1
|
Dos Santos FG, Carvalho DS, Hallwass F, Navarro-Vázquez A. Reversibly Compressible Cross-Linked Polystyrene Gels, Compatible With Toluene-d 8 and Pyridine-d 5, for Measurement of Residual Dipolar Couplings and Residual Chemical Shift Anisotropies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39496568 DOI: 10.1002/mrc.5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
A chemically cross-linked version of polystyrene is presented here that allows the preparation of reversibly mechanically compressible gels as NMR weakly aligning media. The gels can be successfully swollen in aromatic solvents such as toluene-d8 and pyridine-d5, as well as in CDCl3, and provided accurate measurements of 1DCH RDCs and 13C-RCSAs.
Collapse
Affiliation(s)
- Franciane G Dos Santos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daiane S Carvalho
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Sager E, Tzvetkova P, Lingel A, Gossert AD, Luy B. Hydrogen bond formation may enhance RDC-based discrimination of enantiomers. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:639-647. [PMID: 38785031 DOI: 10.1002/mrc.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The distinction of enantiomers based on residual anisotropic parameters obtained by alignment in chiral poly-γ-benzyl-L-glutamate (PBLG) is among the strongest in high-resolution NMR spectroscopy. However, large variations in enantiodifferentiation among different solutes are frequently observed. One hypothesis is that the formation of hydrogen bonds between solute and PBLG is important for the distinction of enantiomers. With a small set of three almost spherical enantiomeric pairs, for which 1DCH residual dipolar couplings are measured, we address this issue in a systematic way: borneol contains a single functional group that can act as a hydrogen bond donor, camphor has a single group that may act as a hydrogen bond acceptor, and quinuclidinol can act as both hydrogen bond donor and acceptor. The results are unambiguous: although camphor shows low enantiodifferentiation with PBLG and alignment that can be predicted well by the purely steric TRAMITE approach, the distinction of enantiomers for the other enantiomeric pairs is significantly higher with alignment properties that must involve a specific interaction in addition to steric alignment.
Collapse
Affiliation(s)
- Emine Sager
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Novartis Biomedical Research, Basel, Switzerland
| | - Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4-Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Wasilko DJ, Gerstenberger BS, Farley KA, Li W, Alley J, Schnute ME, Unwalla RJ, Victorino J, Crouse KK, Ding R, Sahasrabudhe PV, Vincent F, Frisbie RK, Dermenci A, Flick A, Choi C, Chinigo G, Mousseau JJ, Trujillo JI, Nuhant P, Mondal P, Lombardo V, Lamb D, Hogan BJ, Minhas GS, Segala E, Oswald C, Windsor IW, Han S, Rappas M, Cooke RM, Calabrese MF, Berstein G, Thorarensen A, Wu H. Structural basis for CCR6 modulation by allosteric antagonists. Nat Commun 2024; 15:7574. [PMID: 39217154 PMCID: PMC11365967 DOI: 10.1038/s41467-024-52045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Jennifer Alley
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Jorge Victorino
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Kimberly K Crouse
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Ru Ding
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | - Daniel Lamb
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Barbara J Hogan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Christine Oswald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Ian W Windsor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Gabriel Berstein
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
4
|
John M, Rüttger F. Multinuclear Residual Quadrupolar Couplings for Structure and Assignment. Chemphyschem 2024; 25:e202400068. [PMID: 38465709 DOI: 10.1002/cphc.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Most stable isotopes have a nuclear spin >1/2, but the quadrupole interaction poses challenge on their detection by nuclear magnetic resonance (NMR). On the other hand, the quadrupole interaction is a rich source of structural information that may be exploited for solution NMR in the form of residual quadrupolar couplings (RQCs) of weakly oriented samples. While 2H RQCs are now well established for structure verification and enantiomeric discrimination of organic molecules, we will in this article highlight some recent work on RQCs of other nuclei (especially 7Li and 11B).
Collapse
Affiliation(s)
- Michael John
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| | - Franziska Rüttger
- Fakultät für Chemie, Georg-August-Universität Göttingen, Tammannstrasse 4, D-37077, Göttingen
| |
Collapse
|
5
|
Solga D, Wieske LHE, Wilcox S, Zeilinger C, Jansen-Olliges L, Cirnski K, Herrmann J, Müller R, Erdelyi M, Kirschning A. Is Simultaneous Binding to DNA and Gyrase Important for the Antibacterial Activity of Cystobactamids? Chemistry 2024; 30:e202303796. [PMID: 38217886 DOI: 10.1002/chem.202303796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Cystobactamids are aromatic oligoamides that exert their natural antibacterial properties by inhibition of bacterial gyrases. Such aromatic oligoamides were proposed to inhibit α-helix-mediated protein-protein interactions and may serve for specific recognition of DNA. Based on this suggestion, we designed new derivatives that have duplicated cystobactamid triarene units as model systems to decipher the specific binding mode of cystobactamids to double stranded DNA. Solution NMR analyses revealed that natural cystobactamids as well as their elongated analogues show an overall bent shape at their central aliphatic unit, with an average CX-CY-CZ angle of ~110 degrees. Our finding is corroborated by the target-bound structure of close analogues, as established by cryo-EM very recently. Cystobactamid CN-861-2 binds directly to the bacterial gyrase with an affinity of 9 μM, and also exhibits DNA-binding properties with specificity for AT-rich DNA. Elongation/dimerization of the triarene subunit of native cystobactamids is demonstrated to lead to an increase in DNA binding affinity. This implies that cystobactamids' gyrase inhibitory activity necessitates not just interaction with the gyrase itself, but also with DNA via their triarene unit.
Collapse
Affiliation(s)
- Danny Solga
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Lianne H E Wieske
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Scott Wilcox
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Linda Jansen-Olliges
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Katarina Cirnski
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
6
|
Julien T, Gouilleux B, Rousseau B, Immel S, Reggelin M, Lesot P. Spatially Resolved Anisotropic Natural Abundance Deuterium 2D-NMR Spectroscopy Using Bimesophasic Lyotropic Chiral Systems. J Phys Chem Lett 2024; 15:2089-2095. [PMID: 38358651 DOI: 10.1021/acs.jpclett.3c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this paper, we describe, for the first time, the combined and original use of spatially resolved anisotropic natural abundance deuterium (ANAD) 2D-NMR experiments and bimesophasic lyotropic chiral systems to extract two independent sets of anisotropic parameters such as 2H-RQCs from a single NMR sample. As a pioneering example, we focus on a mixture of immiscible polypeptides (PBLG) and polyacetylene helical polymers (L-MSP) dissolved in weakly polar organic solvents (chloroform). Nondeuterated (D)-(+)-camphor is used as a model chiral solute. By providing two series of 2H-RQCs, this new analytical approach paves the way for applications in 3D structure elucidation with increased reliability and also opens up original investigations in terms of spectral enantiomeric discriminations and mixing of helical polymers.
Collapse
Affiliation(s)
- Thomas Julien
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
| | - Boris Gouilleux
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
| | - Bernard Rousseau
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3, Rue Michel Ange, F-75016 Paris, France
| | - Stefan Immel
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische, Universität Darmstadt, Peter Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Michael Reggelin
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie Technische, Universität Darmstadt, Peter Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Philippe Lesot
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, Université Paris-Saclay, UFR des Sciences d'Orsay, 17-19, Avenue des Sciences, F-91400 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3, Rue Michel Ange, F-75016 Paris, France
| |
Collapse
|
7
|
Tichotová MC, Tučková L, Kocek H, Růžička A, Straka M, Procházková E. Exploring the impact of alignment media on RDC analysis of phosphorus-containing compounds: a molecular docking approach. Phys Chem Chem Phys 2024; 26:2016-2024. [PMID: 38126374 DOI: 10.1039/d3cp04099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Residual dipolar couplings (RDCs) are employed in NMR analysis when conventional methods, such as J-couplings and nuclear Overhauser effects (NOEs) fail. Low-energy (optimized) conformers are often used as input structures in RDC analysis programs. However, these low-energy structures do not necessarily resemble conformations found in anisotropic environments due to interactions with the alignment medium, especially if the analyte molecules are flexible. Considering interactions with alignment media in RDC analysis, we developed and evaluated a molecular docking-based approach to generate more accurate conformer ensembles for compounds in the presence of the poly-γ-benzyl-L-glutamate alignment medium. We designed chiral phosphorus-containing compounds that enabled us to utilize 31P NMR parameters for the stereochemical analysis. Using P3D/PALES software to evaluate diastereomer discrimination, we found that our conformer ensembles outperform moderately the standard, low-energy conformers in RDC analysis. To further improve our results, we (i) averaged the experimental values of the molecular docking-based conformers by applying the Boltzmann distribution and (ii) optimized the structures through normal mode relaxation, thereby enhancing the Pearson correlation factor R and even diastereomer discrimination in some cases. Nevertheless, we presume that significant differences between J-couplings in isotropic and in anisotropic environments may preclude RDC measurements for flexible molecules. Therefore, generating conformer ensembles based on molecular docking enhances RDC analysis for mildly flexible systems while flexible molecules may require applying more advanced approaches, in particular approaches including dynamical effects.
Collapse
Affiliation(s)
- Markéta Christou Tichotová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 116 28 Prague, Czech Republic
| | - Lucie Tučková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| | - Hugo Kocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
8
|
Li GW, Wang XJ, Shi SH, Liu LT, Li JQ, Sun H, Wu ZQ, Lei X. Polyarylisocyanides Derived from an Alkyne-Pd(II) Catalyst as Robust Alignment Media with Excellent Enantiodiscimination. Anal Chem 2023; 95:18850-18858. [PMID: 38091507 DOI: 10.1021/acs.analchem.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The development of chiral alignment media for measuring anisotropic NMR parameters provides an opportunity to determine the absolute configuration of chiral molecules without the need for derivatization. However, chiral alignment media with a high and robust enantiodiscriminating property for a wide range of chiral molecules are still scarce. In this study, we synthesized cholesterol-end-functionalized helical polyisocyanides from a chiral monomer using a cholesterol-based alkyne-Pd(II) initiator. These stereoregular polyisocyanides form stable and weak anisotropic lyotropic liquid crystals (LLCs) in dichloromethane systems, exhibiting highly optical activities in both single left- and right-handed helices. The preparation process of the media was straightforward, and the aligning property of the LLCs could be controlled by adjusting the concentration and temperature. Using the chiral polyisocyanides, we extracted the residual dipolar coupling for an enantiomeric pair of isopinocampheol (IPC), as well as a number of pharmaceutical molecules, demonstrating excellent enantiodiscriminating properties for a broad range of chiral compounds.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Shuai-Hua Shi
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Lan-Tao Liu
- College of Chemistry and Chemical Engineering, Henan Engineering Research Center for Green Synthesis of Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Han Sun
- Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinxiang Lei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemi-cal Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
9
|
Rüttger F, Stalke D, John M. Resonance and structural assignment in (car)borane clusters using 11B residual quadrupolar couplings. Chem Commun (Camb) 2023. [PMID: 38014978 DOI: 10.1039/d3cc05054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A new NMR method for structural verification and 11B resonance assignment in (car)borane clusters is presented, based on the measurement of 11B residual quadrupolar couplings (RQCs) in a stretched polystyrene (PS) gel. The method was applied to ortho-carborane (B10C2H12), a derivative thereof with reduced symmetry, meta-carborane and decaborane (B10H14).
Collapse
Affiliation(s)
- Franziska Rüttger
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| | - Dietmar Stalke
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| | - Michael John
- Institute of Inorganic Chemistry, Georg-August-University of Göttingen, Germany.
| |
Collapse
|
10
|
Fuentes-Monteverde JC, Noll M, Das A, Immel S, Reggelin M, Griesinger C, Nath N. Residual-Chemical-Shift-Anisotropy-Based Enantiodifferentiation in Lyotropic Liquid Crystalline Phases Based on Helically Chiral Polyacetylenes. Angew Chem Int Ed Engl 2023; 62:e202309981. [PMID: 37684219 DOI: 10.1002/anie.202309981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Anisotropic NMR spectroscopy, revealing residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) has emerged as a powerful tool to determine the configurations of synthetic and complex natural compounds. The deduction of the absolute in addition to the relative configuration is one of the primary goals in the field. Therefore, the investigation of the enantiodiscriminating capabilities of chiral alignment media becomes essential. While RDCs and RCSAs are now used for the determination of the relative configuration routinely, RCSAs have not been measured in chiral alignment media such as chiral liquid crystals. Herein, we present this application by measuring RCSAs for chiral analytes such as indanol and isopinocampheol in the lyotropic liquid crystalline phase of an L-valine derived helically chiral polyacetylenes. We have also demonstrated that a single 1D 13 C-{1 H} NMR spectrum suffices to get the RCSAs circumventing the necessity to acquire two spectra at two alignment conditions.
Collapse
Affiliation(s)
- Juan Carlos Fuentes-Monteverde
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-Based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Noll
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Akhi Das
- Department of Chemistry, Gauhati University Guwahati, Jalukbari, 781014, India
| | - Stefan Immel
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Department of Chemistry, Technical University of Darmstadt, Alarich Weiss Straße 4, 64287, Darmstadt, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-Based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nilamoni Nath
- Department of Chemistry, Gauhati University Guwahati, Jalukbari, 781014, India
| |
Collapse
|
11
|
Nouri S, Boudet J, Dreher-Teo H, Allain FHT, Glockshuber R, Salmon L, Giese C. Elongated Bacterial Pili as a Versatile Alignment Medium for NMR Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202305120. [PMID: 37248171 DOI: 10.1002/anie.202305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.
Collapse
Affiliation(s)
- Sirine Nouri
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Hiang Dreher-Teo
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
12
|
Li XN, Xu J, Yang S, Li QQ, Lu ZY, Mei G, Li JQ, Yang GZ, Lei XX, Chen Y. Garbractin A, a Polycyclic Polyprenylated Acylphloroglucinol with a 4,11-dioxatricyclo[4.4.2.0 1,5]Dodecane Skeleton from Garcinia bracteata Fruits. ACS OMEGA 2023; 8:30747-30756. [PMID: 37636964 PMCID: PMC10448683 DOI: 10.1021/acsomega.3c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Garbractin A (1), a structurally complicated polycyclic polyprenylated acylphloroglucinol (PPAP) with an unprecedented 4,11-dioxatricyclo[4.4.2.01,5] dodecane skeleton, was isolated from the fruits of Garcinia bracteata, along with five new biosynthetic analogues named garcibracteatones A-E (2-6). Their structures containing absolute configurations were revealed using spectroscopic data, the residual dipolar coupling-enhanced NMR approach, and quantum chemical calculations. The antihyperglycemic effect of these PPAPs (1-6) was evaluated using insulin-resistant HepG2 cells (IR-HepG2 cells) induced through palmitic acid (PA). Compounds 1, 3, and 4 were found to significantly promote glucose consumption in the IR-HepG2 cells and, therefore, may hold potential as candidates for treating hyperglycemia.
Collapse
Affiliation(s)
- Xue-Ni Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Jing Xu
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Shuang Yang
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Qing-Qing Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Zheng-Yang Lu
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Gui Mei
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Jia-Qian Li
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| | - Guang-Zhong Yang
- School
of Pharmaceutical Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
- Ethnopharmacology
Level 3 Laboratory, National Administration
of Traditional Chinese Medicine, Wuhan 430074, P. R. China
| | - Xin-Xiang Lei
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Chen
- College
of Chemistry and Material Sciences, South-Central
Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
13
|
Zhao Y, Qin H, Yang YL, Li JQ, Qin SY, Zhang AQ, Lei X. Weakly aligned Ti 3C 2T x MXene liquid crystals: measuring residual dipolar coupling in multiple co-solvent systems. NANOSCALE 2023; 15:7820-7828. [PMID: 37051680 DOI: 10.1039/d3nr00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.
Collapse
Affiliation(s)
- You Zhao
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Huan Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Jia-Qian Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Si-Yong Qin
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Ai-Qing Zhang
- Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
14
|
Stereochemical investigation of flexible macrocyclic cembranes depending on residual dipolar couplings method. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Structures Controlled by Entropy: The Flexibility of Strychnine as Example. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227987. [PMID: 36432085 PMCID: PMC9692940 DOI: 10.3390/molecules27227987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
To study the flexibility of strychnine, we performed molecular dynamics simulations with orientational tensorial constraints (MDOC). Tensorial constraints are derived from nuclear magnetic resonance (NMR) interaction tensors, for instance, from residual dipolar couplings (RDCs). Used as orientational constraints, they rotate the whole molecule and molecular parts with low rotational barriers. Since the NMR parameters are measured at ambient temperatures, orientational constraints generate conformers that populate the whole landscape of Gibbs free energy. In MDOC, structures are populated that are not only controlled by energy but by the entropy term TΔS of the Gibbs free energy. In the case of strychnine, it is shown that ring conformers are populated, which has not been discussed in former investigations. These conformer populations are not only in accordance with RDCs but fulfill nuclear Overhauser effect (NOE)-derived distance constraints and 3JHH couplings as well.
Collapse
|
16
|
Pure shift NMR and DFT methods for revealing long-range heteronuclear couplings. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Li XL, Ru T, Navarro-Vázquez A, Lindemann P, Nazaré M, Li XW, Guo YW, Sun H. Weizhouochrones: Gorgonian-Derived Symmetric Dimers and Their Structure Elucidation Using Anisotropic NMR Combined with DP4+ Probability and CASE-3D. JOURNAL OF NATURAL PRODUCTS 2022; 85:1730-1737. [PMID: 35792821 DOI: 10.1021/acs.jnatprod.2c00257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural product dimers have intriguing structural features and often have remarkable pharmacological activities. We report here two uncommon marine gorgonian-derived symmetric dimers, weizhouochrones A (1) and B (2), with indenone-derived monomers, that were isolated from the coral Anthogorgia ochracea collected from the South China Sea. These dimers are difficult targets for structure elucidation that solely relies upon conventional NMR data such as NOEs and J-couplings. Here, to explore the application of emerging methods on the structure elucidation of challenging molecules, we explored a number of different anisotropic and computational NMR approaches. The measurements of anisotropic NMR parameters of weizhouochrone A, including residual dipolar couplings (RDCs) and residual chemical shift anisotropy (RCSA), allowed us to successfully determine the planar structure and its relative configuration. This result was corroborated by a computational NMR analysis based on DP4+ probability and computer-assisted 3D structure elucidation (CASE-3D).
Collapse
Affiliation(s)
- Xiao-Lu Li
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Tong Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Peter Lindemann
- Group of Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Marc Nazaré
- Group of Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Han Sun
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| |
Collapse
|
18
|
Fuentes-Monteverde JCC, Nath N, Forero AM, Balboa EM, Navarro-Vázquez A, Griesinger C, Jiménez C, Rodríguez J. Connection of Isolated Stereoclusters by Combining 13C-RCSA, RDC, and J-Based Configurational Analyses and Structural Revision of a Tetraprenyltoluquinol Chromane Meroterpenoid from Sargassum muticum. Mar Drugs 2022; 20:462. [PMID: 35877755 PMCID: PMC9319238 DOI: 10.3390/md20070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The seaweed Sargassum muticum, collected on the southern coast of Galicia, yielded a tetraprenyltoluquinol chromane meroditerpene compound known as 1b, whose structure is revised. The relative configuration of 1b was determined by J-based configurational methodology combined with an iJ/DP4 statistical analysis and further confirmed by measuring two anisotropic properties: carbon residual chemical shift anisotropies (13C-RCSAs) and one-bond 1H-13C residual dipolar couplings (1DCH-RDCs). The absolute configuration of 1b was deduced by ECD/OR/TD-DFT methods and established as 3R,7S,11R.
Collapse
Affiliation(s)
- Juan Carlos C. Fuentes-Monteverde
- Departamento de Química e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (J.C.C.F.-M.); (A.M.F.)
- NMR Based Structural Biology, MPI for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Nilamoni Nath
- Department of Chemistry, Gauhati University, Gopinath Bardoloi Nagar, Guwahati 781014, India;
| | - Abel M. Forero
- Departamento de Química e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (J.C.C.F.-M.); (A.M.F.)
| | - Elena M. Balboa
- Department of Chemical Engineering, Faculty of Science, Campus Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain;
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Recife 50740-550, Brazil;
| | - Christian Griesinger
- NMR Based Structural Biology, MPI for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Carlos Jiménez
- Departamento de Química e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (J.C.C.F.-M.); (A.M.F.)
| | - Jaime Rodríguez
- Departamento de Química e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (J.C.C.F.-M.); (A.M.F.)
| |
Collapse
|
19
|
Lin Y, Li J, Qin SY, Sun H, Yang YL, Navarro-Vázquez A, Lei X. Programmable alignment media from self-assembled oligopeptide amphiphiles for the measurement of independent sets of residual dipolar couplings in organic solvents. Chem Sci 2022; 13:5838-5845. [PMID: 35685790 PMCID: PMC9131869 DOI: 10.1039/d2sc01057g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
NMR spectroscopy in anisotropic media has emerged as a powerful technique for the structural elucidation of organic molecules. Its application requires weak alignment of analytes by means of suitable alignment media. Although a number of alignment media, that are compatible with organic solvents, have been introduced in the last 20 years, acquiring a number of independent, non-linearly related sets of anisotropic NMR data from the same organic solvent system remains a formidable challenge, which is however crucial for the alignment simulations and deriving dynamic and structural information of organic molecules unambiguously. Herein, we introduce a programmable strategy to construct several distinct peptide-based alignment media by adjusting the amino acid sequence, which allows us to measure independent sets of residual dipolar couplings (RDCs) in a highly efficient and accurate manner. This study opens a new avenue for de novo structure determination of organic compounds without requiring prior structural information. We report a programmable strategy to construct multi-alignment media via peptide self-assembly for the measurement of independent sets of residual dipolar couplings (RDCs).![]()
Collapse
Affiliation(s)
- Yuexiao Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Jiaqian Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Si-Yong Qin
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Group of Structural Chemistry and Computational Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP 50740-540 Recife PE Brazil
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China .,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
20
|
Sternberg U, Farès C. Statistical evaluation of simulated NMR data of flexible molecules. Phys Chem Chem Phys 2022; 24:9608-9618. [PMID: 35403649 DOI: 10.1039/d2cp00330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new probability score-named χ-probability-is introduced for evaluating the fit of mixed NMR datasets to calculate molecular model ensembles, in order to answer challenging structural questions such as the determination of stereochemical configurations. Similar to the DP4 parameter, the χ-probability is based on Bayes theorem and expresses the probability that an experimental NMR dataset fits to a given individual within a finite set of candidate structures or configurations. Here, the χ-probability is applied to single out the correct configuration in four example cases, with increasing complexity and conformational mobility. The NMR data (which include RDCs, NOE distances and 3J couplings) are calculated from MDOC (Molecular Dynamics with Orientational Constraints) trajectories and are investigated against experimentally measured data. It is demonstrated that this approach singles out the correct stereochemical configuration with probabilities more than 98%, even for highly mobile molecules. In more demanding cases, a decisive χ-probability test requires that the datasets include high-quality NOE distances in addition to RDC values.
Collapse
Affiliation(s)
- Ulrich Sternberg
- Research Partner of Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,COSMOS-Software, Jena, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
21
|
Tichotová M, Ešnerová A, Tučková L, Bednárová L, Císařová I, Baszczyňski O, Procházková E. 31P NMR parameters may facilitate the stereochemical analysis of phosphorus-containing compounds. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107149. [PMID: 35121491 DOI: 10.1016/j.jmr.2022.107149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conventional Nuclear Magnetic Resonance (NMR) analysis relies on H-H/C-H interactions. However, these interactions are sometimes insufficient for an accurate and precise NMR analysis. In this study, we show that 31P NMR parameters can provide critical structural insights into the stereochemistry of phosphorus-containing compounds. For this purpose, we prepared a set of model phosphorus-based proline derivatives, separated diastereoisomers, and determined their absolute configuration by single-crystal X-ray diffraction. After supplementing these results by electronic circular dichroism (ECD) spectroscopy, we combined experimental data and DFT calculations from our model compounds to perform a detailed conformational analysis, thereby determining their relative configuration. Overall, our findings establish an experimental paradigm for combining 31P NMR spectroscopy with other optical methods to facilitate the stereochemical analysis of phosphorus-containing compounds.
Collapse
Affiliation(s)
- Markéta Tichotová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 116 28 Prague, Czech Republic
| | - Aneta Ešnerová
- Department of Organic Chemistry, Faculty of Science, Charles University, 116 28 Prague, Czech Republic
| | - Lucie Tučková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 116 28 Prague, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, 116 28 Prague, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
22
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
23
|
Abstract
Detection and characterisation of very weak, non-covalent interactions in solution is inherently challenging. Low affinity, short complex lifetime and a constant battle against entropy brings even the most sensitive spectroscopic methods to their knees. Herein we introduce a strategy for the accurate experimental description of weak chemical forces in solution. Its scope is demonstrated by the detailed geometric and thermodynamic characterisation of the weak halogen bond of a non-fluorinated aryl iodide and an ether oxygen (0.6 kJ mol-1 ). Our approach makes use of the entropic advantage of studying a weak force intramolecularly, embedded into a cooperatively folding system, and of the combined use of NOE- and RDC-based ensemble analyses to accurately describe the orientation of the donor and acceptor sites. Thermodynamic constants (ΔG, ΔH and ΔS), describing the specific interaction, were derived from variable temperature chemical shift analysis. We present a methodology for the experimental investigation of remarkably weak halogen bonds and other related weak forces in solution, paving the way for their improved understanding and strategic use in chemistry and biology.
Collapse
Affiliation(s)
- Stefan Peintner
- Department of Chemistry – BMCUppsala UniversitySE-75123UppsalaSweden
| | - Máté Erdélyi
- Department of Chemistry – BMCUppsala UniversitySE-75123UppsalaSweden
| |
Collapse
|
24
|
Berdagué P, Gouilleux B, Noll M, Immel S, Reggelin M, Lesot P. Study and quantification of enantiodiscrimination power of four polymeric chiral LLCs using NAD 2D-NMR. Phys Chem Chem Phys 2022; 24:7338-7348. [DOI: 10.1039/d1cp04915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identifying and understanding the role of key molecular factors involved in the orientation/discrimination phenomena of analytes in polymer-based chiral liquid crystals (CLCs) are essential tasks for optimizing computational predictions (molecular...
Collapse
|
25
|
Aroulanda C, Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2021; 34:182-244. [PMID: 34936130 DOI: 10.1002/chir.23386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.
Collapse
Affiliation(s)
- Christie Aroulanda
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| | - Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
26
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
28
|
Poveda A, Fittolani G, Seeberger PH, Delbianco M, Jiménez-Barbero J. The Flexibility of Oligosaccharides Unveiled Through Residual Dipolar Coupling Analysis. Front Mol Biosci 2021; 8:784318. [PMID: 34859057 PMCID: PMC8631391 DOI: 10.3389/fmolb.2021.784318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a β(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.
Collapse
Affiliation(s)
- Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain.,Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
29
|
Herlan CN, Sonnefeld A, Gloge T, Brückel J, Schlee LC, Muhle-Goll C, Nieger M, Bräse S. Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids. Molecules 2021; 26:molecules26154548. [PMID: 34361700 PMCID: PMC8348019 DOI: 10.3390/molecules26154548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Anna Sonnefeld
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Thomas Gloge
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Julian Brückel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Luisa Chiara Schlee
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
30
|
Cañada FJ, Canales Á, Valverde P, de Toro BF, Martínez-Orts M, Phillips PO, Pereda A. Conformational and Structural characterization of carbohydrates and their interactions studied by NMR. Curr Med Chem 2021; 29:1147-1172. [PMID: 34225601 DOI: 10.2174/0929867328666210705154046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in many essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C boosts the resolution and detail that analyzed glycan structures can reach. In turn, structural information derived from NMR, complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional long-range observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.
Collapse
Affiliation(s)
- Francisco Javier Cañada
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ángeles Canales
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Pablo Valverde
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Beatriz Fernández de Toro
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Mónica Martínez-Orts
- Departamento de Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Paola Oquist Phillips
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Amaia Pereda
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
31
|
Pedersen KD, Zhang J, Gotfredsen CH. Practical considerations for working with graphene oxide as alignment media for RDC measurements. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:738-745. [PMID: 33656175 DOI: 10.1002/mrc.5143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Katja D Pedersen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
32
|
Das A, Nath N. Elucidating natural product structures using a robust measurement of carbon residual chemical shift anisotropy combined with DFT. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:569-576. [PMID: 31758720 DOI: 10.1002/mrc.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Determination of configurations and conformations is an important step in the structural characterization of small molecules. Apart from utilizing isotropic J-couplings and nuclear overhauser effect (NOEs) measured in isotropic solution, anisotropic Nuclear Magnetic resonance (NMR) data such as residual dipolar couplings and residual chemical shift anisotropies (RCSAs) were also used to elucidate complex small molecule structures. Measuring RCSA has always been historically difficult due to the isotropic shift effect accompanied by molecular alignment and therefore only occasionally applied in a few examples. Here, we present a robust measurement of carbon RCSAs using a smaller gel-stretching device to determine the structures of a few small molecules. A systematic study on how different density functional theory computed anisotropies of the chemical shift anisotropy tensors impact RCSA data interpretation has also been discussed. We also discuss the effect of utilizing various carbons as reference nuclei for RCSA data extraction as well as the orientation behavior of estrone in orthogonal alignment media.
Collapse
Affiliation(s)
- Akhi Das
- Department of Chemistry, Gauhati University, Guwahati, India
| | - Nilamoni Nath
- Department of Chemistry, Gauhati University, Guwahati, India
| |
Collapse
|
33
|
da Silva DGB, Hallwass F, Navarro-Vázquez A. Single experiment measurement of residual dipolar couplings in aqueous solution using a biphasic bisperylene imide chromonic liquid crystal. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:408-413. [PMID: 33295034 DOI: 10.1002/mrc.5120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The use of the biphasic isotropic/nematic region in a bisperylene imide-based lyotropic liquid crystal system allows the extraction of proton-carbon 1 DCH residual dipolar couplings in aqueous solution from a single F1-coupled HSQC experiment. The method was successfully applied to the RDC-based conformational analysis of sucrose.
Collapse
Affiliation(s)
- Danilo G B da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
34
|
Monroe AZ, Gordon WH, Wood JS, Martin GE, Morgan JB, Williamson RT. Structural revision of a Wnt/β-catenin modulator and confirmation of cannabielsoin constitution and configuration. Chem Commun (Camb) 2021; 57:5658-5661. [DOI: 10.1039/d1cc01971f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this report, we revise the structure for a previously reported synthetic product proposed to be the 1R,2S-cannabidiol epoxide and reassign it as cannabielsoin using anisotropic NMR and synthetic chemistry methods.
Collapse
Affiliation(s)
- Angelina Z. Monroe
- Department of Chemistry & Biochemistry
- University of North Carolina Wilmington
- Wilmington
- USA
| | - William H. Gordon
- Department of Chemistry & Biochemistry
- University of North Carolina Wilmington
- Wilmington
- USA
| | - Jared S. Wood
- Department of Chemistry & Biochemistry
- University of North Carolina Wilmington
- Wilmington
- USA
| | - Gary E. Martin
- Department of Chemistry
- Seton Hall University
- South Orange
- USA
| | - Jeremy B. Morgan
- Department of Chemistry & Biochemistry
- University of North Carolina Wilmington
- Wilmington
- USA
| | - R. Thomas Williamson
- Department of Chemistry & Biochemistry
- University of North Carolina Wilmington
- Wilmington
- USA
| |
Collapse
|
35
|
Ding WQ, Liu H, Qin SY, Jiang Y, Lei X, Zhang AQ. A Lyotropic Liquid Crystal from a Flexible Oligopeptide Amphiphile in Dimethyl Sulfoxide. ACS APPLIED BIO MATERIALS 2020; 3:8989-8996. [PMID: 35019575 DOI: 10.1021/acsabm.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the rapid progress in peptide liquid crystals (LCs) due to their prominent properties, our investigation on flexible peptide-based LCs is incomplete, mainly resulted from their unclear formation mechanisms and unexploited applications in organic solvents. Here, we develop a lyotropic LC based on a flexible oligopeptide amphiphile, which aggregates into aligned cylinder-like nanostructures in dimethyl sulfoxide (DMSO). The formation mechanism of lyotropic LC in DMSO was probed by the experimental investigation and molecular dynamics simulation, indicating that the hydrogen bonding and hydrophobic and electrostatic interactions contribute to the formation of ordered nanostructures in the organic solvent. Arising from the orientational order and suitable fluidity, we exploit the application of lyotropic LC as an aligned medium to measure the residual dipolar couplings of bioactive molecules. This study not only offers the understanding of the mechanism to create LC systems without rigid aromatic groups but also expands the applications of ordered bottom-up nanomaterials in organic solvents.
Collapse
Affiliation(s)
- Wen-Qiang Ding
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Han Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ai-Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
36
|
Zu WY, Tang JW, Hu K, Zhou YF, Gou LL, Su XZ, Lei X, Sun HD, Puno PT. Chaetolactam A, an Azaphilone Derivative from the Endophytic Fungus Chaetomium sp. g1. J Org Chem 2020; 86:475-483. [PMID: 33263391 DOI: 10.1021/acs.joc.0c02214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wen-Yu Zu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Yuan-Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lei-Lei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiao-Zheng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, People’s Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, Yunnan, People’s Republic of China
| |
Collapse
|
37
|
Recchia MJJ, Cohen RD, Liu Y, Sherer EC, Harper JK, Martin GE, Williamson RT. "One-Shot" Measurement of Residual Chemical Shift Anisotropy Using Poly-γ-benzyl-l-glutamate as an Alignment Medium. Org Lett 2020; 22:8850-8854. [PMID: 33140974 DOI: 10.1021/acs.orglett.0c03225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A method for the measurement of residual chemical shift anisotropy in one experiment using a biphasic isotropic/anisotropic lyotropic liquid crystalline medium based on poly-γ-benzyl-l-glutamate as the alignment medium is presented. This approach is demonstrated on the model compound strychnine and neotricone, a depsidone natural product with a questionable structural assignment based on comparison with the closely related excelsione and in-depth density functional theory calculations.
Collapse
Affiliation(s)
- Michael J J Recchia
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Yizhou Liu
- Analytical Research & Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Edward C Sherer
- Analytical Research & Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Gary E Martin
- Department of Chemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| |
Collapse
|
38
|
Sager E, Tzvetkova P, Gossert AD, Piechon P, Luy B. Determination of Configuration and Conformation of a Reserpine Derivative with Seven Stereogenic Centers Using Molecular Dynamics with RDC-Derived Tensorial Constraints*. Chemistry 2020; 26:14435-14444. [PMID: 32744785 PMCID: PMC7702126 DOI: 10.1002/chem.202002642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/11/2022]
Abstract
NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.
Collapse
Affiliation(s)
- Emine Sager
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Pavleta Tzvetkova
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| | - Alvar D. Gossert
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
- Institut für Molekularbiologie und BiophysikETH Zürich8093ZürichSwitzerland
| | - Philippe Piechon
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Burkhard Luy
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| |
Collapse
|
39
|
Lesot P, Gil RR, Berdagué P, Navarro-Vázquez A. Deuterium Residual Quadrupolar Couplings: Crossing the Current Frontiers in the Relative Configuration Analysis of Natural Products. JOURNAL OF NATURAL PRODUCTS 2020; 83:3141-3148. [PMID: 32970418 DOI: 10.1021/acs.jnatprod.0c00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The determination of the 3D structure (configuration and preferred conformation) of complex natural and synthetic organic molecules is a long-standing but still challenging task for chemists, with various implications in pharmaceutical sciences whether or not these substances have specific bioactivities. Nuclear magnetic resonance (NMR) in aligning media, either lyotropic liquid crystals (LLCs) or polymer gels, in combination with molecular modeling is a unique framework for solving complex structural problems whose analytical wealth lies in the establishment of nonlocal structural correlations. As an alternative to the already well-established anisotropic NMR parameters, such as RDCs (residual dipolar couplings) and RCSAs (residual chemical shift anisotropies), it is shown here that deuterium residual quadrupolar couplings (2H-RQCs) can be extracted from 2H 2D-NMR spectra recorded at the natural abundance level in samples oriented in a homopolypeptide LLCs (poly-γ-benzyl-l-glutamate (PBLG)). These 2H-RQCs were successfully used to address nontrivial structural problems in organic molecules. The performance and scope of this new tool is examined for two natural chiral compounds of pharmaceutical interest (strychnine and artemisinin). This is the first report in which the 3D structure/relative configuration of complex bioactive molecules is unambiguously determined using only 2H-RQCs, which, in this case, are at 2H natural abundance.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3 rue Michel Ange, F-75016 Paris, France
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Philippe Berdagué
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, CEP 50.740-540 Recife, Pernambuco, Brazil
| |
Collapse
|
40
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
41
|
Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy. Nat Commun 2020; 11:4372. [PMID: 32873801 PMCID: PMC7463026 DOI: 10.1038/s41467-020-18093-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond 1H,13C residual dipolar couplings (RDCs) or by 13C residual chemical shift anisotropies (RCSAs) provide the relative configuration. However, these RDCs or carbon RCSAs rely on 1% natural abundance of 13C preventing their use for compounds available only in quantities of a few 10’s of µgs. By contrast, 1H RCSAs provide similar information on spatial orientation of structural moieties within a molecule, while using the abundant 1H spin. Herein, 1H RCSAs are accurately measured using constrained aligning gels or liquid crystals and applied to the 3D structural determination of molecules with varying complexities. Even more, deuterated alignment media allow the elucidation of the relative configuration of around 35 µg of a briarane compound isolated from Briareum asbestinum. Determination of 3D molecular structures remains challenging for natural products or organic compounds available in minute amounts. Here, the authors determine the structure of complex molecules, including few micrograms of briarane B-3 isolated from Briareum asbestinums, through measurement of 1H residual chemical shift anisotropy.
Collapse
|
42
|
Weiss M, Ott D, Karagiannis T, Weishaupt M, Niemietz M, Eller S, Lott M, Martínez-Orts M, Canales Á, Razi N, Paulson JC, Unverzagt C. Efficient Chemoenzymatic Synthesis of N-Glycans with a β1,4-Galactosylated Bisecting GlcNAc Motif. Chembiochem 2020; 21:3212-3215. [PMID: 32597008 PMCID: PMC7723014 DOI: 10.1002/cbic.202000268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Abstract
In human serum immunoglobulin G (IgG), a rare modification of biantennary complex N‐glycans lead to a β1,4‐galactosylated bisecting GlcNAc branch. We found that the bisecting GlcNAc on a biantennary core‐fucosylated N‐glycan was enzymatically galactosylated under stringent reaction conditions. Further optimizations led to an efficient enzymatic approach to this particular modification for biantennary substrates. Notably, tri‐ and tetra‐antennary complex N‐glycans were not converted by bovine galactosyltransferase. An N‐glycan with a galactosylated bisecting GlcNAc was linked to a lanthanide binding tag. The pseudo‐contact shifts (PCS) obtained from the corresponding Dy‐complex were used to calculate the conformational preferences of the rare N‐glycan. Besides two extended conformations only a single folded conformation was found.
Collapse
Affiliation(s)
- Michael Weiss
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Dimitri Ott
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Theodoros Karagiannis
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Markus Weishaupt
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Mathäus Niemietz
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Steffen Eller
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marie Lott
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Mónica Martínez-Orts
- Dpto. Química Orgánica I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040, Madrid, Spain
| | - Ángeles Canales
- Dpto. Química Orgánica I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, 28040, Madrid, Spain
| | - Nahid Razi
- Depts. of Molecular Medicine, and Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Depts. of Molecular Medicine, and Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carlo Unverzagt
- University of Bayreuth, Bioorganic Chemistry, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
43
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020; 59:17097-17103. [DOI: 10.1002/anie.202007243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
44
|
Liu H, Chen P, Li XL, Sun H, Lei X. Practical aspects of oligopeptide AAKLVFF as an alignment medium for the measurements of residual dipolar coupling of organic molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:404-410. [PMID: 32239576 DOI: 10.1002/mrc.4825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 06/11/2023]
Abstract
Practical aspects of the oligopeptide AAKLVFF as an alignment medium are discussed, including large-scale synthesis of the oligopeptide, detailed description of preparation of the alignment medium, and acquisition of the RDCs. The resulting orienting medium is stable and highly homogeneous with tunable alignment strength in methanol.
Collapse
Affiliation(s)
- Han Liu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Pian Chen
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Xiao-Lu Li
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Han Sun
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| |
Collapse
|
45
|
Li XL, Chi LP, Navarro-Vázquez A, Hwang S, Schmieder P, Li XM, Li X, Yang SQ, Lei X, Wang BG, Sun H. Stereochemical Elucidation of Natural Products from Residual Chemical Shift Anisotropies in a Liquid Crystalline Phase. J Am Chem Soc 2020; 142:2301-2309. [PMID: 31889437 DOI: 10.1021/jacs.9b10961] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Determination of the stereochemistry of organic molecules still represents one of the major obstacles in the structure elucidation procedure in drug discovery. Although the application of residual dipolar couplings (RDCs) has revolutionized this field, residual chemical shift anisotropies (RCSAs) which contain valuable structural information for nonprotonated carbons have only been scarcely employed so far. In this study, we present a simple but highly effective solution to extract RCSAs of the analytes in a liquid crystalline phase formed by AAKLVFF oligopeptides. This method does not require any special instruments, devices, or correction during postacquisition data analysis and thus can be easily applied in any chemistry laboratory. To illustrate the potential of this method, the relative configurations of four known natural products (1-4) belonging to different structural classes were confirmed. Moreover, we unambiguously elucidated the stereochemistry of spiroepicoccin A (5), a rare thiodiketopiperazine marine natural product whose configuration could not be assigned based on conventional NMR methods.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Section of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Berlin 13125 , Germany
| | - Lu-Ping Chi
- Laboratory of Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , People's Republic of China.,University of Chinese Academy of Sciences , Yuquan Road 19A , Beijing 100049 , People's Republic of China
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental , Universidade Federal de Pernambuco , Recife , Pernambuco 50670-901 , Brazil
| | - Songhwan Hwang
- Section of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Berlin 13125 , Germany
| | - Peter Schmieder
- Section of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Berlin 13125 , Germany
| | - Xiao-Ming Li
- Laboratory of Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , People's Republic of China
| | - Xin Li
- Laboratory of Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , People's Republic of China
| | - Sui-Qun Yang
- Laboratory of Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , People's Republic of China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences , South Central University for Nationalities , Wuhan 430074 , People's Republic of China
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266071 , People's Republic of China
| | - Han Sun
- Section of Structural Biology , Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Berlin 13125 , Germany
| |
Collapse
|
46
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
47
|
Ma ZK, Han XY, Liu H, Ji JC, Qin SY, Li XD, Lei X. Lyotropic liquid crystal to measure residual dipolar couplings in dimethyl sulfoxide based on modified cellulose nanocrystals. NEW J CHEM 2020. [DOI: 10.1039/c9nj06031f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel lyotropic liquid crystal was developed for the measurement of RDCs of organic molecules with no background signals.
Collapse
Affiliation(s)
- Zong-Kai Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiao-Yang Han
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Han Liu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Jia-Cheng Ji
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiang-Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| |
Collapse
|
48
|
Doppler A, Nicholls LDM, Golz C, Alcarazo M, John M. Orientation and conformation of two [6]carbohelicenes in stretched polystyrene and a thermoresponsive polyaspartate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:961-967. [PMID: 31291475 DOI: 10.1002/mrc.4921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Two functionalized [6]carbohelicenes, one of which was also available in its two enantiomeric pure forms, were oriented in stretched polystyrene in CDCl3 , and in a recently introduced chiral thermoresponsive lyotropic polyaspartate (poly(benzyl)0.5 (phenethyl)0.5 -L-aspartate) in C2 D2 Cl4 . From the resulting 1 H,13 C residual dipolar couplings, the helical pitch of a methylated [6]carbohelicene was determined and found to be in agreement with theoretical predictions and existing crystal structures (d(C2,C2') ≈ 4.3 Å). For a second [6]carbohelicene with para-methoxyphenyl substituents, a clear conformational preference of the substituents was observed. The orientational properties of the two helicene enantiomers in the chiral polyaspartate are very similar, but both drastically change around 306 K. We suggest this behavior is due to an unusual phase transition in the liquid crystal.
Collapse
Affiliation(s)
- Anna Doppler
- Fakultät für Chemie, Georg-August-Universität, Göttingen, Germany
| | - Leo D M Nicholls
- Fakultät für Chemie, Georg-August-Universität, Göttingen, Germany
| | - Christopher Golz
- Fakultät für Chemie, Georg-August-Universität, Göttingen, Germany
| | - Manuel Alcarazo
- Fakultät für Chemie, Georg-August-Universität, Göttingen, Germany
| | - Michael John
- Fakultät für Chemie, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
49
|
Tzvetkova P, Sternberg U, Gloge T, Navarro-Vázquez A, Luy B. Configuration determination by residual dipolar couplings: accessing the full conformational space by molecular dynamics with tensorial constraints. Chem Sci 2019; 10:8774-8791. [PMID: 31803450 PMCID: PMC6849632 DOI: 10.1039/c9sc01084j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Residual dipolar couplings (RDCs) and other residual anisotropic NMR parameters provide valuable structural information of high quality and quantity, bringing detailed structural models of flexible molecules in solution in reach. The corresponding data interpretation so far is directly or indirectly based on the concept of a molecular alignment tensor, which, however, is ill-defined for flexible molecules. The concept is typically applied to a single or a small set of lowest energy structures, ignoring the effect of vibrational averaging. Here, we introduce an entirely different approach based on time averaged molecular dynamics with dipolar couplings as tensorial orientational restraints that can be used to solve structural problems in molecules of any size without the need of introducing an explicit molecular alignment tensor into the computation. RDC restraints are represented by their full 3D interaction tensor in the laboratory frame, for which pseudo forces are calculated using a secular dipolar Hamiltonian as the target. The resulting rotational averaging of each individual tensorial restraint leads to structural ensembles that best fulfil the experimental data. Using one-bond RDCs, the approach has been implemented in the force field procedures of the program COSMOS and extensively tested. A concise theoretical introduction, including the special treatment of force fields for stable and fast MD simulations, as well as applications regarding configurational analyses of small to medium-sized organic molecules with different degrees of flexibility, is given. The observed results are discussed in detail.
Collapse
Affiliation(s)
- Pavleta Tzvetkova
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany . ;
| | - Ulrich Sternberg
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany . ;
| | - Thomas Gloge
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany . ;
| | - Armando Navarro-Vázquez
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany . ;
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany . ;
| |
Collapse
|
50
|
Kupče Ē, Claridge TDW. New NOAH modules for structure elucidation at natural isotopic abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106568. [PMID: 31421539 DOI: 10.1016/j.jmr.2019.106568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
We introduce several new NOAH modules designed for NMR supersequences that allow structure elucidation of small organic molecules from a single measurement. We show that double isotope filters (ZZ-filters) increase the flexibility of module permutation within the NMR supersequences, optimising combinations exploiting 15N and 13C nuclides. The time-shared 2BOB module combined with the ZZ-HMBC module (yielding NOAH-2 BO) provides an example of extending the NMR supersequences with parallel experiments (here 2BOB) that are incompatible with sequential implementation. Finally, the PANSY-COSY module combined with the HSQC sequence (yielding NOAH-2 SC2) provides an example of incorporating multiple receiver experiments into NMR supersequences opening new avenues for designing information rich NMR experiments. The new NOAH supersequences were utilized in computer assisted structure elucidation (CASE) study accomplished using the CMCse software.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK.
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|