. CONCLUSIONS A component method was developed and demonstrated using phantom and patient studies with implants. The proposed method provides more accurate implant characterization for proton MCDC and can potentially enhance the treatment quality for proton therapy. The current proof-of-concept study is limited to the implant characterization for lumbar spine. Future investigations could be extended to cervical spine and dental implants for head-and-neck patients where tight margins are required to spare organs at risk.
Collapse
Affiliation(s)
- Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Joseph Harms
- Department of Radiation OncologyUniversity of AlabamaBirminghamAlabamaUSA
| | - Roelf Slopsema
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jonathan Wolf
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Daniel Refai
- Department of NeurosurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Tim Yoon
- Department of OrthopaedicsEmory UniversityAtlantaGeorgiaUSA
| | - Mark W. McDonald
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Shuai Leng
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical InformaticsEmory UniversityAtlantaGeorgiaUSA
| | - Liyong Lin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
13
|
Yang Y, Rwigema JCM, Vargas C, Yu NY, Keole SR, Wong WW, Schild SE, Bues M, Liu W, Shen J. Technical note: Investigation of dose and LET d effect to rectum and bladder by using non-straight laterals in prostate cancer receiving proton therapy. Med Phys 2022; 49:7428-7437. [PMID: 36208196 DOI: 10.1002/mp.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Parallel-opposed lateral beams are the conventional beam arrangements in proton therapy for prostate cancer. However, when considering linear energy transfer (LET) and RBE effects, alternative beam arrangements should be investigated. PURPOSE To investigate the dose and dose averaged LET (LETd ) impact of using new beam arrangements rotating beams 5°-15° posteriorly to the laterals in prostate cancer treated with pencil-beam-scanning (PBS) proton therapy. METHODS Twenty patients with localized prostate cancer were included in this study. Four proton treatment plans for each patient were generated utilizing 0°, 5°, 10°, and 15° posterior oblique beam pairs relative to parallel-opposed lateral beams. Dose-volume histograms (DVHs) from posterior oblique beams were analyzed. Dose-LETd -volume histogram (DLVH) was employed to study the difference in dose and LETd with each beam arrangement. DLVH indices, V ( d , l ) $V( {d,l} )$ , defined as the cumulative absolute volume that has a dose of at least d (Gy[RBE]) and a LETd of at least l (keV/µm), were calculated for both the rectum and bladder to the whole group of patients and two-sub groups with and without hydrogel spacer. These metrics were tested using Wilcoxon signed-rank test. RESULTS Rotating beam angles from laterals to slightly posterior by 5°-15° reduced high LETd volumes while it increased the dose volume in the rectum and increased LETd in bladders. Beam angles rotated five degrees posteriorly from laterals (i.e., gantry in 95° and 265°) are proposed since they achieved the optimal balance of better LETd sparing and minimal dose increase in the rectum. A reduction of V(50 Gy[RBE], 2.6 keV/µm) from 7.41 to 3.96 cc (p < 0.01), and a slight increase of V(50 Gy[RBE], 0 keV/µm) from 20.1 to 21.6 cc (p < 0.01) were observed for the group without hydrogel spacer. The LETd sparing was less effective for the group with hydrogel spacer, which achieved the reduction of V(50 Gy[RBE], 2.6 keV/µm) from 4.28 to 2.10 cc (p < 0.01). CONCLUSIONS Posterior oblique angle plans improved LETd sparing of the rectum while sacrificing LETd sparing in the bladder in the treatment of prostate cancer with PBS. Beam angle modification from laterals to slightly posterior may be a strategy to redistribute LETd and perhaps reduce rectal toxicity risks in prostate cancer patients treated with PBS. However, the effect is reduced for patients with hydrogel spacer.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - Carlos Vargas
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Yu NY, DeWees TA, Voss MM, Breen WG, Chiang JS, Ding JX, Daniels TB, Owen D, Olivier KR, Garces YI, Park SS, Sarkaria JN, Yang P, Savvides PS, Ernani V, Liu W, Schild SE, Merrell KW, Sio TT. Cardiopulmonary Toxicity Following Intensity-Modulated Proton Therapy (IMPT) Versus Intensity-Modulated Radiation Therapy (IMRT) for Stage III Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:e526-e535. [PMID: 36104272 DOI: 10.1016/j.cllc.2022.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Intensity-modulated proton therapy (IMPT) has the potential to reduce radiation dose to normal organs when compared to intensity-modulated radiation therapy (IMRT). We hypothesized that IMPT is associated with a reduced rate of cardiopulmonary toxicities in patients with Stage III NSCLC when compared with IMRT. METHODS We analyzed 163 consecutively treated patients with biopsy-proven, stage III NSCLC who received IMPT (n = 35, 21%) or IMRT (n = 128, 79%). Patient, tumor, and treatment characteristics were analyzed. Overall survival (OS), freedom-from distant metastasis (FFDM), freedom-from locoregional relapse (FFLR), and cardiopulmonary toxicities (CTCAE v5.0) were calculated using the Kaplan-Meier estimate. Univariate cox regressions were conducted for the final model. RESULTS Median follow-up of surviving patients was 25.5 (range, 4.6-58.1) months. Median RT dose was 60 (range, 45-72) Gy [RBE]. OS, FFDM, and FFLR were not different based on RT modality. IMPT provided significant dosimetric pulmonary and cardiac sparing when compared to IMRT. IMPT was associated with a reduced rate of grade more than or equal to 3 pneumonitis (HR 0.25, P = .04) and grade more than or equal to 3 cardiac events (HR 0.33, P = .08). Pre-treatment predicted diffusing capacity for carbon monoxide less than equal to 57% (HR 2.8, P = .04) and forced expiratory volume in the first second less than equal to 61% (HR 3.1, P = .03) were associated with an increased rate of grade more than or equal to 3 pneumonitis. CONCLUSIONS IMPT is associated with a reduced risk of clinically significant pneumonitis and cardiac events when compared with IMRT without compromising tumor control in stage III NSCLC. IMPT may provide a safer treatment option, particularly for high-risk patients with poor pretreatment pulmonary function.
Collapse
Affiliation(s)
- Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Todd A DeWees
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - Molly M Voss
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | - Julia X Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Thomas B Daniels
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ
| | | | - Vinicius Ernani
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | | | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ.
| |
Collapse
|
15
|
Pirlepesov F, Wilson L, Moskvin VP, Breuer A, Parkins F, Lucas JT, Merchant TE, Faught AM. Three-dimensional dose and LET D prediction in proton therapy using artificial neural networks. Med Phys 2022; 49:7417-7427. [PMID: 36227617 PMCID: PMC9872814 DOI: 10.1002/mp.16043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Challenges in proton therapy include identifying patients most likely to benefit; ensuring consistent, high-quality plans as its adoption becomes more widespread; and recognizing biological uncertainties that may be related to increased relative biologic effectiveness driven by linear energy transfer (LET). Knowledge-based planning (KBP) is a domain that may help to address all three. METHODS Artificial neural networks were trained using 117 unique treatment plans and associated dose and dose-weighted LET (LETD ) distributions. The data set was split into training (n = 82), validation (n = 17), and test (n = 18) sets. Model performance was evaluated on the test set using dose- and LETD -volume metrics in the clinical target volume (CTV) and nearby organs at risk and Dice similarity coefficients (DSC) comparing predicted and planned isodose lines at 50%, 75%, and 95% of the prescription dose. RESULTS Dose-volume metrics significantly differed (α = 0.05) between predicted and planned dose distributions in only one dose-volume metric, D2% to the CTV. The maximum observed root mean square (RMS) difference between corresponding metrics was 4.3 GyRBE (8% of prescription) for D1cc to optic chiasm. DSC were 0.90, 0.93, and 0.88 for the 50%, 75%, and 95% isodose lines, respectively. LETD -volume metrics significantly differed in all but one metric, L0.1cc of the brainstem. The maximum observed difference in RMS differences for LETD metrics was 1.0 keV/μm for L0.1cc to brainstem. CONCLUSIONS We have devised the first three-dimensional dose and LETD -prediction model for cranial proton radiation therapy has been developed. Dose accuracy compared favorably with that of previously published models in other treatment sites. The agreement in LETD supports future investigations with biological doses in mind to enable the full potential of KBP in proton therapy.
Collapse
Affiliation(s)
| | - Lydia Wilson
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Alex Breuer
- Department of Pathology, St. Jude Children's Research Hospital
| | - Franz Parkins
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Austin M Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| |
Collapse
|
16
|
Holmes J, Shen J, Patel SH, Wong WW, Foote RL, Bues M, Liu W. Collimating individual beamlets in pencil beam scanning proton therapy, a dosimetric investigation. Front Oncol 2022; 12:1031340. [PMID: 36439436 PMCID: PMC9692234 DOI: 10.3389/fonc.2022.1031340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 03/26/2024] Open
Abstract
The purpose of this work is to investigate collimating individual proton beamlets from a dosimetric perspective and to introduce a new device concept, the spot scanning aperture (SSA). The SSA consists of a thin aperture with a small cylindrical opening attached to a robotics system, which allows the aperture to follow and align with individual beamlets during spot delivery. Additionally, a range shifter is incorporated (source-side) for treating shallow depths. Since the SSA trims beamlets spot by spot, the patient-facing portion of the device only needs to be large enough to trim a single proton beamlet. The SSA has been modelled in an open-source Monte-Carlo-based dose engine (MCsquare) to characterize its dosimetric properties in water at depths between 0 and 10 cm while varying the following parameters: the aperture material, thickness, distance to the water phantom, distance between the aperture and attached range shifter, and the aperture opening radius. Overall, the SSA greatly reduced spot sizes for all the aperture opening radii that were tested (1 - 4 mm), especially in comparison with the extended range shifter (ranger shifter placed at 30 cm from patient); greater than 50% when placed less than 10 cm away from the patient at depths in water less than 50 mm. The peak to entrance dose ratio and linear energy transfer was found to depend on the thickness of the aperture and therefore the aperture material. Neutron production rates were also investigated and discussed.
Collapse
Affiliation(s)
- Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
17
|
Liang X, Beltran C, Liu C, Shen J, Bues M, Furutani KM. Investigation of the impact of machine operating parameters on beam delivery time and its correlation with treatment plan characteristics for synchrotron-based proton pencil beam spot scanning system. Front Oncol 2022; 12:1036139. [DOI: 10.3389/fonc.2022.1036139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
PurposeTo investigate the beam delivery time (BDT) reduction due to the improvement of machine parameters for Hitachi synchrotron-based proton PBS system.MethodsBDTs for representative treatment plans were calculated to quantitatively estimate the BDT improvement from our 2015 system at Mayo Clinic in Arizona to our system to be implemented in 2025 at Mayo Clinic in Florida, and to a hypothetical future system. To specifically assess how each incremental improvement in the operating parameters reduced the total BDT, for each plan, we simulated the BDT 10,368 times with various settings of the nine different operating parameters. The effect of each operating parameter on BDT reduction and its correlation with treatment plan characteristics were analyzed. The optimal number of multiple energy extraction (MEE) layers per spill for different systems was also investigated.ResultsThe median (range) decrease in BDT was 60% (56%-70%) from the 2015 to the 2025 system. The following incremental improvement in parameters of the 2015 system for the 2025 system played an important role in this decreased BDT: beam intensity (8 to 20 MU/s), recapture efficiency (50% to 80%), number of MEE layers per spill (4 to 8), scanning magnet preparation and verification time (1.9 to 0.95 msec), and MEE layer switch time (200 to 100 msec). Reducing the total spill change time and scanning magnet preparation and verification time from those of the 2025 system further reduced BDT in the hypothetical future system. 8 MEE layers per spill is optimal for a system with 50% recapture efficiency; 16 MEE layers per spill is optimal for a system with 80% recapture efficiency; and more than 16 MEE layers per spill is beneficial only for a system close to 100% recapture efficiency.ConclusionsWe systematically studied the effect of each machine operating parameter on the reduction in total BDT and its correlation with treatment plan characteristics. Our findings will aid new and existing synchrotron-based proton beam therapy centers to make balanced decisions on BDT benefits vs. costs when considering machine upgrade or new system selection.
Collapse
|
18
|
Shan J, Feng H, Morales DH, Patel SH, Wong WW, Fatyga M, Bues M, Schild SE, Foote RL, Liu W. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation. Med Phys 2022; 49:6666-6683. [PMID: 35960865 PMCID: PMC9588716 DOI: 10.1002/mp.15913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In proton therapy dose calculation, Monte Carlo (MC) simulations are superior in accuracy but more time consuming, compared to analytical calculations. Graphic processing units (GPUs) are effective in accelerating MC simulations but may suffer thread divergence and racing condition in GPU threads that degrades the computing performance due to the generation of secondary particles during nuclear reactions. PURPOSE A novel concept of virtual particle (VP) MC (VPMC) is proposed to avoid simulating secondary particles in GPU-accelerated proton MC dose calculation and take full advantage of the computing power of GPU. METHODS Neutrons and gamma rays were ignored as escaping from the human body; doses of electrons, heavy ions, and nuclear fragments were locally deposited; the tracks of deuterons were converted into tracks of protons. These particles, together with primary and secondary protons, are considered to be the realistic particles. Histories of primary and secondary protons were replaced by histories of multiple VPs. Each VP corresponded to one proton (either primary or secondary). A continuous-slowing-down-approximation model, an ionization model, and a large angle scattering event model corresponding to nuclear interactions were developed for VPs by generating probability distribution functions (PDFs) based on simulation results of realistic particles using MCsquare. For efficient calculations, these PDFs were stored in the Compute Unified Device Architecture textures. VPMC was benchmarked with TOPAS and MCsquare in phantoms and with MCsquare in 13 representative patient geometries. Comparisons between the VPMC calculated dose and dose measured in water during patient-specific quality assurance (PSQA) of the selected 13 patients were also carried out. Gamma analysis was used to compare the doses derived from different methods and calculation efficiencies were also compared. RESULTS Integrated depth dose and lateral dose profiles in both homogeneous and inhomogeneous phantoms all matched well among VPMC, TOPAS, and MCsquare calculations. The 3D-3D gamma passing rates with a criterion of 2%/2 mm and a threshold of 10% was 98.49% between MCsquare and TOPAS and 98.31% between VPMC and TOPAS in homogeneous phantoms, and 99.18% between MCsquare and TOPAS and 98.49% between VPMC and TOPAS in inhomogeneous phantoms, respectively. In patient geometries, the 3D-3D gamma passing rates with 2%/2 mm/10% between dose distributions from VPMC and MCsquare were 98.56 ± 1.09% in patient geometries. The 2D-3D gamma analysis with 3%/2 mm/10% between the VPMC calculated dose distributions and the 2D measured planar dose distributions during PSQA was 98.91 ± 0.88%. VPMC calculation was highly efficient and took 2.84 ± 2.44 s to finish for the selected 13 patients running on four NVIDIA Ampere GPUs in patient geometries. CONCLUSION VPMC was found to achieve high accuracy and efficiency in proton therapy dose calculation.
Collapse
Affiliation(s)
- Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
19
|
Faught AM, Wilson LJ, Gargone M, Pirlepesov F, Moskvin VP, Hua C. Treatment-planning approaches to intensity modulated proton therapy and the impact on dose-weighted linear energy transfer. J Appl Clin Med Phys 2022; 24:e13782. [PMID: 36161765 PMCID: PMC9859995 DOI: 10.1002/acm2.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE We quantified the effect of various forward-based treatment-planning strategies in proton therapy on dose-weighted linear energy transfer (LETd). By maintaining the dosimetric quality at a clinically acceptable level, we aimed to evaluate the differences in LETd among various treatment-planning approaches and their practicality in minimizing biologic uncertainties associated with LETd. METHOD Eight treatment-planning strategies that are achievable in commercial treatment-planning systems were applied on a cylindrical water phantom and four pediatric brain tumor cases. Each planning strategy was compared to either an opposed lateral plan (phantom study) or original clinical plan (patient study). Deviations in mean and maximum LETd from clinically acceptable dose distributions were compared. RESULTS In the phantom study, using a range shifter and altering the robust scenarios during optimization had the largest effect on the mean clinical target volume LETd, which was reduced from 4.5 to 3.9 keV/μm in both cases. Variations in the intersection angle between beams had the largest effect on LETd in a ring defined 3 to 5 mm outside the target. When beam intersection angles were reduced from opposed laterals (180°) to 120°, 90°, and 60°, corresponding maximum LETd increased from 7.9 to 8.9, 10.9, and 12.2 keV/μm, respectively. A clear trend in mean and maximum LETd variations in the clinical cases could not be established, though spatial distribution of LETd suggested a strong dependence on patient anatomy and treatment geometry. CONCLUSION Changes in LETd from treatment-plan setup follow intuitive trends in a controlled phantom experiment. Anatomical and other patient-specific considerations, however, can preclude generalizable strategies in clinical cases. For pediatric cranial radiation therapy, we recommend using opposed lateral treatment fields to treat midline targets.
Collapse
Affiliation(s)
- Austin M. Faught
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Lydia J. Wilson
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Melissa Gargone
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Fakhriddin Pirlepesov
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Vadim P. Moskvin
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Chia‐Ho Hua
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
20
|
Yang Y, Patel SH, Bridhikitti J, Wong WW, Halyard MY, McGee LA, Rwigema JCM, Schild SE, Vora SA, Liu T, Bues M, Fatyga M, Foote RL, Liu W. Exploratory study of seed spots analysis to characterize dose and linear energy transfer effect in adverse event initialization of pencil beam scanning proton therapy. Med Phys 2022; 49:6237-6252. [PMID: 35820062 DOI: 10.1002/mp.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Both dose and linear-energy-transfer (LET) could play a substantial role in adverse event (AE) initialization of cancer patients treated with pencil-beam-scanning proton therapy (PBS). However, not all the voxels within the AE regions are directly induced from the dose and LET effect. It is important to study the synergistic effect of dose and LET in AE initialization by only including a subset of voxels that are dosimetrically important. PURPOSE To perform exploratory investigation of the dose and LET effects upon AE initialization in PBS using seed spots analysis. METHODS 113 head and neck (H&N) cancer patients receiving curative PBS were included. Among them, 20 patients experienced unanticipated CTCAEv4.0 grade≥3 AEs (AE group) and 93 patients did not (control group). Within the AE group, 13 AE patients were included in the seed spot analysis to derive the descriptive features of AE initialization and the remaining 7 mandible osteoradionecrosis patients and 93 control patients were used to derive the feature-based volume constraint of mandible osteoradionecrosis. The AE regions were contoured and the corresponding dose-LET volume histograms (DLVHs) of AE regions were generated for all patients in the AE group. We selected high LET voxels (the highest 5% of each dose bin) with a range of moderate to high dose (≥∼40 Gy[RBE]) as critical voxels. Critical voxels which were contiguous with each other were grouped into clusters. Each cluster was considered as a potential independent seed spot for AE initialization. Seed spots were displayed in a 2D dose-LET plane based on their mean dose and LET to derive the descriptive features of AE initialization. A volume constraint of mandible osteoradionecrosis was then established based on the extracted features using a receiver operating characteristic curve. RESULTS The product of dose and LET (xBD) was found to be a descriptive feature of seed spots leading to AE initialization in this preliminary study. The derived xBD volume constraint for mandible osteoradionecrosis showed good performance with an area-under-curve of 0.87 (sensitivity of 0.714 and specificity of 0.807 in the leave-one-out cross validation) for the very limited patient data included in this study. CONCLUSION Our exploratory study showed that both dose and LET were observed to be important in AE initializations. The derived xBD volume constraint could predict mandible osteoradionecrosis reasonably well in the very limited H&N cancer patient data treated with PBS included in this study. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Jidapa Bridhikitti
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michele Y Halyard
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
21
|
Zhang J, Liang Y, Yang C. A primary proton integral depth dose calculation model corrected with straight scattering track approximation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Feng H, Patel SH, Wong WW, Younkin JE, Penoncello GP, Morales DH, Stoker JB, Robertson DG, Fatyga M, Bues M, Schild SE, Foote RL, Liu W. GPU-accelerated Monte Carlo-based online adaptive proton therapy - a feasibility study. Med Phys 2022; 49:3550-3563. [PMID: 35443080 DOI: 10.1002/mp.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop an online Graphic-Processing-Unit (GPU)-accelerated Monte-Carlo-based adaptive radiation therapy (ART) workflow for pencil beam scanning (PBS) proton therapy to address inter-fraction anatomical changes in patients treated with PBS. METHODS AND MATERIALS A four-step workflow was developed using our in-house developed GPU-accelerated Monte-Carlo-based treatment planning system to implement online Monte-Carlo-based ART for PBS. The first step conducts diffeomorphic demon-based deformable image registration (DIR) to propagate contours on the initial planning CT (pCT) to the verification CT (vCT) to form a new structure set. The second step performs forward dose calculation of the initial plan on the vCT with the propagated contours after manual approval (possible modifications involved). The third step triggers a re-optimization of the plan depending on whether the verification dose meets the clinical requirements or not. A robust evaluation will be done for both the verification plan in the second step and the re-opotimized plan in the third step. The fourth step involves a two-stage (before and after delivery) patient specific quality assurance (PSQA) of the re-optimized plan. The before-delivery PSQA is to compare the plan dose to the dose calculated using an independent fast open-source Monte Carlo code, MCsquare. The after-delivery PSQA is to compare the plan dose to the dose re-calculated using the log file (spot MU, spot position, and spot energy) collected during the delivery. Jaccard index (JI), Dice similarity coefficients (DSCs), and Hausdorff distance (HD) were used to assess the quality of the propagated contours in the first step. A commercial plan evaluation software, ClearCheck™, was integrated into the workflow to carry out efficient plan evaluation. 3D Gamma analysis was used during the fourth step to ensure the accuracy of the plan dose from re-optimization. Three patients with three different disease sites were chosen to evaluate the feasibility of the online ART workflow for PBS. RESULTS For all three patients, the propagated contours were found to have good volume conformance [JI (lowest-highest: 0.833-0.983) and DSC (0.909-0.992)] but sub-optimal boundary coincidence [HD (2.37-20.76 mm)] for organs at risk (OARs). The verification dose evaluated by ClearCheck™ showed significant degradation of the target coverage due to the inter-fractional anatomical changes. Re-optimization on the vCT resulted in great improvement of the plan quality to a clinically acceptable level. 3D Gamma analyses of PSQA confirmed the accuracy of the plan dose before delivery (mean Gamma index = 98.74% with a threshold of 2%/2 mm/10%), and after delivery based on the log files (mean Gamma index = 99.05% with a threshold of 2%/2 mm/10%). The average time cost for the complete execution of the workflow was around 858 seconds, excluding the time for manual intervention. CONCLUSION The proposed online ART workflow for PBS was demonstrated to be efficient and effective by generating a re-optimized plan that significantly improved the plan quality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - James E Younkin
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | | | | | - Joshua B Stoker
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | | | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
23
|
Yang Y, Muller OM, Shiraishi S, Harper M, Amundson AC, Wong WW, McGee LA, Rwigema JCM, Schild SE, Bues M, Fatyga M, Anderson JD, Patel SH, Foote RL, Liu W. Empirical Relative Biological Effectiveness (RBE) for Mandible Osteoradionecrosis (ORN) in Head and Neck Cancer Patients Treated With Pencil-Beam-Scanning Proton Therapy (PBSPT): A Retrospective, Case-Matched Cohort Study. Front Oncol 2022; 12:843175. [PMID: 35311159 PMCID: PMC8928456 DOI: 10.3389/fonc.2022.843175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To retrospectively investigate empirical relative biological effectiveness (RBE) for mandible osteoradionecrosis (ORN) in head and neck (H&N) cancer patients treated with pencil-beam-scanning proton therapy (PBSPT). Methods We included 1,266 H&N cancer patients, of which, 931 patients were treated with volumetric-modulated arc therapy (VMAT) and 335 were treated with PBSPT. Among them, 26 VMAT and 9 PBSPT patients experienced mandible ORN (ORN group), while all others were included in the control group. To minimize the impact of the possible imbalance in clinical factors between VMAT and PBSPT patients in the dosimetric comparison between these two modalities and the resulting RBE quantification, we formed a 1:1 case-matched patient cohort (335 VMAT patients and 335 PBSPT patients including both the ORN and control groups) using the greedy nearest neighbor matching of propensity scores. Mandible dosimetric metrics were extracted from the case-matched patient cohort and statistically tested to evaluate the association with mandibular ORN to derive dose volume constraints (DVCs) for VMAT and PBSPT, respectively. We sought the equivalent constraint doses for VMAT so that the critical volumes of VMAT were equal to those of PBSPT at different physical doses. Empirical RBEs of PBSPT for ORN were obtained by calculating the ratio between the derived equivalent constraint doses and physical doses of PBSPT. Bootstrapping was further used to get the confidence intervals. Results Clinical variables of age, gender, tumor stage, prescription dose, chemotherapy, hypertension or diabetes, dental extraction, smoking history, or current smoker were not statistically related to the incidence of ORN in the overall patient cohort. Smoking history was found to be significantly associated with the ORN incidence in PBSPT patients only. V40Gy[RBE], V50Gy[RBE], and V60Gy[RBE] were statistically different (p<0.05) between the ORN and control group for VMAT and PBSPT. Empirical RBEs of 1.58(95%CI: 1.34-1.64), 1.34(95%CI: 1.23-1.40), and 1.24(95%: 1.15-1.26) were obtained for proton dose at 40 Gy[RBE=1.1], 50 Gy[RBE=1.1] and 60 Gy[RBE=1.1], respectively. Conclusions Our study suggested that RBEs were larger than 1.1 at moderate doses (between 40 and 60 Gy[RBE=1.1]) with high LET for mandible ORN. RBEs are underestimated in current clinical practice in PBSPT. The derived DVCs can be used for PBSPT plan evaluation and optimization to minimize the incidence rate of mandible ORN.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Olivia M Muller
- Department of Dental Specialties, Mayo Clinic Rochester, Rochester, MN, United States
| | - Satomi Shiraishi
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Matthew Harper
- School of Dentistry, West Virginia University, Morgantown, WV, United States
| | - Adam C Amundson
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Justin D Anderson
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, United States
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
24
|
Holmes J, Shen J, Shan J, Patrick CL, Wong WW, Foote RL, Patel SH, Bues M, Liu W. Technical Note: Evaluation and 2nd check of a commercial Monte Carlo dose engine for small-field apertures in pencil beam scanning proton therapy. Med Phys 2022; 49:3497-3506. [PMID: 35305269 DOI: 10.1002/mp.15604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the accuracy of the RayStation Monte Carlo dose engine (RayStation MC) in modeling small-field block apertures in proton pencil beam scanning. Furthermore, we evaluate the suitability of MCsquare as a 2nd check for RayStation MC. METHODS We have enhanced MCsquare to model block apertures. To test the accuracy of both RayStation MC and the newly enhanced MCsquare, we compare the dose predictions of each to in-water dose measurements obtained using diode detectors and radiochromic film. Nine brass apertures with openings of 1, 2, 3, 4, and 5 cm and either 2 cm or 4 cm thickness were used in the irradiation of a water phantom. Two measurement setups were used, one with a range shifter and 119.7 MeV proton beam energy and the other with no range shifter and 147 MeV proton beam energy. To further test the validity of RayStation MC and MCsquare in modeling block apertures and to evaluate MCsquare as a 2nd check tool, ten small-field (average target volume 8.3 cm3 ) patient treatment plans were calculated by each dose engine followed by a statistical comparison. RESULTS Comparing to the absolute dose measurements in water, RayStation MC differed by 1.2% ± 1.0% while MCsquare differed by -1.8% ± 3.7% in the plateau region of a pristine Bragg peak. Compared to the in-water film measurements, RayStation MC and MCsquare both performed well with an average 2D-3D gamma passing rate of 99.4% and 99.7% (3%/3mm) respectively. A t-test comparing the agreement with the film measurements between RayStation MC and MCsquare suggested that the relative spatial dose distributions calculated by MCsquare and RayStation MC were statistically indistinguishable. Directly comparing the dose calculations between MCsquare and RayStation MC over ten patients resulted in an average 3D-3D gamma passing rates of 98.5% (3%/3mm) and 94.1% (2%/2mm) respectively. CONCLUSION The validity of RayStation MC algorithm for use with patient-specific apertures has been expanded to include small apertures. MCsquare has been enhanced to model apertures and was found to be an adequate 2nd check of RayStation MC in this scenario. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | | | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
25
|
Mein S, Kopp B, Vela A, Dutheil P, Lesueur P, Stefan D, Debus J, Haberer T, Abdollahi A, Mairani A, Tessonnier T. How can we consider variable RBE and LET d prediction during clinical practice? A pediatric case report at the Normandy Proton Therapy Centre using an independent dose engine. Radiat Oncol 2022; 17:23. [PMID: 35120547 PMCID: PMC8815260 DOI: 10.1186/s13014-021-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To develop an auxiliary GPU-accelerated proton therapy (PT) dose and LETd engine for the IBA Proteus®ONE PT system. A pediatric low-grade glioma case study is reported using FRoG during clinical practice, highlighting potential treatment planning insights using variable RBE dose (DvRBE) and LETd as indicators for clinical decision making in PT. METHODS The physics engine for FRoG has been modified for compatibility with Proteus®ONE PT centers. Subsequently, FRoG was installed and commissioned at NPTC. Dosimetric validation was performed against measurements and the clinical TPS, RayStation (RS-MC). A head patient cohort previously treated at NPTC was collected and FRoG forward calculations were compared against RS-MC for evaluation of 3D-Γ analysis and dose volume histogram (DVH) results. Currently, treatment design at NPTC is supported with fast variable RBE and LETd calculation and is reported in a representative case for pediatric low-grade glioma. RESULTS Simple dosimetric tests against measurements of iso-energy layers and spread-out Bragg Peaks in water verified accuracy of FRoG and RS-MC. Among the patient cohort, average 3D-Γ applying 2%/2 mm, 3%/1.5 mm and 5%/1 mm were > 97%. DVH metrics for targets and OARs between FRoG and RayStation were in good agreement, with ∆D50,CTV and ∆D2,OAR both ⪅1%. The pediatric case report demonstrated implications of different beam arrangements on DvRBE and LETd distributions. From initial planning in RayStation sharing identical optimization constraints, FRoG analysis led to plan selection of the most conservative approach, i.e., minimized DvRBE,max and LETd,max in OARs, to avoid optical system toxicity effects (i.e., vision loss). CONCLUSION An auxiliary dose calculation system was successfully integrated into the clinical workflow at a Proteus®ONE IBA facility, in excellent agreement with measurements and RS-MC. FRoG may lead to further insight on DvRBE and LETd implications to help clinical decision making, better understand unexpected toxicities and establish novel clinical procedures with metrics currently absent from the standard clinical TPS.
Collapse
Affiliation(s)
- Stewart Mein
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Benedikt Kopp
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Anthony Vela
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Pauline Dutheil
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Paul Lesueur
- Radiation Oncology Department, Centre François Baclesse, Caen, France
- Radiation Oncology Department, Centre Guillaume Le Conquérant, Le Havre, France
- ISTCT UMR6030-CNRS, CEA, Université de Caen-Normandie, Equipe CERVOxy, Caen, France
| | - Dinu Stefan
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Andrea Mairani
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Thomas Tessonnier
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany.
- Radiation Oncology Department, Centre François Baclesse, Caen, France.
| |
Collapse
|
26
|
Knopf AC, Czerska K, Fracchiolla F, Graeff C, Molinelli S, Rinaldi I, Rucincki A, Sterpin E, Stützer K, Trnkova P, Zhang Y, Chang JY, Giap H, Liu W, Schild SE, Simone CB, Lomax AJ, Meijers A. Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – a comprehensive review. Radiother Oncol 2022; 169:77-85. [DOI: 10.1016/j.radonc.2022.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
|
27
|
Shi C, Lin H, Huang S, Xiong W, Hu L, Choi I, Press R, Hasan S, Simone C, Chhabra A. Comprehensive Evaluation of Carbon-Fiber-Reinforced Polyetheretherketone (CFR-PEEK) Spinal Hardware for Proton and Photon Planning. Technol Cancer Res Treat 2022; 21:15330338221091700. [PMID: 35410544 PMCID: PMC9009152 DOI: 10.1177/15330338221091700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: To evaluate a novel spine implant, carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), for proton and photon treatment planning. Materials and Methods: We compared target coverage and sparing of organs-at-risk (OARs) for a spinal phantom with 4 different spine configurations: (a) normal (no implant); (b) Titanium; (c) CFR-PEEK; and (d) hybrid (CFR-PEEK with Titanium tulip head). The spinal phantom was imaged via computed tomography (CT) scan, and the iterative Metal Artifact Reduction (iMAR) CT set was used for planning. A representative spinal chordoma target and associated OARs were contoured. The prescription dose was 50 Gy to the initial target volume, followed by a 24 Gy boost, for which multi-field optimization (MFO) proton plans were developed with a 3 mm setup and 3.5% range uncertainties. For photon planning, volumetric modulated arc therapy (VMAT) plans were developed for the initial and boost plans. OAR dose constraints were set according to our institutional guidelines. Results: For the 4 spine configurations, the proton plans achieved similar nominal target coverage and OARs sparing. While evaluating coverage and OAR dose under uncertainty scenario analysis for initial clinical target volume (CTV) 50 Gy 95% and 90% coverage, higher means and the narrower band of doses variations were achieved for the normal and CFR-PEEK plans. Similarly, uncertainty analysis of spinal cord Dmax showed tighter distribution for normal and CFR-PEEK plans. Overall plan quality showed no significant difference for photon planning when compared to normal spine versus other inserts. However, for proton planning, there is a larger difference for the normal spine insert scenario versus the Titanium insert scenario. For each insert scenario comparison between photon and proton plans, there was a larger difference for OARs: heart and spinal cord. Conclusion: The CFR-PEEK implant has similar clinical properties to a normal spine for proton planning, allowing us to pass protons through the material and achieve superior target coverage and OAR sparing under nominal and uncertainty conditions.
Collapse
Affiliation(s)
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | | | | | - Lei Hu
- New York Proton Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
28
|
Feng H, Shan J, Anderson JD, Wong WW, Schild SE, Foote RL, Patrick CL, Tinnon KB, Fatyga M, Bues M, Patel SH, Liu W. Per-voxel constraints to minimize hot spots in linear energy transfer-guided robust optimization for base of skull head and neck cancer patients in IMPT. Med Phys 2021; 49:632-647. [PMID: 34843119 DOI: 10.1002/mp.15384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Due to the employment of quadratic programming using soft constraints to implement dose volume constraints and the "trial-and-error" procedure needed to achieve a clinically acceptable plan, conventional dose volume constraints (upper limit) are not adequately effective in controlling small and isolated hot spots in the dose/linear energy transfer (LET) distribution. Such hot spots can lead to adverse events. In order to mitigate the risk of brain necrosis, one of the most clinically significant adverse events in patients receiving intensity-modulated proton therapy (IMPT) for base of skull (BOS) cancer, we propose per-voxel constraints to minimize hot spots in LET-guided robust optimization. METHODS AND MATERIALS Ten BOS cancer patients treated with IMPT were carefully selected by meeting one of the following conditions: (1) diagnosis of brain necrosis during follow-up; and (2) considered high risk for brain necrosis by not meeting dose constraints to the brain. An optimizing structure (BrainOPT) and an evaluating structure (BrainROI) that both contained the aforementioned hot dose regions in the brain were generated for optimization and evaluation, respectively. Two plans were generated for every patient: one using conventional dose-only robust optimization, the other using LET-guided robust optimization. The impact of LET was integrated into the optimization via a term of extra biological dose (xBD). A novel optimization tool of per-voxel constraints to control small and isolated hot spots in either the dose, LET, or combined (dose/LET) distribution was developed and used to minimize dose/LET hot spots of the selected structures. Indices from dose-volume histogram (DVH) and xBD dose-volume histogram (xBDVH) were used in the plan evaluation. A newly developed tool of the dose-LET-volume histogram (DLVH) was also adopted to illustrate the underlying mechanism. Wilcoxon signed-rank test was used for statistical comparison of the DVH and xBDVH indices between the conventional dose-only and the LET-guided robustly optimized plans. RESULTS Per-voxel constraints effectively and efficiently minimized dose hot spots in both dose-only and LET-guided robust optimization and LET hot spots in LET-guided robust optimization. Compared to the conventional dose-only robust optimization, the LET-guided robust optimization could generate plans with statistically lower xBD hot spots in BrainROI (VxBD,50 Gy[RBE], p = 0.009; VxBD,60 Gy[RBE], p = 0.025; xBD1cc, p = 0.017; xBD2cc, p = 0.022) with comparable dose coverage, dose hot spots in the target, and dose hot spots in BrainROI. DLVH analysis indicated that LET-guided robust optimization could either reduce LET at the same dose level or redistribute high LET from high dose regions to low dose regions. CONCLUSION Per-voxel constraint is a powerful tool to minimize dose/LET hot spots in IMPT. The LET-guided robustly optimized plans outperformed the conventional dose-only robustly optimized plans in terms of xBD hot spots control.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Justin D Anderson
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kathryn B Tinnon
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Kang Y, Shen J, Bues M, Hu Y, Liu W, Ding X. Technical Note: Clinical modeling and validation of breast tissue expander metallic ports in a commercial treatment planning system for proton therapy. Med Phys 2021; 48:7512-7525. [PMID: 34519357 DOI: 10.1002/mp.15225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To validate breast tissue expander metallic port (MP) models in a commercial treatment planning system (TPS) in proton pencil beam scanning (PBS) treatments for breast cancer patients with breast tissue expanders. METHODS AND MATERIALS Three types of MPs taken out of a Mentor CPX4, a Natrelle 133, and a PMT Integra breast tissue expanders and a 650 cc saline filled Mentor CPX4 expander were placed on top of acrylic slabs, and scanned using a Siemens Somatom Definition AS Open RT CT scanner. Structure templates for each of the MPs were designed within Eclipse TPS. The CT numbers for the metallic parts were overridden to reflect measured or calculated relative proton stopping powers (RPSPs). Mock targets were contoured in acrylic to represent postmastectomy chest-wall radiation therapy (PMRT) targets. Plans with different beam incident angles were optimized using the Eclipse TPS to deliver uniform prescription dose to the target using Hitachi Probeat-V PBS beams. Eclipse calculated doses and an in-house Monte Carlo (MC) code calculated doses were compared to the measured Gafchromic EBT3 film doses in acrylic. RESULTS TPS/MC and film dose comparison results showed that (1) 3%/2 mm/10% threshold Gamma pass rates were better than 90.8% in the acrylic target region for all plans; (2) comparing TPS and film doses for the individual beam plans in the MP dose shadow areas, the area with dose difference above 5% ([ΔA] 5%) ranged from 1.1 to 5.0 cm2 , and the maximum dose difference ([ΔD] 0.01 cm2 ) ranged from 12.5% to 25.0%; (3) comparing MC and film doses for the individual beam plans in the MP dose shadow areas, the (ΔA) 5% varied from 1.1 to 2.9 cm2 and (ΔD) 0.01 cm2 varied from 8.5% to 24.2%; (4) for a plan composed of three individual beams treating through the Mentor CPX4 expander, the TPS (ΔA) 5% was less than 0.13 cm2 , and the (ΔD) 0.01 cm2 was less than 6% in the MP dose shadow areas. CONCLUSIONS It is feasible to treat patients with tissue expanders using multiple PBS beams using a structure template with CT number overridden to represent the measured/calculated RPSP for MPs for PBS treatment planning. MC dose was more accurate than analytical dose in the areas with high dose gradient caused by the density heterogeneity of the breast tissue expander MPs.
Collapse
Affiliation(s)
- Yixiu Kang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
30
|
Yang Y, Vargas CE, Bhangoo RS, Wong WW, Schild SE, Daniels TB, Keole SR, Rwigema JCM, Glass JL, Shen J, DeWees TA, Liu T, Bues M, Fatyga M, Liu W. Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT). Int J Radiat Oncol Biol Phys 2021; 110:1189-1199. [PMID: 33621660 DOI: 10.1016/j.ijrobp.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE We proposed a novel tool-a dose linear energy transfer (LET)-volume histogram (DLVH)-and performed an exploratory study to investigate rectal bleeding in prostate cancer treated with intensity modulated proton therapy. METHODS AND MATERIALS The DLVH was constructed with dose and LET as 2 axes, and the normalized volume of the structure was contoured in the dose-LET plane as isovolume lines. We defined the DLVH index, DLv%(d,l) (ie, v% of the structure) to have a dose of ≥d Gy and an LET of ≥l keV/μm, similar to the dose-volume histogram index Dv%. Nine patients with prostate cancer with rectal bleeding (Common Terminology Criteria for Adverse Events grade ≥2) were included as the adverse event group, and 48 patients with no complications were considered the control group. A P value map was constructed by comparison of the DLVH indices of all patients between the 2 groups using the Mann-Whitney U test. Dose-LET volume constraints (DLVCs) were derived based on the P value map with a manual selection procedure facilitated by Spearman's correlation tests. The obtained DLVCs were further cross-validated using a multivariate support vector machine (SVM)-based normal tissue complication probability (NTCP) model with an independent testing data set composed of 8 adverse event and 13 control patients. RESULTS We extracted 2 DLVC constraints. One DLVC was obtained, Vdose/LETboundary:2.5keVμmat 75 Gy to 3.2keVμmat8.65Gy <1.27% (DLVC1), revealing a high LET volume effect. The second DLVC, V(72.2Gy,0keVμm) < 2.23% (DVLC2), revealed a high dose volume effect. The SVM-based NTCP model with 2 DLVCs provided slightly superior performance than using dose only, with an area under the curve of 0.798 versus 0.779 for the testing data set. CONCLUSIONS Our results demonstrated the importance of rectal "hot spots" in both high LET (DLVC1) and high dose (DLVC2) in inducing rectal bleeding. The SVM-based NTCP model confirmed the derived DLVCs as good predictors for rectal bleeding when intensity modulated proton therapy is used to treat prostate cancer.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Jennifer L Glass
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Todd A DeWees
- Division of Biostatics, Mayo Clinic Arizona, Phoenix, Arizona
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
31
|
Deng W, Yang Y, Liu C, Bues M, Mohan R, Wong WW, Foote RH, Patel SH, Liu W. A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management. Int J Part Ther 2021; 8:36-49. [PMID: 34285934 PMCID: PMC8270082 DOI: 10.14338/ijpt-20-00049.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this review article, we review the 3 important aspects of linear-energy-transfer (LET) in intensity-modulated proton therapy (IMPT) for head and neck (H&N) cancer management. Accurate LET calculation methods are essential for LET-guided plan evaluation and optimization, which can be calculated either by analytical methods or by Monte Carlo (MC) simulations. Recently, some new 3D analytical approaches to calculate LET accurately and efficiently have been proposed. On the other hand, several fast MC codes have also been developed to speed up the MC simulation by simplifying nonessential physics models and/or using the graphics processor unit (GPU)–acceleration approach. Some concepts related to LET are also briefly summarized including (1) dose-weighted versus fluence-weighted LET; (2) restricted versus unrestricted LET; and (3) microdosimetry versus macrodosimetry. LET-guided plan evaluation has been clinically done in some proton centers. Recently, more and more studies using patient outcomes as the biological endpoint have shown a positive correlation between high LET and adverse events sites, indicating the importance of LET-guided plan evaluation in proton clinics. Various LET-guided plan optimization methods have been proposed to generate proton plans to achieve biologically optimized IMPT plans. Different optimization frameworks were used, including 2-step optimization, 1-step optimization, and worst-case robust optimization. They either indirectly or directly optimize the LET distribution in patients while trying to maintain the same dose distribution and plan robustness. It is important to consider the impact of uncertainties in LET-guided optimization (ie, LET-guided robust optimization) in IMPT, since IMPT is sensitive to uncertainties including both the dose and LET distributions. We believe that the advancement of the LET-guided plan evaluation and optimization will help us exploit the unique biological characteristics of proton beams to improve the therapeutic ratio of IMPT to treat H&N and other cancers.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Robert H Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
32
|
Moskvin VP, Faught A, Pirlepesov F, Zhao L, Hua CH, Merchant TE. Monte Carlo framework for commissioning a synchrotron-based discrete spot scanning proton beam system and treatment plan verification. Biomed Phys Eng Express 2021; 7. [PMID: 34077921 DOI: 10.1088/2057-1976/ac077a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
This study aimed to develop a Monte Carlo (MC) framework for commissioning the narrow proton beams (spot size sigma, 5.2 mm 2 mm at isocenter for 69.4 MeV-221.3 MeV for the main beam option and 4.1 mm 1.3 mm for the minibeam option respectively) of a synchrotron-based proton therapy system and design an independent absolute dose calculation engine for intensity-modulated proton treatments. A proton therapy system (Hitachi PROBEAT-V) was simulated using divergent and convergent beam models at the nozzle entrance. The innovative source weighting scheme for the MC simulation with TOPAS (TOol for PArticle Simulations) was implemented using dose output data for the absolute dose calculations. The results of the MC simulation were compared to the experimental data, analyzed and used to commission the treatment planning system. Two MC models, divergent and convergent beams were implemented. The convergent beam model produced a high level of agreement when MC and measurements were analyzed. The beam ellipticity did not result in significant differences between MC simulated and treatment planning system calculated doses. A model of a synchrotron-based spot scanning proton therapy system has been developed and implemented in the TOPAS MC transport code framework. The dose computation engine is useful for treatment plan verification with primary and minibeam beam option.
Collapse
Affiliation(s)
- Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Austin Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Li Zhao
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| |
Collapse
|
33
|
Arjunan M, Sharma DS, Kaushik S, Krishnan G, Patro KC, Padanthaiyil NM, Rajesh T, Jalali R. A novel hybrid 3D dose reconstruction approach for pre-treatment verification of intensity modulated proton therapy plans. Phys Med Biol 2021; 66:055015. [PMID: 33470967 DOI: 10.1088/1361-6560/abdd8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM A novel hybrid three-dimensional (3D) dose reconstruction method, based on planar dose measured at a single shallower depth, was developed for use as patient-specific quality assurance (PSQA) of intensity modulated proton therapy (IMPT) plans. The accuracy, robustness and sensitivity of the presented method were validated for multiple IMPT plans of varying complexities. METHODS AND MATERIALS An in-house MATLAB program was developed to reconstruct 3D dose distribution from the planar dose (GyRBE) measured at 3 g cm-2 depth in water or solid phantom using a MatriXX PT ion chamber array. The presented method was validated extensively for 11 single-field optimization (SFO) and multi-field optimization (MFO) plans on Proteus Plus. A total of 47 reconstructed planar doses at different depths were compared against the corresponding RayStation treatment planning system (TPS) and MatriXX PT measurement using a gamma passing rate (γ%) evaluated for 3%/3 mm. The robustness of the reconstruction method with respect to depth, energy layers, field dimensions and complexities in the spot intensity map (SIM) were analysed and compared against the standard PSQA. The sensitivity of the reconstruction method was tested for plans with intentional errors. RESULTS The presented reconstruction method showed excellent agreement (mean γ% > 98%) and robustness with both TPS-calculated and measured dose planes at all depths (2.97-30 g cm-2), energy layers (82.1-225.5 MeV), field dimensions, target volume (17.7-1000 cm3) and SIMs from both SFO and MFO plans. In comparison to the overall mean ± SD γ% from standard PSQA, the reconstruction method showed reductions in mean γ% within 1% for both standard cubes and clinical plans. The reconstruction method was sensitive enough to detect intentional spot positional errors in a selected energy layer of a plan. CONCLUSION The presented hybrid reconstruction method is sufficiently accurate, robust and sensitive to estimate planar dose at any user-defined depth. It simplifies the measurement setup and eliminates multiple depth measurements.
Collapse
Affiliation(s)
- Manikandan Arjunan
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Taramani, Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu C, Zheng D, Bradley JA, Mailhot Vega RB, Zhang Y, Indelicato DJ, Mendenhall N, Liang X. Incorporation of the LETd-weighted biological dose in the evaluation of breast intensity-modulated proton therapy plans. Acta Oncol 2021; 60:252-259. [PMID: 33063569 DOI: 10.1080/0284186x.2020.1834141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the LETd-weighted biological dose to OARs in proton therapy for breast cancer and to study the relationship of the LETd-weighted biological dose relative to the standard dose (RBE = 1.1) and thereby to provide estimations of the biological dose uncertainties with the standard dose calculations (RBE = 1.1) commonly used in clinical practice. METHOD This study included 20 patients who received IMPT treatment to the whole breast/chest wall and regional lymph nodes. The LETd distributions were calculated along with the physical dose using an open-source Monte Carlo simulation package, MCsquare. Using the McMahon linear model, the LETd-weighted biological dose was computed from the physical dose and LETd. OAR doses were compared between the Dose (RBE = 1.1) and the LETd-weighted biological dose, on brachial plexus, rib, heart, esophagus, and Ipsilateral lung. RESULTS On average, the LETd-weighted biological dose compared to the Dose (RBE = 1.1) was higher by 8% for the brachial plexus D0.1 cc, 13% for the ribs D0.5 cc, 24% for mean heart dose, and 10% for the esophagus D0.1 cc, respectively. The LETd-weighted doses to the Ipsilateral lung V5, V10, and V20 were comparable to the Dose (RBE = 1.1). No statistically significant difference in biological dose enhancement to OARs was observed between the intact breast group and the CW group, with the exception of the ribs: the CW group experienced slightly greater biological dose enhancement (13% vs. 12%, p = 0.04) to the ribs than the intact breast group. CONCLUSION Enhanced biological dose was observed compared to standard dose with assumed RBE of 1.1 for the heart, ribs, esophagus, and brachial plexus in breast/CW and regional nodal IMPT plans. Variable RBE models should be considered in the evaluation of the IMPT breast plans, especially for OARs located near the end of range of a proton beam. Clinical outcome studies are needed to validate model predictions for clinical toxicities.
Collapse
Affiliation(s)
- Chunbo Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
- School of Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julie A. Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Raymond B. Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yawei Zhang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Daniel J. Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Nancy Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
35
|
Liu C, Ho MW, Park J, Hsi WC, Liang X, Li Z, Song Y, Feng H, Zhang Y. Fast MCsquare-Based Independent Dose Verification Platform for Pencil Beam Scanning Proton Therapy. Technol Cancer Res Treat 2021; 20:15330338211033076. [PMID: 34338058 PMCID: PMC8326813 DOI: 10.1177/15330338211033076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To commission MCsquare (a multi-cores CPU-based dose calculation engine) for pencil beam scanning (PBS) proton therapy, integrate it into RayStation treatment plan system (TPS) to create a dedicated platform for fast independent dose verification. METHOD A MCsquare-based independent dose verification platform (MC2InRS) was developed to realize automatic dose re-calculation for clinical use, including data preparation, dose calculation, 2D/3D gamma analysis. MCsquare was commissioned based on in-air lateral dose profiles, integrated depth dose, and the absolute dose of different beam energies for Proteus®ONE. MC2InRS was validated with measurement data using various targets and depths in a water phantom. This study also investigated 15 clinical cases to demonstrate the feasibility and effectiveness of MC2InRS platform in clinic practice. RESULTS Between simulation and measurement, the distal range differences at 80% (R80) and 20% (R20) dose levels for each energy were below 0.05 mm, and 0.1 mm, respectively, and the absolute dose differences were below 0.5%. 29 out of 36 QA planes reached a 100% gamma passing rate (GPR) for 2%/2mm criteria, and a minimum of 98.3% gamma was obtained in water phantom between simulation and measurement. For the 15 clinical cases investigated, the average 2D GPR (2%/2mm) was 95.4%, 99.3% for MCsquare vs. measurement, MCsquare vs. TPS, respectively. The average 3D GPR (2%/2mm) was 98.9%, 95.3% for MCsquare vs. TPS in water, and computed tomography (CT), respectively. CONCLUSION MC2InRS, a fast, independent dose verification platform, has been developed to perform dose verification with high accuracy and efficiency for Pencil Bream Scanning (PBS). Its potential to be applied in routine clinical practice has also been discussed.
Collapse
Affiliation(s)
- Chunbo Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Meng Wei Ho
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jiyeon Park
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Wen Chien Hsi
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Xiaoying Liang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Zuofeng Li
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Yuntao Song
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hansheng Feng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yawei Zhang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Feng H, Sio TT, Rule WG, Bhangoo RS, Lara P, Patrick CL, Korte S, Fatyga M, Wong WW, Schild SE, Ashman JB, Liu W. Beam angle comparison for distal esophageal carcinoma patients treated with intensity-modulated proton therapy. J Appl Clin Med Phys 2020; 21:141-152. [PMID: 33058523 PMCID: PMC7700921 DOI: 10.1002/acm2.13049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare the dosimetric performances of intensity‐modulated proton therapy (IMPT) plans generated with two different beam angle configurations (the Right–Left oblique posterior beams and the Superior–Inferior oblique posterior beams) for the treatment of distal esophageal carcinoma in the presence of uncertainties and interplay effect. Methods and Materials Twenty patients’ IMPT plans were retrospectively selected, with 10 patients treated with the R‐L oblique posterior beams (Group R‐L) and the other 10 patients treated with the S‐I oblique posterior beams (Group S‐I). Patients in both groups were matched by their clinical target volumes (CTVs—high and low dose levels) and respiratory motion amplitudes. Dose‐volume‐histogram (DVH) indices were used to assess plan quality. DVH bandwidth was calculated to evaluate plan robustness. Interplay effect was quantified using four‐dimensional (4D) dynamic dose calculation with random respiratory starting phase of each fraction. Normal tissue complication probability (NTCP) for heart, liver, and lung was calculated, respectively, to estimate the clinical outcomes. Wilcoxon signed‐rank test was used for statistical comparison between the two groups. Results Compared with plans in Group R‐L, plans in Group S‐I resulted in significantly lower liver Dmean and lung V30Gy[RBE] with slightly higher but clinically acceptable spinal cord Dmax. Similar plan robustness was observed between the two groups. When interplay effect was considered, plans in Group S‐I performed statistically better for heart Dmean and V30Gy[RBE], lung Dmean and V5Gy[RBE], and liver Dmean, with slightly increased but clinically acceptable spinal cord Dmax. NTCP for liver was significantly better in Group S‐I. Conclusions IMPT plans in Group S‐I have better sparing of liver, heart, and lungs at the slight cost of spinal cord maximum dose protection, and are more interplay‐effect resilient compared to IMPT plans in Group R‐L. Our study supports the routine use of the S‐I oblique posterior beams for the treatments of distal esophageal carcinoma.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Pedro Lara
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Shawn Korte
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|