1
|
Bobotis BC, Khakpour M, Braniff O, de Andrade EG, Gargus M, Allen M, Carrier M, Baillargeon J, Rangachari M, Tremblay MÈ. Sex chromosomes and sex hormones differently shape microglial properties during normal physiological conditions in the adult mouse hippocampus. J Neuroinflammation 2025; 22:18. [PMID: 39856696 PMCID: PMC11762133 DOI: 10.1186/s12974-025-03341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life. However, microglial differences in density and distribution, morphology and ultrastructural patterns in physiological conditions during adulthood are largely unknown. Here, we investigated these aforementioned properties of microglia using the Four Core Genotypes (FCG) model, which allows for an independent assessment of gonadal hormones and sex chromosomal effects in four conditions: FCG XX and Tg XY- (both ovaries); Tg XXSry and Tg XYSry (both testes). We also compared the FCG results with XX and XY wild-type (WT) mice. In adult mice, we focused our investigation on the ventral hippocampus across different layers: CA1 stratum radiatum (Rad) and CA1 stratum lacunosum-moleculare (LMol), as well as the dentate gyrus polymorphic layer (PoDG). Double immunostaining for Iba1 and TMEM119 revealed that microglial density is influenced by both sex chromosomes and sex hormones. We show in the Rad and LMol that microglia are denser in FCG XX compared to Tg XYSry mice, however, microglia were densest in WT XX mice. In the PoDG, ovarian animals had increased microglial density compared to testes animals. Additionally, microglial morphology was modulated by a complex interaction between hormones and chromosomes, affecting both their cellular soma and arborization across the hippocampal layers. Moreover, ultrastructural analysis showed that microglia in WT animals make overall more contacts with pre- and post-synaptic elements than in FCG animals. Lastly, microglial markers of cellular stress, including mitochondrion elongation, and dilation of the endoplasmic reticulum and Golgi apparatus, were mostly chromosomally driven. Overall, we characterized different aspects of microglial properties during normal physiological conditions that were found to be shaped by sex chromosomes and sex hormones, shading more light onto how sex differences affect the brain immunity at steady-state.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | | | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Micah Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Joanie Baillargeon
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Manu Rangachari
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
2
|
Fu M, Berk-Rauch HE, Chatterjee S, Chakravarti A. The Role of de novo and Ultra-Rare Variants in Hirschsprung Disease (HSCR): Extended Gene Discovery for Risk Profiling of Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.07.25320162. [PMID: 39830246 PMCID: PMC11741498 DOI: 10.1101/2025.01.07.25320162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted migration and proliferation of enteric neural crest cells during enteric nervous system development. Genetic studies suggest a complex etiology involving both rare and common variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood. Methods We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, employing advanced statistical methods and gene prioritization strategies to identify genes carrying de novo and ultra-rare coding pathogenic variants. Multiple study designs, including case-control, de novo mutation analysis and joint test, are used to detect associated genes. Candidate genes are further prioritized based on their biological and functional relevance to disease associated tissues and onset period (i.e., human embryonic colon). Results We identify 19 risk genes enriched with ultra-rare coding pathogenic variants in HSCR probands, including four known genes (RET, EDNRB, ZEB2, SOX10) and 15 novel candidates (e.g., COLQ, NES, FAT3) functioning in neural proliferation and neuromuscular synaptic development. These genes account for 17.5% of the population-attributable risk (PAR), with novel candidates contributing 6.5%. Notably, a positive correlation between pathogenic mutational burden and disease severity is observed. Female cases exhibit at least 42% higher ultra-rare pathogenic variant burden than males (P = 0.05). Conclusions This first-ever genome-wide screen of ultra-rare variants in a large, phenotypically diverse HSCR cohort highlights the substantial contribution of ultra-rare pathogenic variants to the disease risk and phenotypic variability. These findings enhance our understanding of the genetic architecture of HSCR and provide potential targets for genetic screening and personalized interventions.
Collapse
Affiliation(s)
- Mingzhou Fu
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Population Health, New York University Grossman
School of Medicine, New York, NY, 10016
| | - Hanna E Berk-Rauch
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
| | - Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, New York University
Grossman School of Medicine, New York, NY, 10016
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University
Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, New York University
Grossman School of Medicine, New York, NY, 10016
| |
Collapse
|
3
|
Wang M, Ding H, Liu M, Gao Y, Li L, Jin C, Bao Z, Wang B, Hu J. Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 54:101402. [PMID: 39742679 DOI: 10.1016/j.cbd.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus. The phylogenetic tree construction, chromosome localization, and gene structure analysis were executed to verify the evolutionary relationships, gene duplication, and deletion variations of P. leopardus sox genes in evolution. The sequence alignment revealed the HMG-box domain was highly conserved throughout the Sox gene family. The expression profile showed expression levels of sox genes showed tissue specificity. The dimorphic expression pattern of most sox genes in intersex and adult gonads was also observed, suggesting an important role of sox genes for sex differentiation in P. leopardus. Notably, sox32 was specifically highly expressed in gonadal tissues and might play a novel role within the gonads. The fluorescent in situ hybridization (FISH) showed sox32 mRNA was detected in germ stem cells and oocytes of different stages, and lowly expressed in sertoli cells. In testis, sox32 was not detected in male germ cells. Our results provided new insights into the sox32 that might be involved in gonadal development and differentiation in P. leopardus. To sum up, this study comprehensively analyzed the Sox gene family of P. leopardus and provided new insights into the function of sox genes, which could potentially revolutionize our understanding of the mechanisms of sex determination, sex differentiation, and reproductive development in fish.
Collapse
Affiliation(s)
- Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingjian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Lin Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
4
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Okashita N, Tachibana M. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY. Sex Dev 2021; 15:351-359. [PMID: 34583357 DOI: 10.1159/000519217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Mammalian male sex differentiation is triggered during embryogenesis by the activation of the Y-linked testis-determining gene SRY. Since insufficient or delayed expression of SRY results in XY gonadal sex reversal, accurate regulation of SRY is critical for male development in XY animals. In humans, dysregulation of SRY may cause disorders of sex development. Mouse Sry is the most intensively studied mammalian model of sex determination. Sry expression is controlled in a spatially and temporally stringent manner. Several transcription factors play a key role in sex determination as trans-acting factors for Sry expression. In addition, recent studies have shown that several epigenetic modifications of Sry are involved in sex determination as cis-acting factors for Sry expression. Herein, we review the current understanding of transcription factor- and epigenetic modifier-mediated regulation of SRY/Sry expression.
Collapse
Affiliation(s)
- Naoki Okashita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Knockout of the HMG domain of the porcine SRY gene causes sex reversal in gene-edited pigs. Proc Natl Acad Sci U S A 2021; 118:2008743118. [PMID: 33443157 PMCID: PMC7812820 DOI: 10.1073/pnas.2008743118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present work characterizes the porcine sex-determining region on the Y chromosome (SRY) gene and demonstrates its pivotal role in sex determination. We provide evidence that genetically male pigs with a knockout of the SRY gene undergo sex reversal of the external and internal genitalia. This discovery of SRY as the main switch for sex determination in pigs may provide an alternative for surgical castration in pig production, preventing boar taint. As the pig shares many genetic, physiological, and anatomical similarities with humans, it also provides a suitable large animal model for human sex reversal syndromes, allowing for the development of new interventions for human sex disorders. The sex-determining region on the Y chromosome (SRY) is thought to be the central genetic element of male sex development in mammals. Pathogenic modifications within the SRY gene are associated with a male-to-female sex reversal syndrome in humans and other mammalian species, including rabbits and mice. However, the underlying mechanisms are largely unknown. To understand the biological function of the SRY gene, a site-directed mutational analysis is required to investigate associated phenotypic changes at the molecular, cellular, and morphological level. Here, we successfully generated a knockout of the porcine SRY gene by microinjection of two CRISPR-Cas ribonucleoproteins, targeting the centrally located “high mobility group” (HMG), followed by a frameshift mutation of the downstream SRY sequence. This resulted in the development of genetically male (XY) pigs with complete external and internal female genitalia, which, however, were significantly smaller than in 9-mo-old age-matched control females. Quantitative digital PCR analysis revealed a duplication of the SRY locus in Landrace pigs similar to the known palindromic duplication in Duroc breeds. Our study demonstrates the central role of the HMG domain in the SRY gene in male porcine sex determination. This proof-of-principle study could assist in solving the problem of sex preference in agriculture to improve animal welfare. Moreover, it establishes a large animal model that is more comparable to humans with regard to genetics, physiology, and anatomy, which is pivotal for longitudinal studies to unravel mammalian sex determination and relevant for the development of new interventions for human sex development disorders.
Collapse
|
7
|
Soleymani B, Mansouri K, Rastegari-Pouyani M, Parvaneh S, Khademi F, Sharifi Tabar M, Mostafaie A. Production of monoclonal antibody against recombinant bovine sex-determining region Y (SRY) and their preferential binding to Y chromosome-bearing sperm. Reprod Domest Anim 2021; 56:270-277. [PMID: 32920908 DOI: 10.1111/rda.13821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/05/2020] [Indexed: 11/28/2022]
Abstract
Separation of X and Y chromosome-bearing sperm is an appropriate method for the selection of desired sex of offspring to increase the profit in livestock industries. The purpose of this study was the production of a monoclonal antibody against recombinant bovine sex-determining region Y protein for separation Y sperm. The hybridoma cells from splenocytes of immunized female's balb/C mice and Sp2/0 cells were made. The binding affinity of our monoclonal antibody (mAbSRY2) was compared with mouse monoclonal SRY-15. The Western blot method indicated that mAbSRY2 successfully detected the rbSRY protein. The specificity and sensitivity of mAbSRY2 is comparable to SRY-15 commercially ones. The SRY gene in 100% of bull semen contains the Y chromosome that had the strongest binding affinity to mAbSRY2 was synthesized. In other words, the binding affinity of semen contains the X sperms near the negative control. In general, this immunological method can help to separate X from Y sperms. However, the mAbSRY2 is bind to Y-bearing sexed sperm, but in the future; the sexed sperms need to apply in farms.
Collapse
Affiliation(s)
- Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Parvaneh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Sharifi Tabar
- School of Life and Environmental Science, University of Sydney, Sydney, NSW, Australia
| | - Ali Mostafaie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Maulani C, Auerkari EI. Molecular analysis for sex determination in forensic dentistry: a systematic review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2020. [DOI: 10.1186/s41935-020-00210-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sex determination can be useful in forensic casework, such as in mass disasters, transportation accidents, and cases of a missing person or sexual assault. The remnants of the body can be traced by DNA of the victim, using samples from various sources such as teeth, oral epithelial tissue, and saliva.
Main body
The review aimed to describe research in forensic dentistry with DNA source from the oral region and methods of the applied DNA analysis. A search in PubMed, Google Scholar, and Scopus electronic databases from 2009 to 2019 was conducted to include studies according to PRISMA guidelines. Ten studies were eligible for the review. Genetic markers originated from dentin, dental pulp, saliva, or epithelial cells from buccal tissue and prosthesis. The applied DNA analysis methods were PCR, real-time PCR, and nested PCR.
Conclusions
The published articles mostly showed successful DNA extraction and sex determination, but the rate of success declined as the sample source underwent manipulation to mimic the forensic conditions. Amelogenin, SRY, and DYS14 were reliable indicators for sex determination. Molecular analysis has proved to be efficient and accurate, but the daily forensic practice must select the most appropriate method according to the available body remnants.
Collapse
|
10
|
Abdel-Maksoud FM, Ali FAZ, Akingbemi BT. Prenatal exposures to bisphenol A and di (2-ethylhexyl) phthalate disrupted seminiferous tubular development in growing male rats. Reprod Toxicol 2019; 88:85-90. [PMID: 31369804 DOI: 10.1016/j.reprotox.2019.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are found in the environment due to their use in industrial and manufacturing activities. Exposure of the population to bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) is significant because they are present in many consumer products. EDCs target the reproductive tract because they express high levels of steroid hormone receptors, which act as transcriptional factors to regulate reproductive development. In the present study, timed-pregnant Long-Evans female rats (n = 8-10) were administered BPA and DEHP by oral gavage at 2.5 or 25 μg/kg body weight and 5 or 50 μg/kg body weight, respectively. Exposures to chemicals were limited to the period between gestational days 12 and 21 followed by assessment of testicular development in male offspring in the postnatal period. Leydig cells and Sertoli cells are the two major somatic cells present in the testis. The 17β-hydroxysteroid dehydrogenase (17β-HSD) steroidogenic enzyme is a marker for Leydig cell maturation, whereas transferrin is a marker for Sertoli cell differentiation. At day 10 post-partum, testes were obtained from cohorts of control and chemical-exposed male rats and processed to measure 17β-HSD and transferrin expression levels in western blots. Compared to control, 17βHSD enzyme protein was increased in BPA-treated rats but levels were decreased in animals exposed to DEHP (P < 0.05). Transferrin protein was decreased in male rats exposed to both BPA and DEHP compared to control animals (P < 0.05). To assess qualitative cellular changes within the spermatogenic epithelium, testes were obtained from separate cohorts of male rats at 35 days of age and processed for histopathological analysis. Results showed that prenatal exposures of male rats to BPA and DEHP caused disruption of the spermatogenic epithelium evident as disorganization and atrophy of seminiferous tubules as well as desquamation of germ cells into the tubular lumen. Together, results from the present study support the view that developmental exposures to environmentally relevant levels of BPA and DEHP are associated with disruptions of testicular cell development, which have implications for endocrine and exocrine functions of testis.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Auburn University, USA; Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, Sohag University, Egypt
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Auburn University, USA.
| |
Collapse
|
11
|
Li X, Mo J, Zhu Q, Ni C, Wang Y, Li H, Lin ZK, Ge RS. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. CHEMOSPHERE 2019; 223:504-513. [PMID: 30784757 DOI: 10.1016/j.chemosphere.2019.02.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Testicular dysgenesis syndrome includes the hypospadias, cryptorchidism and abnormal fetal testis in male neonate. This is possibly caused by the environmental phthalates, which down-regulate the expression of androgen synthetic genes and Insl3 or directly inhibits steroidogenic enzymes. There are distinct structure-activity relationships (SARs) for phthalate-mediated developmental and reproductive toxicity. Here, we review the SAR for phthalate-mediated testicular dysgenesis syndrome. Of phthalates of straight side chains, C5-C6 ones are the most potent, C4 or C7 are moderate, C3 is weakest, and C1-2 or C8-13 are ineffective. The branching and unsaturation of side chains increases the toxicity. The cycling of side chains does not increase the toxicity.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Kun Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
CONSIDERACIONES GENERALES EN EL ESTABLECIMIENTO DEL SEXO EN MAMÍFEROS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Uysal F, Akkoyunlu G, Ozturk S. DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod Biomed Online 2016; 33:690-702. [PMID: 27687053 DOI: 10.1016/j.rbmo.2016.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023]
Abstract
DNA methylation is one of the epigenetic marks and plays critically important functions during spermatogenesis in mammals. DNA methylation is catalysed by DNA methyltransferase (DNMT) enzymes, which are responsible for the addition of a methyl group to the fifth carbon atom of the cytosine residues within cytosine-phosphate-guanine (CpG) and non-CpG dinucleotide sites. Structurally and functionally five different DNMT enzymes have been identified in mammals, including DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L. These enzymes mainly play roles in two DNA methylation processes: maintenance and de novo. While DNMT1 is primarily responsible for maintenance methylation via transferring methyl groups to the hemi-methylated DNA strands following DNA replication, both DNMT3A and DNMT3B are capable of methylating unmodified cytosine residues, known as de novo methylation. However, DNMT3L indirectly participates in de novo methylation, and DNMT2 carries out methylation of the cytosine 38 in the anticodon loop of aspartic acid transfer RNA. To date, many studies have been performed to determine spatial and temporal expression levels and functional features of the DNMT in the male germ cells. This review article comprehensively discusses dynamic expression of the DNMT during spermatogenesis and their relationship with male infertility development in the light of existing investigations.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus 07070, Antalya, Turkey.
| |
Collapse
|
14
|
Soleymani B, Hafezian SH, Mianji GR, Mansouri K, Chaharaein B, Tajehmiri A, Sharifi Tabar M, Mostafaie A. Bovine Sex Determining Region Y: Cloning, Optimized Expression, and Purification. Anim Biotechnol 2016; 28:44-52. [DOI: 10.1080/10495398.2016.1198796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bijan Soleymani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Sayed Hassan Hafezian
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Ghodratollah Rahimi Mianji
- Department of Animal Science, Faculty of Animal and Fishery Sciences, Agricultural Science and Natural Resources University of Sari, Sari, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Broomand Chaharaein
- Agricultural Research Center, Jehad-e Keshavarzi Institute, Kermanshah, Iran
| | - Ahmad Tajehmiri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Sharifi Tabar
- Schools of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
She ZY, Yang WX. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Semin Cell Dev Biol 2016; 63:13-22. [PMID: 27481580 DOI: 10.1016/j.semcdb.2016.07.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/27/2023]
Abstract
In mammals, sex determination defines the differentiation of the bipotential genital ridge into either testes or ovaries. Sry, the mammalian Y-chromosomal testis-determining gene, is a master regulator of male sex determination. It acts to switch the undifferentiated genital ridge towards testis development, triggering the adoption of a male fate. Sry initiates a cascade of gene networks through the direct regulation of Sox9 expression and promotes supporting cell differentiation, Leydig cell specification, vasculature formation and testis cord development. In the absence of Sry, alternative genetic cascades, including female sex-determining genes RSPO1, Wnt4/β-catenin and Foxl2, are involved in the formation of female genitalia and the maintenance of female ovarian development. The mutual antagonisms between male and female sex-determining pathways are crucial in not just the initiation but also the maintenance of the somatic sex of the gonad throughout the organism's lifetime. Any imbalances in above sex-determining genes can cause disorders of sex development in humans and mice. In this review, we provide a detailed summary of the expression profiles, biochemical properties and developmental functions of Sry and SoxE genes in embryonic testis development and adult gonadal development. We also briefly summarize the dedicate balances between male and female sex-determining genes in mammalian sex development, with particular highlights on the molecular actions of Sry and Sox9 transcription factors.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Affiliation(s)
- Jennifer A Marshall Graves
- School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia, and at the Research School of Biology, Australian National University, Canberra
| |
Collapse
|
17
|
Graves JAM. How Australian mammals contributed to our understanding of sex determination and sex chromosomes. AUST J ZOOL 2016. [DOI: 10.1071/zo16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well illustrates the value of comparing distantly related animals and the folly of relying on humans and mice for an understanding of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time to review the contributions of Australian mammals to these discoveries.
The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works. Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved, and what might befall this gene and the Y chromosome it defines.
Collapse
|
18
|
Abdel-Maksoud FM, Leasor KR, Butzen K, Braden TD, Akingbemi BT. Prenatal Exposures of Male Rats to the Environmental Chemicals Bisphenol A and Di(2-Ethylhexyl) Phthalate Impact the Sexual Differentiation Process. Endocrinology 2015; 156:4672-83. [PMID: 26372177 DOI: 10.1210/en.2015-1077] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increasing incidence of reproductive anomalies, described as testicular dysgenesis syndrome, is thought to be related to the exposure of the population to chemicals in the environment. Bisphenol A (BPA) and di(2-ethylhexyl)phthalate (DEHP), which have hormonal and antihormonal activity, have attracted public attention due to their presence in consumer products. The present study investigated the effects of BPA and DEHP on reproductive development. Timed-pregnant female rats were exposed to BPA and DEHP by gavage from gestational days 12 to 21. Results showed that prenatal exposures to test chemicals exerted variable effects on steroidogenic factor 1 and GATA binding protein 4 protein expression and increased (P < .05) sex-determining region Y-box 9 and antimüllerian hormone protein in the infantile rat testis compared with levels in the control unexposed animals. Pituitary LHβ and FSHβ subunit protein expression was increased (P < .05) in BPA- and DEHP-exposed prepubertal male rats but were decreased (P < .05) in adult animals relative to control. Exposure to both BPA and DEHP in utero inhibited (P < .05) global DNA hydroxymethylation in the adult testis in association with altered DNA methyltransferase protein expression. Together the present data suggest that altered developmental programming in the testes associated with chemical exposures are related to the disruption of sexual differentiation events and DNA methylation patterns. The chemical-induced effects impact the development of steroidogenic capacity in the adult testis.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Khrystyna R Leasor
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Kate Butzen
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Timothy D Braden
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| | - Benson T Akingbemi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn, Auburn University, Alabama 36849
| |
Collapse
|
19
|
Tachibana M. Epigenetics of sex determination in mammals. Reprod Med Biol 2015; 15:59-67. [PMID: 29259422 DOI: 10.1007/s12522-015-0223-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022] Open
Abstract
Epigenetics is the study of changes in gene function that cannot be explained by changes in DNA sequence. A mammalian body contains more than two hundred types of cells. Since all of them are derived from a single fertilized egg, their genotypes are identical. However, the gene expression patterns are different between the cell types, indicating that each cell type has unique own "epigenotype". Epigenetic gene regulation mechanisms essentially contribute to various processes of mammalian development. The essence of epigenetic regulation is the structural change of chromatin to modulate gene activity in a spatiotemporal manner. DNA methylation and histone modifications are the major epigenetic mechanisms. Sex determination is the process for gender establishment. There are two types of sex-determining mechanisms in animals, environmental sex determination (ESD) and genotypic sex determination (GSD). Recent studies have provided some evidence that epigenetic mechanisms play indispensable roles in ESD and GSD. Some fishes undergo ESD, in which DNA methylation is essentially involved. GSD is employed in therian mammals, where Sry (sex-determining region on the Y chromosome) triggers testis differentiation from undifferentiated gonads. Sry expression is tightly regulated in a spatiotemporal manner. A recent study demonstrated that histone modification is involved in Sry regulation. In this review, we discuss the role of epigenetic mechanisms for sex determination in mammals and other vertebrates.
Collapse
Affiliation(s)
- Makoto Tachibana
- Department of Enzyme Chemistry, Institute for Enzyme Research Tokushima University 18-15-3 Kuramoto-cho 770-8503 Tokushima Japan
| |
Collapse
|
20
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 5. Gonadal Dysgenesis. Pediatr Dev Pathol 2015; 18:259-78. [PMID: 25105336 DOI: 10.2350/14-04-1471-pb.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One of the most challenging areas in pediatric testicular pathology is the appropriate understanding and pathological diagnosis of disorders of sexual development (DSD), and in particular, the issue of gonadal dysgenesis. Here we present the main concepts necessary for their understanding and appropriate classification, with extensive genetic correlations.
Collapse
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
21
|
Uversky VN. Unreported intrinsic disorder in proteins: Disorder emergency room. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1010999. [PMID: 28232885 DOI: 10.1080/21690707.2015.1010999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/01/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022]
Abstract
This article continues an "Unreported Intrinsic Disorder in Proteins" series, the goal of which is to expose some interesting cases of missed (or overlooked, or ignored) disorder in proteins. The need for this series is justified by the observation that despite the fact that protein intrinsic disorder is widely accepted by the scientific community, there are still numerous instances when appreciation of this phenomenon is absent. This results in the avalanche of research papers which are talking about intrinsically disordered proteins (or hybrid proteins with ordered and disordered regions) not recognizing that they are talking about such proteins. Articles in the "Unreported Intrinsic Disorder in Proteins" series provide a fast fix for some of the recent noticeable disorder overlooks.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
22
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
23
|
Regulation of male sex determination: genital ridge formation and Sry activation in mice. Cell Mol Life Sci 2014; 71:4781-802. [PMID: 25139092 PMCID: PMC4233110 DOI: 10.1007/s00018-014-1703-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022]
Abstract
Sex determination is essential for the sexual reproduction to generate the next generation by the formation of functional male or female gametes. In mammals, primary sex determination is commenced by the presence or absence of the Y chromosome, which controls the fate of the gonadal primordium. The somatic precursor of gonads, the genital ridge is formed at the mid-gestation stage and gives rise to one of two organs, a testis or an ovary. The fate of the genital ridge, which is governed by the differentiation of somatic cells into Sertoli cells in the testes or granulosa cells in the ovaries, further determines the sex of an individual and their germ cells. Mutation studies in human patients with disorders of sex development and mouse models have revealed factors that are involved in mammalian sex determination. In most of mammals, a single genetic trigger, the Y-linked gene Sry (sex determination region on Y chromosome), regulates testicular differentiation. Despite identification of Sry in 1990, precise mechanisms underlying the sex determination of bipotential genital ridges are still largely unknown. Here, we review the recent progress that has provided new insights into the mechanisms underlying genital ridge formation as well as the regulation of Sry expression and its functions in male sex determination of mice.
Collapse
|
24
|
Kato T, Miyata K, Sonobe M, Yamashita S, Tamano M, Miura K, Kanai Y, Miyamoto S, Sakuma T, Yamamoto T, Inui M, Kikusui T, Asahara H, Takada S. Production of Sry knockout mouse using TALEN via oocyte injection. Sci Rep 2013; 3:3136. [PMID: 24190364 PMCID: PMC3817445 DOI: 10.1038/srep03136] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 12/02/2022] Open
Abstract
Recently developed transcription activator-like effector nuclease (TALEN) technology has enabled the creation of knockout mice, even for genes on the Y chromosome. In this study, we generated a knockout mouse for Sry, a sex-determining gene on the Y chromosome, using microinjection of TALEN RNA into pronuclear stage oocytes. As expected, the knockout mouse had female external and internal genitalia, a female level of blood testosterone and a female sexually dimorphic nucleus in the brain. The knockout mouse exhibited an estrous cycle and performed copulatory behavior as females, although it was infertile or had reduced fertility. A histological analysis showed that the ovary of the knockout mouse displayed a reduced number of oocytes and luteinized unruptured follicles, implying that a reduced number of ovulated oocytes is a possible reason for infertility and/or reduced fertility in the KO mouse.
Collapse
Affiliation(s)
- Tomoko Kato
- 1] Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zanetti S, Puoti A. Sex Determination in the Caenorhabditis elegans Germline. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:41-69. [DOI: 10.1007/978-1-4614-4015-4_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Zhao L, Koopman P. SRY protein function in sex determination: thinking outside the box. Chromosome Res 2012; 20:153-62. [PMID: 22161124 DOI: 10.1007/s10577-011-9256-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Even though the mammalian sex-determining gene Sry has been intensively studied for the two decades since its discovery, the regions outside the conserved HMG box DNA-binding domain have received less attention due to a lack of sequence conservation and of obvious structural/functional motifs. Here, we summarize the available evidence for function beyond the HMG box, identify the known and postulated biochemical functions of the non-HMG-box domains in sex determination, and present possible explanations for the puzzling diversity of these non-HMG-box domains.
Collapse
Affiliation(s)
- Liang Zhao
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
27
|
Calleja-Agius J, Mallia P, Sapiano K, Schembri-Wismayer P. A review of the management of intersex. Neonatal Netw 2012; 31:97-103. [PMID: 22397794 DOI: 10.1891/0730-0832.31.2.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The birth of an individual with a blend of both male and female internal or external genitalia is known as an intersex condition. The incidence of genital anomalies is estimated to occur in 1 in 4,500 live births. Each intersex condition is determined by the external genital appearance, internal genital structures, and fertility potential. The main concept involved in the management of intersex is the establishment of an experienced multidisciplinary team. Management of intersex conditions is complex and involves a person's gender identity, gender role behavior, sexual orientation, sexual functioning, and psychological adjustment. This review will outline the management of intersex in the light of the latest research. We focus on diagnosis, surgical techniques, and the psychological aspects that are encountered in the management of intersex.
Collapse
|
28
|
Abstract
Gonadal cellular organization is very similar in all vertebrates, though different processes can trigger bipotential gonads to develop into either testes or ovaries. While mammals and birds, apart from some exceptions, show genetic sex determination (GSD), other animals, like turtles and crocodiles, express temperature-dependent sex determination. In some groups of animals, GSD can also be overridden by hormone or temperature influences, indicating how fragile this system can be. This review aims to explain the fundamental molecular mechanisms involved in mammalian GSD, mainly referring to mouse as a major model. Conceivably, other mammals might show a molecular mechanism different from the commonly investigated murine species.
Collapse
Affiliation(s)
- P Parma
- Department of Animal Science, Agricultural Faculty of Science, Milan University, Milan, Italy.
| | | |
Collapse
|
29
|
Chen Y, Ming Q, Zhu B. Exclusion of Sall 4 as the sex-determining gene in the Mandarin vole Microtus mandarinus mandarinus. Hereditas 2011; 148:93-7. [PMID: 21756254 DOI: 10.1111/j.1601-5223.2011.02207.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In previous studies, we have shown that the Sry HMG-box is absent in Microtus mandarinus mandarinus (M. m. mandarinus), suggesting that sex determination of M. m. mandarinus is independent of the Sry gene. We amplified a 312 bp fragment within exon 2 of the Sall4 gene in the mouse and M. m. mandarinus using polymerase chain reaction (PCR) and detected Sall4 using fluorescence in situ hybridization (FISH) technique. The probes for the Sall4 gene were labeled with digoxigenin using PCR and hybridized to chromosomes and interphase nuclei of the mouse and M. m. mandarinus. Our results suggested that Sall4 exists in the genome of male and female M. m. mandarinus, and the sequence within exon 2 of the gene is the same in the mouse and M. m. mandarinus. The results also showed that Sall4 is localized on chromosome 6 in M. m. mandarinus. As they are the sex chromosomes in M. m. mandarinus, the results excluded the Sall4 gene from being the testis-determining factor in this species. We propose that in M. m. mandarinus, sex determination is controlled by another yet unknown gene on the sex chromosomes.
Collapse
Affiliation(s)
- Yanqiu Chen
- School of Life Science, Xuhou Normal University, Jiangsu, PR China
| | | | | |
Collapse
|
30
|
Abstract
SRY, the mammalian Y-chromosomal testis-determining gene, induces male sex determination. Recent studies in mice reveal that the major role of SRY is to achieve sufficient expression of the related gene Sox9, in order to induce Sertoli cell differentiation, which in turn drives testis formation. Here, we discuss the cascade of events triggered by SRY and the mechanisms that reinforce the differentiation of the testes in males while actively inhibiting ovarian development.
Collapse
Affiliation(s)
- Kenichi Kashimada
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
31
|
Salonia A, Giraldi A, Chivers ML, Georgiadis JR, Levin R, Maravilla KR, McCarthy MM. Physiology of Women's Sexual Function: Basic Knowledge and New Findings. J Sex Med 2010; 7:2637-60. [DOI: 10.1111/j.1743-6109.2010.01810.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
McCarthy MM, Wright CL, Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009; 55:655-65. [PMID: 19682425 PMCID: PMC2742630 DOI: 10.1016/j.yhbeh.2009.02.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/06/2023]
Abstract
The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
33
|
Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem 2008; 284:3323-3333. [PMID: 19047045 DOI: 10.1074/jbc.m808048200] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chondrocyte fate determination and maintenance requires Sox9, an intrinsic transcription factor, but is inhibited by Wnt/beta-catenin signaling activated by extrinsic Wnt ligands. Here we explored the underlying molecular mechanism by which Sox9 antagonizes the Wnt/beta-catenin signaling in chondrocyte differentiation. We found that Sox9 employed two distinct mechanisms to inhibit Wnt/beta-catenin signaling: the Sox9 N terminus is necessary and sufficient to promote beta-catenin degradation, whereas the C terminus is required to inhibit beta-catenin transcriptional activity without affecting its stability. Sox9 binds to beta-catenin and components of the beta-catenin "destruction complex," glycogen synthase kinase 3 and beta-transducin repeat containing protein, to promote their nuclear localization. Independent of its DNA binding ability, nuclear localization of Sox9 is both necessary and sufficient to enhance beta-catenin phosphorylation and its subsequent degradation. Thus, one mechanism whereby Sox9 regulates chondrogenesis is to promote efficient beta-catenin phosphorylation in the nucleus. This mechanism may be broadly employed by other intrinsic cell fate determining transcription factors to promptly turn off extrinsic inhibitory Wnt signaling mediated by beta-catenin.
Collapse
Affiliation(s)
- Lilia Topol
- Genetics Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wen Chen
- Genetics Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Hai Song
- Genetics Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Timothy F Day
- Genetics Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yingzi Yang
- Genetics Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
34
|
Abstract
The sexual differentiation of reproductive physiology and behavior in the rodent brain is largely determined by estradiol aromatized from testicular androgens. The cellular mechanisms by which estradiol masculinizes the brain are beginning to emerge and revealing novel features of brain development that are highly region-specific. In the preoptic area, the major site controlling male sexual behavior, estradiol increases the level of the COX-2 enzyme and its product, prostaglandin E2 which promotes dendritic spine synaptogenesis. In the ventromedial nucleus of the hypothalamus, the major site controlling female reproductive behavior, estradiol promotes glutamate release from synaptic terminals, activating NMDA receptors and the MAP kinase pathway. In the arcuate nucleus, a major regulator of anterior pituitary function, estradiol increases GABA synthesis, altering the morphology of neighboring astrocytes and reducing formation of dendritic spines synapses. Glutamate, GABA and the importance of neuronal-astrocytic cross-talk are emerging as common aspects of masculinization. Advances are also being made in the mechanistic basis of female brain development, although the challenges are far greater.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Physiology and Program in Neuroscience, University of Maryland Baltimore, 655 W. Baltimore Street, Baltimore, MD 21230, USA
| | | |
Collapse
|
35
|
Sex determination of Microtus mandarinus mandarinus is independent of Sry gene. Mamm Genome 2008; 19:61-8. [PMID: 18188648 DOI: 10.1007/s00335-007-9076-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
PCR was performed with primers corresponding to the Sry HMG-box of the mouse and eight Microtus species. Primers for the SALL4 gene and the ZFY/ZFX gene were used as positive controls. None of these sets of primers can amplify any homologous segment of the Sry gene in the genomic DNA of Microtus mandarinus mandarinus, but both can amplify the Sry HMG-box in the male mouse, SALL4 bands, and ZFY/ZFX bands in both male and female M. m. mandarinus and mouse. Southern blotting was also used. We used primers for the mouse Sry HMG-box to amplify the Sry HMG-box of the mouse, Microtus arvalis (Microtus), and Pitymys duodecimcostatus (Microtus). The probes were labeled with digoxigenin using PCR after being sequenced. Southern blots were used to detect the genomic DNA of M. m. mandarinus using alkaline phosphatase detection. The results showed that there was a 3.95-kb-blotting band in positive controls: mouse, Microtus arvalis, and Pitymys duodecimcostatus. However, no homologous sequence of the Sry HMG-box was detected in the genomic DNA of M. m. mandarinus. Therefore, we speculate that the Sry HMG-box of M. m. mandarinus is absent or had a big change; sex determination of M. m. mandarinus is independent of Sry. The sex determination mechanism without Sry of M. m. mandarinus is also discussed.
Collapse
|
36
|
Cummings AM, Stoker T, Kavlock RJ. Gender-based differences in endocrine and reproductive toxicity. ENVIRONMENTAL RESEARCH 2007; 104:96-107. [PMID: 17157289 DOI: 10.1016/j.envres.2006.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/17/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Basic differences in male versus female reproductive physiology lead to differentials in their respective susceptibilities to chemical insult as evidenced by a variety of observations. As individuals undergo maturation from prenatal sex differentiation through pubertal development, these susceptibilities become evident in each gender. Gender bias occurs in human populations for birth defects and for the acceleration of the onset of puberty. Data on gender bias in fetal origins of adult disease are more complex. Useful for understanding reproductive and developmental effects in animals are a range of standard methodological procedures including the multigeneration testing protocol and the National Toxicology Program (NTP) Reproductive Assessment by Continuous Breeding (RACB). Examples of gender-based differences seen in reproductive toxicology studies on animals include teratogenic effects, reproductive effects in adult males and females, and effects on pubertal development. It is clear that gender biases exist in the reproductive and developmental toxicity, and the biological bases for these differences need to be explored.
Collapse
Affiliation(s)
- Audrey M Cummings
- Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, USA.
| | | | | |
Collapse
|
37
|
Pannetier M, Renault L, Jolivet G, Cotinot C, Pailhoux E. Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter. Genomics 2005; 85:715-26. [PMID: 15885498 DOI: 10.1016/j.ygeno.2005.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 02/04/2005] [Accepted: 02/17/2005] [Indexed: 11/25/2022]
Abstract
Studies on XX sex reversal in polled goats (PIS mutation: polled intersex syndrome) have led to the discovery of a female-specific locus crucial for ovarian differentiation. This genomic region is composed of at least two genes, FOXL2 and PISRT1, sharing a common transcriptional regulatory region, PIS. In this paper, we describe a third gene, PFOXic (promoter FOXL2 inverse complementary), located near FOXL2 in the opposite orientation. This gene composed of five exons encodes a 1723-bp cDNA, enclosing two repetitive elements in its 3' end. PFOXic mRNA encodes a putative protein of 163 amino acids with no homologies in any of the databases tested. The transcriptional expression of PFOXic is driven by a bidirectional promoter also enhancing FOXL2 transcription. In goats, PFOXic is expressed in developing ovaries, from 36 days postcoitum until adulthood. Ovarian-specific expression of PFOXic is regulated by the PIS region. PFOXic is found conserved only in Bovidae. But, a human gene located in the opposite orientation relative to FOXL2 can be considered a human PFOXic. Finally, we discuss evidence arguing for regulation of the level of FOXL2 transcription via the bidirectional promoter and the level of transcription of PFOXic.
Collapse
Affiliation(s)
- Maëlle Pannetier
- Biologie du Développement et de la Reproduction, Institut National de la Recherche Agronomique, Bât. J. Poly, 78350 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
38
|
Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, Proya E, Anagnostopoulos A, Fassas A. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 2005; 33:108-19. [PMID: 15661404 DOI: 10.1016/j.exphem.2004.09.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 12/27/2022]
Abstract
OBJECTIVE On the basis of the recently recognized potential of bone marrow (BM) cells to give rise to hepatocytes, we investigated the possibility that granulocyte colony-stimulating factor (G-CSF)-mobilized BM cells could home to the injured liver and promote tissue repair. We also examined the origin of cells (endogenous or BM) reconstituting liver after damage. METHODS Acute and chronic liver injury models were generated by injecting CCl4 in C57Bl6 mice and G-CSF was administered in hematopoietic stem cell (HSC) mobilization doses. After sex-mismatched BM transplantation into lethally irradiated recipients and treatment with CCl4 +/- G-CSF, sry (sex-determining region for Y chromosome) protein was detected by immunohistochemistry in liver sections. Double immunohistochemistry for sry and ki-67 protein was used to define the origin of proliferating cells reconstituting liver after injury. RESULTS In both acute and chronic liver injury model, G-CSF administration ameliorated the histological damage and accelerated the regeneration process. This was accompanied by a strong survival benefit in G-CSF-treated group vs CCl4 group. Quantitative analysis showed higher percentage of BM-origin hepatocytes in the CCl4+G-CSF group compared with the CCl4 group, although the liver engraftment rate still remained rather low. Double staining for ki-67 and sry demonstrated that the recovery acceleration after chemical injury and G-CSF treatment was mainly mediated by increased proliferation of host hepatocytes (ki-67(+)/sry(-)) with less support from BM-origin cells (ki-67(+)/sry(+)). CONCLUSION G-CSF treatment significantly improved survival and liver histology in chemically injured mice, predominantly by promoting endogenous repair mechanisms. Therefore, mobilization with G-CSF might offer a novel therapeutic approach for the treatment of acute and chronic liver diseases in humans.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department/BMT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heeg-Truesdell E, LaBonne C. A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals. ACTA ACUST UNITED AC 2005; 72:124-39. [PMID: 15269887 DOI: 10.1002/bdrc.20011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neural crest, a cell type found only in vertebrate embryos, gives rise to the structures of the skull and face and most of the peripheral nervous system, as well as other cell types characteristic of vertebrates. These cells are of great clinical significance and a wide variety of congenital defects are due to aberrant neural crest development. Increasing numbers of studies are contributing to our understanding of how this group of cells form and differentiate during normal development. Wnt, FGF, BMP, and Notch-mediated signals all have essential roles in this process, and several of these signals appear to play multiple temporally distinct roles. Changes in the response of neural crest cells to the same signal over time may be mediated, in part, by an ever-changing cocktail of transcription factors expressed within these cells. Neural crest development is thus a complex multistep process, and elucidating the molecular mechanisms that mediate distinct aspects of this process will require that we determine the role of each of these factors alone and in combination. Here, we review some recent advances in our understanding of the signals and downstream transcription factors involved in neural crest cell formation.
Collapse
Affiliation(s)
- Elizabeth Heeg-Truesdell
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
40
|
Abstract
Prior to any investigation of toxicant effects on sexual development it is necessary to have a complete understanding of the relevant physiology of reproductive development. Beginning at conception, development of males and females diverge to form the respective reproductive systems. From the prenatal period to the interval following puberty, radical changes take place in the hypothalamo-pituitary-gonadal axis of males and females. The complexity of each of these systems and their development is mirrored in the many possibilities for the means by which chemicals may produce adverse effects. For example, a chemical that affects hormone synthesis may, if administered at the proper time, affect hypothalamic development. As a consequence, pubertal development may not occur normally. In this chapter, we have outlined the basics of reproductive development and provided examples of adverse effects by endocrine disrupting chemicals (EDCs) on such development.
Collapse
Affiliation(s)
- Audrey M Cummings
- Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
41
|
Nishida S, Pastene LA, Goto M, Koike H. SRY gene structure and phylogeny in the cetacean species. MAMMAL STUDY 2003. [DOI: 10.3106/mammalstudy.28.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Carrer HF, Cambiasso MJ. Sexual differentiation of the brain: genes, estrogen, and neurotrophic factors. Cell Mol Neurobiol 2002; 22:479-500. [PMID: 12585676 DOI: 10.1023/a:1021825317546] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on evidence obtained during the past 50 years, the current hypothesis to explain the sexual dimorphism of structure and function in the brain of vertebrates maintains that these differences are produced by the epigenetic action of gonadal hormones. However, evidence has progressively accumulated suggesting that genetic mechanisms controlling sexual-specific neuronal characteristics precede, or occur in parallel with, hormonal effects. 1. In cultures of hypothalamic neurons taken from gestation day 16 (GD16) embryos, treatment of sexually segregated cultures with estradiol (E2) induces axon growth in neurons from male neurons, but not from female neurons. In these cultures treatment with E2 increased the levels of tyrosine kinase type B (TrkB) and insulin-like growth factor I (IGF-I) receptors in male but not in female neurons. This and other sex differences cannot be explained by differences in hormonal environment, because the donor embryos were obtained when gonadal secretion of steroids is just beginning, before the perinatal surge of testosterone that determines development of the male brain beginning at GD17/18. 2. The response to estrogen is contingent upon coculture with heterotopic glia (mostly astrocytes) from a target region (amygdala) harvested from same-sex fetuses at GD16, whereas in the presence of homotopic glia or in cultures without glia, E2 had no effect. It was concluded that the axogenic effect of E2 depends on interaction between neurons and glia from a target region and that neurons from fetal male donors appear to mature earlier than neurons from females, a differentiated response that takes place prior to divergent exposure to gonadal secretions. 3. The effects of target and nontarget glia-conditioned media (CM) on the E2-induced growth of neuronal processes of hypothalamic neurons obtained from sexually segregated fetal donors were also studied. Estrogen added to media conditioned by target glia modified the number of primary neurites and the growth of axons of hypothalamic neurons of males but not of females. 4. Neither the Type III steroidal receptor blocker tamoxifen nor Type I antiestrogen ICI 182,780 prevented the axogenic effects of the hormone. Estradiol made membrane-impermeable by conjugation to a protein of high molecular weight (E2-BSA) preserved its axogenic capacity, suggesting the possibility of a membrane effect responsible for the action of E2. 5. Western blot analysis of the tyrosine kinase type A (TrkA), type B (TrkB), type C (TrkC), and insulin-like growth factor (IGF-I R) receptors in extracts from homogenates of cultured hypothalamic neurons showed that in cultures of male-derived neurons grown with E2 and CM from target glia, the amounts of TrkB and IGF-I R increased notably. Densitometric quantification showed that these cultures had more TrkB than cultures with CM alone or E2 alone. On the contrary, in cultures of female-derived neurons, the presence of CM alone induced maximal levels of TrkB, which were not further increased by E2; female-derived neurons in all conditions did not contain IGF-I R. Levels of TrkC were not modified by any experimental condition in male- or female-derived cultures and Trk A was not found in the homogenates. These results are compared with similar data from other laboratories and integrated in a model for the confluent interaction of estrogen and neurotrophic factors released by glia that may contribute to the sexual differentiation of the brain.
Collapse
Affiliation(s)
- Hugo F Carrer
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Casilla de Correo 389, Córdoba 5000, Argentina.
| | | |
Collapse
|
43
|
Austin PF, Siow Y, Fallat ME, Cain MP, Rink RC, Casale AJ. The Relationship Between Müllerian Inhibiting Substance and Androgens in Boys with Hypospadias. J Urol 2002. [DOI: 10.1016/s0022-5347(05)64413-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Paul F. Austin
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Siow
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary E. Fallat
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark P. Cain
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard C. Rink
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anthony J. Casale
- From the Division of Urology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri, Division of Pediatric Surgery, University of Louisville School of Medicine, Louisville, Kentucky, and Department of Urology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
44
|
The Relationship Between M??llerian Inhibiting Substance and Androgens in Boys with Hypospadias. J Urol 2002. [DOI: 10.1097/00005392-200210020-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
McCarthy MM, Amateau SK, Mong JA. Steroid modulation of astrocytes in the neonatal brain: implications for adult reproductive function. Biol Reprod 2002; 67:691-8. [PMID: 12193373 DOI: 10.1095/biolreprod.102.003251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
There is a growing appreciation for the importance of astrocytes, a type of nonneuronal glial cell, to overall brain functioning. The ability of astrocytes to respond to gonadal steroid hormones with changes in morphology has been well documented in the adult brain. It is also apparent that astrocytes of the developing brain are permanently differentiated by the neonatal hormonal milieu, in particular by estradiol, resulting in sexually dimorphic cell morphology, synaptic patterning, and density in males and females. The mechanisms of hormonally mediated astrocyte differentiation are likely to be region specific. In the arcuate nucleus of the hypothalamus, neuron-to-astrocyte signaling appears to play a critical role in estradiol-induced astrocyte differentiation during the first few days of life. Gamma aminobutyric acid (GABA) is an amino acid neurotransmitter that is synthesized and released exclusively by neurons. The levels of GABA are increased in the arcuate nucleus of neonatal males versus females. Preventing the increase in males or mimicking GABA action in females modulates astrocytes accordingly. Speculation about and evidence in support of the functional significance of this dimorphism to adult reproductive functioning is the topic of this review.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201-1559, USA.
| | | | | |
Collapse
|
46
|
Baud S, Margeat E, Lumbroso S, Paris F, Sultan C, Royer C, Poujol N. Equilibrium binding assays reveal the elevated stoichiometry and salt dependence of the interaction between full-length human sex-determining region on the Y chromosome (SRY) and DNA. J Biol Chem 2002; 277:18404-10. [PMID: 11877434 DOI: 10.1074/jbc.m112366200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an effort to better define the molecular mechanism of the functional specificity of human sex-determining region on the Y chromosome (SRY), we have carried out equilibrium binding assays to study the interaction of the full-length bacterial-expressed protein with a DNA response element derived from the CD3epsilon gene enhancer. These assays are based on the observation of the fluorescence anisotropy of a fluorescein moiety covalently bound to the target oligonucleotide. The low anisotropy value due to the fast tumbling of the free oligonucleotide in solution increases substantially upon binding the protein to the labeled target DNA. Our results indicate that the full-length human wild-type SRY (SRY(WT)) forms a complex of high stoichiometry with its target DNA. Moreover, we have demonstrated a strong salt dependence of both the affinity and specificity of the interaction. We have also addressed the DNA bending properties of full-length human SRY(WT) in solution by fluorescence resonance energy transfer and revealed that maximal bending is achieved with a protein to DNA ratio significantly higher than the classical 1:1. Oligomerization thus appears, at least in vitro, to be tightly coupled to SRY-DNA interactions. Alteration of protein-protein interactions observed for the mutant protein SRY(Y129N), identified in a patient presenting with 46,XY sex reversal, suggests that oligomerization may play an important role in vivo as well.
Collapse
Affiliation(s)
- Stephanie Baud
- Centre de Biochimie Structurale, UMR INSERM 554, CNRS 5048, Université Montpellier I, 29 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Vaiman D, Pailhoux E. Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends Genet 2000; 16:488-94. [PMID: 11074290 DOI: 10.1016/s0168-9525(00)02126-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The sex-determination cascade constitutes a model of the exquisite mechanisms of gene regulation that lead to the development of mammalian embryos. The discovery of the sex-determining region of the Y chromosome (SRY) in the early 1990s was the first crucial step towards a general understanding of sex determination. Since then, several genes that encode proteins with a role in this cascade, such as WT1, SF-1, SOX9, DAX-1 and WNT4, have been identified. Many of the interactions between these proteins have still to be elucidated, while, no-doubt, others are still to be identified. The study of mammalian intersexes forms a promising way towards the identification of the still-missing genes and a comprehensive view of mammalian sex determination. Intersexuality in the goat, studied for over a century, will, presumably, bring to light new genes involved in the female sex-determination pathway.
Collapse
Affiliation(s)
- D Vaiman
- Laboratoire de Génétique Biochimique et de Cytogénétique, Département de Génétique Animale, INRA Centre de Recherches de Jouy-en-Josas, 78352, Jouy-en-Josas, France.
| | | |
Collapse
|
48
|
Cambiasso MJ, Colombo JA, Carrer HF. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains. Eur J Neurosci 2000; 12:2291-8. [PMID: 10947808 DOI: 10.1046/j.1460-9568.2000.00120.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether soluble products from different CNS regions differ in their ability to support oestrogen-stimulated neurite growth, hypothalamic neurons from sexually segregated embryos were cultured with astroglia-conditioned medium (CM) derived from cortex, striatum and mesencephalon, with or without 17-beta-oestradiol 100 nM added to the medium. After 48 h in vitro, neurite outgrowth was quantified by morphometric analysis. Astroglia-CM from mesencephalon (a target for the axons of hypothalamic neurons) induced the greatest axogenic response in males and in this case only a neuritogenic effect could be demonstrated for oestradiol. On the other hand, astroglia-CM from regions that do not receive projections from ventromedial hypothalamus inhibited axon growth. A sexual difference in the response of hypothalamic neurons to astroglia-CM and oestradiol was found; growth of neurons from female foetuses was increased by astroglia-CM from mesencephalon, but no neuritogenic effect could be demonstrated for oestradiol in these cultures. Blot immunobinding demonstrated the presence of receptors for neurotrophic factors in cultures of hypothalamic neurons; Western blot analysis of these cultures demonstrated that oestradiol increased the concentration of trkB and IGF-I Rbeta, whereas trkA was not detected and the concentration of trkC was not modified. These results support the hypothesis that target regions produce some factor(s) that stimulate the growth of axons from projecting neurons and further indicate that in the case of males this effect is modulated by oestradiol, perhaps mediated through the upregulation of trkB and IGF-I receptors.
Collapse
Affiliation(s)
- M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | |
Collapse
|
49
|
Affiliation(s)
- F J Cameron
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| | | |
Collapse
|
50
|
Smith CA, Sinclair AH. The cell biology and molecular genetics of testis determination. Results Probl Cell Differ 2000; 28:23-52. [PMID: 10626293 DOI: 10.1007/978-3-540-48461-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- C A Smith
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| | | |
Collapse
|