1
|
Severi AA, Akbari B. CRISPR-Cas9 delivery strategies and applications: Review and update. Genesis 2024; 62:e23598. [PMID: 38727638 DOI: 10.1002/dvg.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/28/2024]
Abstract
Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ali Alizadeh Severi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
2
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
3
|
Pepin B, Rodriguez-Villamil P, Sammel L, Yin J, Dacken B. Monitoring swine virus transmission in embryos derived from commercial abattoir oocytes. Front Vet Sci 2024; 11:1336005. [PMID: 38371600 PMCID: PMC10869560 DOI: 10.3389/fvets.2024.1336005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Pigs are pivotal in agriculture and biomedical research and hold promise for xenotransplantation. Specific-pathogen-free (SPF) herds are essential for commercial swine production and xenotransplantation research facilities. Commercial herds aim to safeguard animal health, welfare, and productivity, and research facilities require SPF status to protect immunocompromised patients. Somatic cell nuclear transfer (SCNT) embryos are the norm for producing cloned and genetically edited animals. Oocytes for embryo reconstruction are most conveniently sourced from commercial abattoirs with unclear disease statuses. However, research on viral clearance from donor oocytes during embryo reconstruction remains limited. SCNT has previously been shown to reduce the transmission of Porcine reproductive and respiratory syndrome virus, Bovine viral diarrhea virus, Porcine Circovirus type 2, and Porcine parvovirus. Still, it is lacking for other pathogens, including endogenous viruses. This project contains two preliminary studies investigating the polymerase chain reaction (PCR) assay detection of common swine viruses through the phases of producing parthenogenic and SCNT embryos. Exogenous pathogens detected in oocyte donor tissue or the oocyte maturation media were not detected in the produced embryos. Porcine endogenous retrovirus type C (PERVC) was not removed by parthenogenic embryo activation and was detected in 1 of the 2 tested SCNT embryos reconstructed using a PERVC-negative cell line. SCNT and parthenogenic embryo construction similarly reduced exogenous virus detection. SCNT embryo construction helped reduce endogenous virus detection. This project demonstrates the importance of screening embryos for endogenous viruses and shows the usefulness of parthenogenic embryos in future exogenous virus clearance studies.
Collapse
Affiliation(s)
- Brent Pepin
- Cytotheryx, Inc., Rochester, MN, United States
| | | | - Lauren Sammel
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | - Jie Yin
- Sustainable Swine Resources LLC, Watertown, WI, United States
| | | |
Collapse
|
4
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
5
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Ganchiku Y, Riella LV. Pig-to-human kidney transplantation using brain-dead donors as recipients: One giant leap, or only one small step for transplantkind? Xenotransplantation 2022; 29:e12748. [PMID: 35616243 DOI: 10.1111/xen.12748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Pig kidney xenotransplantation is increasingly regarded as a realistic solution to the current shortage of human organ donors for patients with end-stage organ failure. Recently, the news of three pig-to-human transplantation cases has awakened public interest. Notably, the case by the Alabama team reported detailed and important findings for the xenotransplantation field. Using a genetically modified pig, two porcine kidneys were transplanted into a brain-dead recipient. They applied several approaches established in the preclinical NHP study, including gene-edited pig kidney graft and preoperative laboratory inspection such as crossmatching and infection screening. The pig-to-human kidney xenotransplantation had no unexpected events during surgery or evidence of hyperacute rejection. Unfortunately, the grafts did not work appropriately, and the study had to be terminated due to the decompensation of the recipient. While this study demonstrated the outstanding achievement in this research area, it also revealed remaining gaps to move xenotransplantation to the clinic. While brain-dead human recipients could reinforce the compatibility achievements of gene-edited pigs in NHP, their pro-inflammatory and pro-coagulant environment, in combination with short-duration of experiments will limit the assessment of kidney function, infection and rejection risk post-transplant, in particular antibody-mediated rejection. The use of successful immunosuppressive protocols of non-human primates xenotransplant experiments including anti-CD154 antibody will be critical to maximize the success in the first in-human trials.
Collapse
Affiliation(s)
- Yoshikazu Ganchiku
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan L. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci 2022; 29:1928-1935. [PMID: 35531207 PMCID: PMC9072931 DOI: 10.1016/j.sjbs.2021.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650 Australia
| | - Sun Bing
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-Kharj 11940, Saudi Arabia
| | - Ayman H. Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt
| | - Gong Cheng
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Linsen Zan
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| |
Collapse
|
8
|
Lucas CG, Redel BK, Chen PR, Spate LD, Prather RS, Wells KD. Effects of RAD51-stimulatory compound 1 (RS-1) and its vehicle, DMSO, on pig embryo culture. Reprod Toxicol 2021; 105:44-52. [PMID: 34407461 DOI: 10.1016/j.reprotox.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Pigs have become an important model for agricultural and biomedical purposes. The advent of genomic engineering tools, such as the CRISPR/Cas9 system, has facilitated the production of livestock models with desired modifications. However, precise site-specific modifications in pigs through the homology-directed repair (HDR) pathway remains a challenge. In mammalian embryos, the use of small molecules to inhibit non-homologous end joining (NHEJ) or to improve HDR have been tested, but little is known about their toxicity. The compound RS-1 stimulates the activity of the RAD51 protein, which plays a key role in the HDR mechanism, demonstrating enhancement of HDR events in rabbit and bovine zygotes. Thus, in this study, we evaluated the dosage and temporal effects of RS-1 on porcine embryo development and viability. Additionally, we assessed the effects of its vehicle, DMSO, during embryo in vitro culture. Transient exposure to 7.5 μM of RS-1 did not adversely affect early embryo development and was compatible with subsequent development to term. Additionally, low concentrations of its vehicle, DMSO, did not show any toxicity to in vitro produced embryos. The transient use of RS-1 at 7.5 μM during in vitro culture seems to be the best protocol of choice to reduce the potentially toxic effects of RS-1 while attempting to improve HDR in the pig. Direct injection of the CRISPR/Cas9 system, combined with strategies to increase the frequency of targeted modifications via HDR, have become an important tool to simplify and accelerate the production of genetically modified livestock models.
Collapse
Affiliation(s)
- C G Lucas
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA.
| | - B K Redel
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; USDA-ARS, Plant Genetics Unit, Columbia, MO, USA
| | - P R Chen
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - L D Spate
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - R S Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - K D Wells
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Jabbar A, Zulfiqar F, Mahnoor M, Mushtaq N, Zaman MH, Din ASU, Khan MA, Ahmad HI. Advances and Perspectives in the Application of CRISPR-Cas9 in Livestock. Mol Biotechnol 2021; 63:757-767. [PMID: 34041717 DOI: 10.1007/s12033-021-00347-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
The sophistication and revolution in genome editing and manipulation have revolutionized livestock by harvesting essential biotechnological products such as drugs, proteins, and serum. It laid down areas for the large production of transgenic food, resistance against certain diseases such as mastitis, and large production of milk and leaner meat. Nowadays, the increasing demand for animal food and protein is fulfilled using genome-editing technologies. The recent genome-editing techniques have overcome the earlier methods of animal reproduction, such as cloning and artificial embryo transfer. The genome of animals now is modified using the recent alteration techniques such as ZFNs, TALENS technique, and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR-Cas9) system. The literature was illustrated for identifying the researchers to address the advances and perspectives in the application of Cas9 in Livestock. Cas9 is considered better than the previously identified techniques in livestock because of the production of resilience against diseases, improvement of reproductive traits, and animal production to act as a model biomedical research.
Collapse
Affiliation(s)
- Abdul Jabbar
- Department of Clinical Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Farheen Zulfiqar
- Department of Food Science and Human Nutrition, Faculty of Bio Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Mahnoor Mahnoor
- Department of Food Science and Human Nutrition, Faculty of Bio Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Nadia Mushtaq
- Department of Biological Sciences, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Hamza Zaman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Punjab, Pakistan
| | - Anum Salah Ud Din
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Punjab, Pakistan
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Science, The Islamia University, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Punjab, Pakistan.
| |
Collapse
|
10
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
11
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
14
|
Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, Chow W, Eory L, Finlayson HA, Flicek P, Girón CG, Griffin DK, Hall R, Hannum G, Hourlier T, Howe K, Hume DA, Izuogu O, Kim K, Koren S, Liu H, Manchanda N, Martin FJ, Nonneman DJ, O'Connor RE, Phillippy AM, Rohrer GA, Rosen BD, Rund LA, Sargent CA, Schook LB, Schroeder SG, Schwartz AS, Skinner BM, Talbot R, Tseng E, Tuggle CK, Watson M, Smith TPL, Archibald AL. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience 2020; 9:5858065. [PMID: 32543654 PMCID: PMC7448572 DOI: 10.1093/gigascience/giaa051] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
Background The domestic pig (Sus scrofa) is important both as a food source and
as a biomedical model given its similarity in size, anatomy, physiology, metabolism,
pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a
purebred Duroc female pig established using older clone-based sequencing methods was
incomplete, and unresolved redundancies, short-range order and orientation errors, and
associated misassembled genes limited its utility. Results We present 2 annotated highly contiguous chromosome-level genome assemblies created
with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the
same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0).
Both assemblies are of substantially higher (>90-fold) continuity and accuracy than
Sscrofa10.2. Conclusions These highly contiguous assemblies plus annotation of a further 11 short-read
assemblies provide an unprecedented view of the genetic make-up of this important
agricultural and biomedical model species. We propose that the improved Duroc assembly
(Sscrofa11.1) become the reference genome for genomic research in pigs.
Collapse
Affiliation(s)
- Amanda Warr
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Nabeel Affara
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Hamid Beiki
- Department of Animal Science, 2255 Kildee Hall, Iowa State University, Ames, IA 50011-3150, USA
| | - Derek M Bickhart
- Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Heather A Finlayson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Carlos G Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NJ, UK
| | - Richard Hall
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | | | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.,Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane QLD 4104, Australia
| | - Osagie Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Kristi Kim
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Haibou Liu
- Department of Animal Science, 2255 Kildee Hall, Iowa State University, Ames, IA 50011-3150, USA
| | - Nancy Manchanda
- Bioinformatics and Computational Biology Program, Iowa State University, 2014 Molecular Biology Building, Ames, IA 50011, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Dan J Nonneman
- USDA-ARS U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NJ, UK
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gary A Rohrer
- USDA-ARS U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - Carole A Sargent
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA
| | | | - Ben M Skinner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Richard Talbot
- Edinburgh Genomics, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Elizabeth Tseng
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Christopher K Tuggle
- Department of Animal Science, 2255 Kildee Hall, Iowa State University, Ames, IA 50011-3150, USA.,Bioinformatics and Computational Biology Program, Iowa State University, 2014 Molecular Biology Building, Ames, IA 50011, USA
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Timothy P L Smith
- USDA-ARS U.S. Meat Animal Research Center, 844 Road 313, Clay Center, NE 68933, USA
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
15
|
Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet Sci 2020; 89:103025. [PMID: 32563448 DOI: 10.1016/j.jevs.2020.103025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The breakthrough and rapid advance of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has enabled the efficient generation of gene-edited animals by one-step embryo manipulation. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 delivery to the livestock embryos has been typically achieved by intracytoplasmic microinjection; however, recent studies show that electroporation may be a reliable, efficient, and practical method for CRISPR/Cas9 delivery. The source of embryos used to generate gene-edited animals varies from in vivo to in vitro produced, depending mostly on the species of interest. In addition, different Cas9 and gRNA reagents can be used for embryo editing, ranging from Cas9-coding plasmid or messenger RNA to Cas9 recombinant protein, which can be combined with in vitro transcribed or synthetic guide RNAs. Mosaicism is reported as one of the main problems with generation of animals by embryo editing. On the other hand, off-target mutations are rarely found in livestock derived from one-step editing. In this review, we discussed these and other aspects of generating gene-edited animals by single-step embryo manipulation.
Collapse
|
16
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Suva LJ, Westhusin ME, Long CR, Gaddy D. Engineering bone phenotypes in domestic animals: Unique resources for enhancing musculoskeletal research. Bone 2020; 130:115119. [PMID: 31712131 PMCID: PMC8805042 DOI: 10.1016/j.bone.2019.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States.
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
18
|
Abstract
This chapter highlights the importance of reproductive technologies that are applied to porcine breeds. Nowadays the porcine industry, part of a high technological and specialized sector, offers high-quality protein food. The development of the swine industry is founded in the development of breeding/genetics, nutrition, animal husbandry, and animal health. The implementation of reproductive technologies in swine has conducted to levels of productivity never reached before. In addition, the pig is becoming an important species for biomedicine. The generation of pig models for human disease, xenotransplantation, or production of therapeutic proteins for human medicine has in fact generated a growing field of interest.
Collapse
|
19
|
Abstract
Genetic engineering is essential to realize the full potentials of pigs both as livestock and as animal models of human disease. With the development of new genetic engineering technologies, such as the clustered regularly interspaced short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9) system, the porcine genome can be engineered with high efficiency. In this chapter, we describe a protocol in employing the CRISPR/Cas9 system to genetically engineer the porcine genome in fibroblast cells, the procedures to establish single-cell-derived porcine fibroblast cell colonies carrying the desired genetic modifications, and the handmade cloning (HMC) technique to generate cloned embryos ready for embryo transfer.
Collapse
Affiliation(s)
- Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jinxin Miao
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| |
Collapse
|
20
|
Adams AB, Kim SC, Martens GR, Ladowski JM, Estrada JL, Reyes LM, Breeden C, Stephenson A, Eckhoff DE, Tector M, Tector AJ. Xenoantigen Deletion and Chemical Immunosuppression Can Prolong Renal Xenograft Survival. Ann Surg 2018; 268:564-573. [PMID: 30048323 PMCID: PMC6382078 DOI: 10.1097/sla.0000000000002977] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Xenotransplantation using pig organs could end the donor organ shortage for transplantation, but humans have xenoreactive antibodies that cause early graft rejection. Genome editing can eliminate xenoantigens in donor pigs to minimize the impact of these xenoantibodies. Here we determine whether an improved cross-match and chemical immunosuppression could result in prolonged kidney xenograft survival in a pig-to-rhesus preclinical model. METHODS Double xenoantigen (Gal and Sda) knockout (DKO) pigs were created using CRISPR/Cas. Serum from rhesus monkeys (n = 43) was cross-matched with cells from the DKO pigs. Kidneys from the DKO pigs were transplanted into rhesus monkeys (n = 6) that had the least reactive cross-matches. The rhesus recipients were immunosuppressed with anti-CD4 and anti-CD8 T-cell depletion, anti-CD154, mycophenolic acid, and steroids. RESULTS Rhesus antibody binding to DKO cells is reduced, but all still have positive CDC and flow cross-match. Three grafts were rejected early at 5, 6, and 6 days. Longer survival was achieved in recipients with survival to 35, 100, and 435 days. Each of the 3 early graft losses was secondary to IgM antibody-mediated rejection. The 435-day graft loss occurred secondary to IgG antibody-mediated rejection. CONCLUSIONS Reducing xenoantigens in donor pigs and chemical immunosuppression can be used to achieve prolonged renal xenograft survival in a preclinical model, suggesting that if a negative cross-match can be obtained for humans then prolonged survival could be achieved.
Collapse
Affiliation(s)
| | | | | | | | | | - Luz M Reyes
- University of Alabama Birmingham, Birmingham, AL
| | | | | | | | - Matt Tector
- University of Alabama Birmingham, Birmingham, AL
| | | |
Collapse
|
21
|
Donovan KM, Leidinger MR, McQuillen LP, Goeken JA, Hogan CM, Harwani SC, Flaherty HA, Meyerholz DK. Allograft Inflammatory Factor 1 as an Immunohistochemical Marker for Macrophages in Multiple Tissues and Laboratory Animal Species. Comp Med 2018; 68:341-348. [PMID: 30227902 DOI: 10.30802/aalas-cm-18-000017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allograft inflammatory factor 1 (AIF1) is a commonly used marker for microglia in the brains of humans and some animal models but has had limited applications elsewhere. We sought to determine whether AIF1 can be used as a macrophage marker across common laboratory animal species and tissues. We studied tissues (that is, spleen, liver, and lung) with defined macrophage populations by using an AIF1 immunostaining technique previously validated in human tissue. Tissues were collected from various mouse strains (n = 20), rat strains (n = 15), pigs (n = 4), ferrets (n = 4), and humans (n = 4, lung only). All samples of liver had scattered immunostaining in interstitial cells, consistent with resident tissue macrophages (Kupffer cells). Spleen samples had cellular immunostaining of macrophages in both the red and white pulp compartments, but the red pulp had more immunostained cellular aggregates and, in some species, increased immunostaining intensity compared with white pulp. In lung, alveolar macrophages had weak to moderate staining, whereas interstitial and perivascular macrophages demonstrated moderate to robust staining. Incidental lesions and tissue changes were detected in some sections, including a tumor, inducible bronchus-associated lymphoid tissue, and inflammatory lesions that demonstrated AIF1 immunostaining of macrophages. Finally, we compared AIF1 immunostaining of alveolar macrophages between a hypertensive rat model (SHR strain) and a normotensive model (WKY strain). SHR lungs had altered intensity and distribution of immunostaining in activated macrophages compared with macrophages of WKY lungs. Overall, AIF1 immunostaining demonstrated reproducible macrophage staining across multiple species and tissue types. Given the increasing breadth of model species used to study human disease, the use of cross-species markers and techniques can reduce some of the inherent variability within translational research.
Collapse
Affiliation(s)
| | | | | | - J Adam Goeken
- Departments of Pathology, University of Iowa, Iowa City, Iowa, USA
| | | | - Sailesh C Harwani
- Departments of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Heather A Flaherty
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
22
|
Yang H, Wu Z. Genome Editing of Pigs for Agriculture and Biomedicine. Front Genet 2018; 9:360. [PMID: 30233645 PMCID: PMC6131568 DOI: 10.3389/fgene.2018.00360] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
Pigs serve as an important agricultural resource and animal model in biomedical studies. Efficient and precise modification of pig genome by using recently developed gene editing tools has significantly broadened the application of pig models in various research areas. The three types of site-specific nucleases, namely, zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein, are the main gene editing tools that can efficiently introduce predetermined modifications, including knockouts and knockins, into the pig genome. These modifications can confer desired phenotypes to pigs to improve production traits, such as optimal meat production, enhanced feed digestibility, and disease resistance. Besides, given their genetic, anatomic, and physiologic similarities to humans, pigs can also be modified to model human diseases or to serve as an organ source for xenotransplantation to save human lives. To date, many genetically modified pig models with agricultural or biomedical values have been established by using gene editing tools. These pig models are expected to accelerate research progress in related fields and benefit humans.
Collapse
Affiliation(s)
- Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Petersen B. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 2018; 52 Suppl 3:4-13. [PMID: 28815851 DOI: 10.1111/rda.13012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species.
Collapse
Affiliation(s)
- Bjoern Petersen
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt am Rbge, Germany
| |
Collapse
|
24
|
Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 2018; 9:5. [PMID: 29423214 PMCID: PMC5787920 DOI: 10.1186/s40104-017-0228-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
Pigs are an important resource in agriculture and serve as a model for human diseases. Due to their physiological and anatomical similarities with humans, pigs can recapitulate symptoms of human diseases, making them a useful model in biomedicine. However, in the past pig models have not been widely used partially because of the difficulty in genetic modification. The lack of true embryonic stem cells in pigs forced researchers to utilize genetic modification in somatic cells and somatic cell nuclear transfer (SCNT) to generate genetically engineered (GE) pigs carrying site-specific modifications. Although possible, this approach is extremely inefficient and GE pigs born through this method often presented developmental defects associated with the cloning process. Advancement in the gene-editing systems such as Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and the Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system have dramatically increased the efficiency of producing GE pigs. These gene-editing systems, specifically engineered endonucleases, are based on inducing double-stranded breaks (DSBs) at a specific location, and then site-specific modifications can be introduced through one of the two DNA repair pathways: non-homologous end joining (NHEJ) or homology direct repair (HDR). Random insertions or deletions (indels) can be introduced through NHEJ and specific nucleotide sequences can be introduced through HDR, if donor DNA is provided. Use of these engineered endonucleases provides a higher success in genetic modifications, multiallelic modification of the genome, and an opportunity to introduce site-specific modifications during embryogenesis, thus bypassing the need of SCNT in GE pig production. This review will provide a historical prospective of GE pig production and examples of how the gene-editing system, led by engineered endonucleases, have improved GE pig production. We will also present some of our current progress related to the optimal use of CRISPR/Cas9 system during embryogenesis.
Collapse
|
25
|
Cooper DKC, Cowan P, Fishman JA, Hering BJ, Mohiuddin MM, Pierson RN, Sachs DH, Schuurman HJ, Dennis JU, Tönjes RR. Joint FDA‐IXA Symposium, September 20, 2017. Xenotransplantation 2017; 24. [PMID: 29193342 DOI: 10.1111/xen.12365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Jay A Fishman
- Infectious Disease Division and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Muhammad M Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore VA Medical Center, Baltimore, MD, USA
| | - David H Sachs
- Columbia University Medical Center, New York City, NY, USA.,Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | | | - John U Dennis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralf R Tönjes
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Division of Medical Biotechnology, Langen, Germany
| |
Collapse
|