1
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Sharfalddin AA, Al-Younis IM, Emwas AH, Jaremko M. Investigating the Biological Potency of Nitazoxanide-Based Cu(II), Ni(II) and Zn(II) Complexes Synthesis, Characterization and Anti-COVID-19, Antioxidant, Antibacterial and Anticancer Activities. Molecules 2023; 28:6126. [PMID: 37630378 PMCID: PMC10458470 DOI: 10.3390/molecules28166126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, the biological potency of nitazoxanide (NTZ) was enhanced through coordination with transition metal ions Cu(II), Ni(II), and Zn(II). Initially, complexes with a ligand-metal stoichiometry of 2:1 were successfully synthesized and characterized by spectroscopic techniques and thermogravimetric methods. Measurement of the infrared spectrum revealed the bidentate nature of the ligand and excluded the possibility of the metal ion-amide group interaction. Nuclear magnetic resonance spectra showed a reduction in the NH- intensity signal and integration, indicating the possibility of enolization and the formation of keto-enol tautomers. To interpret these results, density functional theory was utilized under B3LYP/6-311G** for the free ligand and B3LYP/LANL2DZ for the metal complexes. We used UV-Vis and fluorescence spectroscopy to understand the biological properties of the complexes. This showed stronger interactions of NTZ-Cu(II) and NTZ-Ni(II) with DNA molecules than the NTZ-Zn(II) compound, with a binding constant (Kb) for the copper complex of 7.00 × 105 M-1. Both Cu(II)- and Ni(II)-NTZ had functional binding to the SARS-CoV-2 (6LU7) protease. Moreover, all metal complexes showed better antioxidation properties than the free ligand, with NTZ-Ni(II) having the best IC50 value of 53.45 μg/mL. NTZ-Ni(II) was an effective antibacterial, with a mean inhibitory concentration of 6 μM, which is close to that of ampicillin (a reference drug). The metal complexes had moderated anticancer potencies, with NTZ-Cu(II) having IC50 values of 24.5 and 21.5 against human breast cancer cells (MCF-7) and cancerous cervical tumor cells (HeLa), respectively. All obtained complexes exhibited high selectivity. Finally, the metal ions showed a practical role in improving the biological effectiveness of NTZ molecules.
Collapse
Affiliation(s)
- Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Inas M. Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Untargeted Metabolomic Profiling and Antioxidant Capacities of Different Solvent Crude Extracts of Ephedra foeminea. Metabolites 2022; 12:metabo12050451. [PMID: 35629955 PMCID: PMC9146585 DOI: 10.3390/metabo12050451] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ephedra foeminea is a traditional medicinal plant used in the Eastern Mediterranean region. This study aims to investigate the chemical profiles of different solvent extracts of E. foeminea via an untargeted metabolomics approach, alongside determining their antioxidant capacities. E. foeminea samples collected from Jordan were macerated in solvents of varying polarities; dichloromethane/methanol, methanol, ethanol, ethyl acetate, and acetone. The crude extracts were subjected to comprehensive chemical profiling and metabolomics study using Gas chromatography–Mass spectrometry (GC–MS), Liquid chromatography–Mass spectrometry (LC–MS), and Nuclear Magnetic Resonance (NMR). The obtained data were analyzed using Venn diagrams, Principle Component Analysis (PCA), and Metabolite Enrichment Set Analysis (MESA). ABTS assay was performed to measure the crude extracts’ antioxidant activity. MESA revealed the dominant chemical groups as amino acids, fatty acids, carboxylic acids, and carbohydrates. Results indicated that dichloromethane/methanol and methanolic extracts had the most distinct composition as well as the most unique compounds. The methanolic extract had the most potency (IC50 249.6 µg/mL) in the ABTS assay. However, no significant differences were found. In conclusion, solvents influenced the recovery of metabolites in E. foeminea and the antioxidant activity of the E. foeminea methanolic extract could be correlated to the abundant presence of diverse bioactive compounds.
Collapse
|
5
|
Cukierman DS, Bodnár N, Diniz R, Nagy L, Kállay C, Rey NA. Full Equilibrium Picture in Aqueous Binary and Ternary Systems Involving Copper(II), 1-Methylimidazole-Containing Hydrazonic Ligands, and the 103-112 Human Prion Protein Fragment. Inorg Chem 2022; 61:723-737. [PMID: 34918515 DOI: 10.1021/acs.inorgchem.1c03598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we describe two novel 1-methylimidazole N-acylhydyrazonic ligands and their interaction with copper(II) in solution. Binary systems constituted by each of these hydrazones and the metal ion were studied by potentiometric titrations. The magnitude of their affinities for zinc(II) was also determined for the sake of comparison. Additionally, a full evaluation of the copper(II) chelation profile of the new ligands in ternary systems containing a human prion protein fragment was performed. Mixed ligand complexes comprising the HuPrP103-112 fragment, copper(II) ions, and an N-acylhydrazone were characterized by potentiometry, ultraviolet-visible spectroscopy, and circular dichroism. Some of these species were also identified by electrospray ionization mass spectrometry and unequivocally assigned through their isotopic distribution pattern. To the best of our knowledge, this is the first report concerning the stability of ternary complexes involving a hydrazonic metal-protein interaction modulator, copper, and a peptide. The ability of N-acylhydrazones to prevent peptide oxidation was also examined. Both ligands can partially prevent the formation of the doubly oxidized product, a process mediated by copper(II) ions. Oxidative stress is considered an important hallmark of neurodegenerative diseases such as prion-related spongiform encephalopathies. In this context, active intervention with respect to the deleterious copper-catalyzed methionine oxidation could represent an interesting therapeutic approach.
Collapse
Affiliation(s)
- Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Renata Diniz
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen 4032, Hungary
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
6
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
7
|
Sharfalddin AA, Emwas AH, Jaremko M, Hussien MA. Practical and Computational Studies of Bivalence Metal Complexes of Sulfaclozine and Biological Studies. Front Chem 2021; 9:644691. [PMID: 34211959 PMCID: PMC8239243 DOI: 10.3389/fchem.2021.644691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the search for novel, metal-based drug complexes that may be of value as anticancer agents, five new transition metal complexes of sulfaclozine (SCZ) with Cu(II), Co(II), Ni(II), Zn(II), and Fe(II) were successfully synthesized. The chemical structure of each complex was characterized using elemental analysis (CHN), IR spectroscopy, UV–Vis spectroscopy, thermogravimetric analysis (TGA), and electronic paramagnetic resonance (EPR) spectroscopy. IR spectra indicated that the donor atoms were one sulfonyl oxygen atom and one pyrazine nitrogen atom, which associated with the metal ions to form a stable hexagonal coordination ring. The metal–ligand stability constant (Kf) revealed that Cu(II) and Ni(II) have good coordination stability among the metal compounds. Theoretical studies using DFT/B3LYP were performed to further validate the proposed structures. The obtained results indicated that Cu(II) has a trigonal bipyramidal geometry, whereas Fe(II), Co(II), and Ni(II) have an octahedral structure, while Zn(II) has a tetrahedral arrangement. The bio-activities of the characterized complexes were evaluated using DNA binding titration and molecular docking. The binding constant values for the metal complexes were promising, with a maximum value for the copper metal ion complex, which was 9 × 105 M-1. Molecular docking simulations were also carried out to evaluate the interaction strength and properties of the synthesized metal complexes with both DNA and selected cancer-relevant proteins. These results were supported by in vitro cytotoxicity assays showing that the Cu(II) and Ni(II) complexes display promising antitumor activity against colon and breast cancer cell lines.
Collapse
Affiliation(s)
- Abeer A Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal, Saudi Arabia
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
8
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
9
|
Sharfalddin AA, Emwas A, Jaremko M, Hussien MA. Transition metal complexes of 6‐mercaptopurine: Characterization, Theoretical calculation, DNA‐Binding, molecular docking, and anticancer activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Abdul‐Hamid Emwas
- Imaging and Characterization Core Lab King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE) King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science Port Said University Port Said Egypt
| |
Collapse
|
10
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
11
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Alghrably M, Dudek D, Emwas AH, Jaremko Ł, Jaremko M, Rowińska-Żyrek M. Copper(II) and Amylin Analogues: A Complicated Relationship. Inorg Chem 2020; 59:2527-2535. [DOI: 10.1021/acs.inorgchem.9b03498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Dorota Dudek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | | |
Collapse
|
13
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
14
|
Witkowska D, Rowińska-Żyrek M. Biophysical approaches for the study of metal-protein interactions. J Inorg Biochem 2019; 199:110783. [PMID: 31349072 DOI: 10.1016/j.jinorgbio.2019.110783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.
Collapse
Affiliation(s)
- Danuta Witkowska
- Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland.
| | | |
Collapse
|
15
|
Paterson AF, Tsetseris L, Li R, Basu A, Faber H, Emwas AH, Panidi J, Fei Z, Niazi MR, Anjum DH, Heeney M, Anthopoulos TD. Addition of the Lewis Acid Zn(C 6 F 5 ) 2 Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm 2 V -1 s -1. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900871. [PMID: 31074923 DOI: 10.1002/adma.201900871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Incorporating the molecular organic Lewis acid tris(pentafluorophenyl)borane [B(C6 F5 )3 ] into organic semiconductors has shown remarkable promise in recent years for controlling the operating characteristics and performance of various opto/electronic devices, including, light-emitting diodes, solar cells, and organic thin-film transistors (OTFTs). Despite the demonstrated potential, however, to date most of the work has been limited to B(C6 F5 )3 with the latter serving as the prototypical air-stable molecular Lewis acid system. Herein, the use of bis(pentafluorophenyl)zinc [Zn(C6 F5 )2 ] is reported as an alternative Lewis acid additive in high-hole-mobility OTFTs based on small-molecule:polymer blends comprising 2,7-dioctyl[1]benzothieno [3,2-b][1]benzothiophene and indacenodithiophene-benzothiadiazole. Systematic analysis of the materials and device characteristics supports the hypothesis that Zn(C6 F5 )2 acts simultaneously as a p-dopant and a microstructure modifier. It is proposed that it is the combination of these synergistic effects that leads to OTFTs with a maximum hole mobility value of 21.5 cm2 V-1 s-1 . The work not only highlights Zn(C6 F5 )2 as a promising new additive for next-generation optoelectronic devices, but also opens up new avenues in the search for high-mobility organic semiconductors.
Collapse
Affiliation(s)
- Alexandra F Paterson
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens, GR-15780, Greece
| | - Ruipeng Li
- Brookhaven National Lab, Upton, NY, 11973, USA
| | - Aniruddha Basu
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hendrik Faber
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Julianna Panidi
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, SW7 2AZ, London, UK
| | - Zhuping Fei
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, SW7 2AZ, London, UK
| | - Muhammad R Niazi
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Dalaver H Anjum
- Core Labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, SW7 2AZ, London, UK
| | - Thomas D Anthopoulos
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019; 9:E123. [PMID: 31252628 PMCID: PMC6680826 DOI: 10.3390/metabo9070123] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raja Roy
- Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
17
|
Alahmari F, Davaasuren B, Emwas AH, M.F.J. Costa P, Rothenberger A. Tris(ethylenediamine)nickel(II) thio-hydroxogermanate monohydrate: Synthesis, crystal structure, 1H NMR, EPR, optical and magnetic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Alahmari F, Davaasuren B, Emwas AH, Rothenberger A. Thioaluminogermanate M(AlS2)(GeS2)4 (M = Na, Ag, Cu): Synthesis, Crystal Structures, Characterization, Ion-Exchange and Solid-State 27Al and 23Na NMR Spectroscopy. Inorg Chem 2018. [DOI: 10.1021/acs.inorgchem.7b02980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fatimah Alahmari
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
19
|
Hecel A, De Ricco R, Valensin D. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol 2015; 1277:161-93. [PMID: 25677154 DOI: 10.1007/978-1-4939-2377-9_13] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spectrometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a weak point for NMR compared with MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover, different MS approaches such as different ionization techniques and mass analyzer technology can be used in order to increase the number of metabolites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR and MS as tools applicable to metabolomics research are highlighted.
Collapse
|
21
|
Flores M, Olson TL, Wang D, Edwardraja S, Shinde S, Williams JC, Ghirlanda G, Allen JP. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marco Flores
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Tien L. Olson
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Dong Wang
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Selvakumar Edwardraja
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sandip Shinde
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - JoAnn C. Williams
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Giovanna Ghirlanda
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - James P. Allen
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
22
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
23
|
Abstract
Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.
Collapse
|
24
|
Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, Ryan D, Merzaban JS, Kaddurah-Daouk R, Zeri AC, Nagana Gowda GA, Raftery D, Wang Y, Brennan L, Wishart DS. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 2015; 11:872-894. [PMID: 26109927 PMCID: PMC4475544 DOI: 10.1007/s11306-014-0746-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 02/08/2023]
Abstract
The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, KSA, Thuwal, Saudi Arabia
| | - Claudio Luchinat
- Centro Risonanze Magnetiche – CERM, University of Florence, Florence, Italy
| | - Paola Turano
- Centro Risonanze Magnetiche – CERM, University of Florence, Florence, Italy
| | | | - Raja Roy
- Centre of Biomedical Research, Formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| | - Reza M. Salek
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, CB10 1SD UK
| | - Danielle Ryan
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jasmeen S. Merzaban
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, KSA, Thuwal, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Pharmacometabolomics Center, School of Medicine, Duke University, Durham, USA
| | - Ana Carolina Zeri
- Brazilian Biosciences National Laboratory, LNBio, Campinas, SP Brazil
| | - G. A. Nagana Gowda
- Department of Anethesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, 850 Republican St., Seattle, WA 98109 USA
| | - Daniel Raftery
- Department of Anethesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, 850 Republican St., Seattle, WA 98109 USA
| | - Yulan Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Beijing, China
| | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, School of Agriculture & Food Science, Dublin 4, Ireland
| | - David S. Wishart
- Department of Computing Science, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
25
|
Emwas AHM, Al-Talla ZA, Kharbatia NM. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry. Methods Mol Biol 2015; 1277:75-90. [PMID: 25677148 DOI: 10.1007/978-1-4939-2377-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Room 0149, 23955-6900, Thuwal, Kingdom of Saudi Arabia,
| | | | | |
Collapse
|
26
|
|
27
|
Copper-induced structural propensities of the amyloidogenic region of human prion protein. J Biol Inorg Chem 2014; 19:635-45. [DOI: 10.1007/s00775-014-1132-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
|
28
|
Russino D, McDonald E, Hejazi L, Hanson GR, Jones CE. The tachykinin peptide neurokinin B binds copper forming an unusual [CuII(NKB)2] complex and inhibits copper uptake into 1321N1 astrocytoma cells. ACS Chem Neurosci 2013; 4:1371-81. [PMID: 23875773 DOI: 10.1021/cn4000988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.
Collapse
Affiliation(s)
- Debora Russino
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Elle McDonald
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Leila Hejazi
- Mass Spectroscopy Laboratory, The University of Western Sydney, Locked bag 1797,
Penrith, New South Wales 2759, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher E. Jones
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| |
Collapse
|