1
|
Afzali-Hashemi L, Dovern E, Baas KPA, Schrantee A, Wood JC, Nederveen AJ, Nur E, Biemond BJ. Cerebral hemodynamics and oxygenation in adult patients with sickle cell disease after stem cell transplantation. Am J Hematol 2024; 99:163-171. [PMID: 37859469 DOI: 10.1002/ajh.27135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Sickle cell disease (SCD) is characterized by chronic hemolytic anemia associated with impaired cerebral hemodynamics and oxygen metabolism. Hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment for patients with SCD. Whereas normalization of hemoglobin levels and hemolysis markers has been reported after HSCT, its effects on cerebral perfusion and oxygenation in adult SCD patients remain largely unexplored. This study investigated the effects of HSCT on cerebral blood flow (CBF), oxygen delivery, cerebrovascular reserve (CVR), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ) in 17 adult SCD patients (mean age: 25.0 ± 8.0, 6 females) before and after HSCT and 10 healthy ethnicity-matched controls (mean age: 28.0 ± 8.8, 6 females) using MRI. For the CVR assessment, perfusion scans were performed before and after acetazolamide as a vasodilatory stimulus. Following HSCT, gray and white matter (GM and WM) CBF decreased (p < .01), while GM and WM CVR increased (p < .01) compared with the baseline measures. OEF and CMRO2 also increased towards levels in healthy controls (p < .01). The normalization of cerebral perfusion and oxygen metabolism corresponded with a significant increase in hemoglobin levels and decreases in reticulocytes, total bilirubin, and LDH as markers of hemolysis (p < .01). This study shows that HSCT results in the normalization of cerebral perfusion and oxygen metabolism, even in adult patients with SCD. Future follow-up MRI scans will determine whether the observed normalization of cerebral hemodynamics and oxygen metabolism prevents new silent cerebral infarcts.
Collapse
Affiliation(s)
- Liza Afzali-Hashemi
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Dovern
- Department of Hematology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Koen P A Baas
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Schrantee
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - John C Wood
- Division of Cardiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Bart J Biemond
- Department of Hematology, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Xu F, Liu D, Zhu D, Hillis AE, Bakker A, Soldan A, Albert MS, Lin DDM, Qin Q. Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow. Neuroimage 2023; 271:120039. [PMID: 36931331 PMCID: PMC10150252 DOI: 10.1016/j.neuroimage.2023.120039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Velocity-selective inversion (VSI) based velocity-selective arterial spin labeling (VSASL) has been developed to measure cerebral blood flow (CBF) with low susceptibility to the prolonged arterial transit time and high sensitivity to brain perfusion signal. The purpose of this magnetic resonance imaging study is to evaluate the test-retest reliability of a VSI-prepared 3D VSASL protocol with whole-brain coverage to detect baseline CBF variations among cognitively normal participants in different brain regions. Coefficients of variation (CoV) of both absolute and relative CBF across scans or sessions, subjects, and gray matter regions were calculated, and corresponding intraclass correlation coefficients (ICC) were computed. The higher between-subject CoV of absolute CBF (13.4 ± 2.0%) over within-subject CoV (within-session: 3.8 ± 1.1%; between-session: 4.9 ± 0.9%) yielded moderate to excellent ICC (within-session: 0.88±0.08; between-session: 0.77±0.14) to detect normal variations of individual CBF. The higher between-region CoV of relative CBF (11.4 ± 3.0%) over within-region CoV (within-session: 2.3 ± 0.9%; between-session: 3.3 ± 1.0%) yielded excellent ICC (within-session: 0.92±0.06; between-session: 0.85±0.12) to detect normal variations of regional CBF. Age, blood pressure, end-tidal CO2, and hematocrit partially explained the variability of CBF across subjects. Together these results show excellent test-retest reliability of VSASL to detect both between-subject and between-region variations supporting its clinical utility.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Dan Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Doris D M Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Binnie LR, Pauls MMH, Benjamin P, Dhillon MPK, Betteridge S, Clarke B, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Isaacs JD, Barrick TR, Hainsworth AH. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl Stroke Res 2022; 13:583-594. [PMID: 35080734 PMCID: PMC9232403 DOI: 10.1007/s12975-021-00983-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyperintensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within white matter.Here we quantified test-retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).Test-retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total grey matter, p=0.004 for NAWM).We conclude that pCASL has high test-retest reliability as a quantitative measure of CBF in older adults with SVD. These findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.All data come from the PASTIS trial, prospectively registered at: https://eudract.ema.europa.eu (2015-001235-20, registered 13/05/2015), http://www.clinicaltrials.gov (NCT02450253, registered 21/05/2015).
Collapse
Affiliation(s)
- Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mathilde M H Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Mohani-Preet K Dhillon
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Shai Betteridge
- Department of Neuropsychology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Rita Ghatala
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Fearghal A H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Herlev, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan B Y Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sarah Trippier
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Rebecca Williams
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK.
| |
Collapse
|
4
|
Zhao MY, Woodward A, Fan AP, Chen KT, Yu Y, Chen DY, Moseley ME, Zaharchuk G. Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques . J Cereb Blood Flow Metab 2022; 42:700-717. [PMID: 34806918 PMCID: PMC9254040 DOI: 10.1177/0271678x211056702] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebrovascular reactivity (CVR), the capacity of the brain to increase cerebral blood flow (CBF) to meet changes in physiological demand, is an important biomarker to evaluate brain health. Typically, this brain "stress test" is performed by using a medical imaging modality to measure the CBF change between two states: at baseline and after vasodilation. However, since there are many imaging modalities and many ways to augment CBF, a wide range of CVR values have been reported. An understanding of CVR reproducibility is critical to determine the most reliable methods to measure CVR as a clinical biomarker. This review focuses on CVR reproducibility studies using neuroimaging techniques in 32 articles comprising 427 total subjects. The literature search was performed in PubMed, Embase, and Scopus. The review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We identified 5 factors of the experimental subjects (such as sex, blood characteristics, and smoking) and 9 factors of the measuring technique (such as the imaging modality, the type of the vasodilator, and the quantification method) that have strong effects on CVR reproducibility. Based on this review, we recommend several best practices to improve the reproducibility of CVR quantification in neuroimaging studies.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Amanda Woodward
- Lane Medical Library, Stanford University, Stanford, CA, USA
| | - Audrey P Fan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA
| | - Kevin T Chen
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Yannan Yu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - David Y Chen
- Department of Medical Imaging, Taipei Medical University - Shuan-Ho Hospital, New Taipei City.,Department of Radiology, School of Medicine, Taipei Medical University, Taipei *Research materials supporting this publication can be accessed at https://doi.org/10.25740/hd852bg4538
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Fahlström M, Wikström J, Borota L, Enblad P, Lewén A. Variable Temporal Cerebral Blood Flow Response to Acetazolamide in Moyamoya Patients Measured Using Arterial Spin Labeling. Front Neurol 2021; 12:615017. [PMID: 34168605 PMCID: PMC8217767 DOI: 10.3389/fneur.2021.615017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reserve capacity (CVR), an important predictor of ischaemic events and a prognostic factor for patients with moyamoya disease (MMD), can be assessed by measuring cerebral blood flow (CBF) before and after administration of acetazolamide (ACZ). Often, a single CBF measurement is performed between 5 and 20 min after ACZ injection. Assessment of the temporal response of the vasodilation secondary to ACZ administration using several repeated CBF measurements has not been studied extensively. Furthermore, the high standard deviations of the group-averaged CVRs reported in the current literature indicate a patient-specific dispersion of CVR values over a wide range. This study aimed to assess the temporal response of the CBF and derived CVR during ACZ challenge using arterial spin labeling in patients with MMD. Eleven patients with MMD were included before or after revascularisation surgery. CBF maps were acquired using pseudo-continuous arterial spin labeling before and 5, 15, and 25 min after an intravenous ACZ injection. A vascular territory template was spatially normalized to patient-specific space, including the bilateral anterior, middle, and posterior cerebral arteries. CBF increased significantly post-ACZ injection in all vascular territories and at all time points. Group-averaged CBF and CVR values remained constant throughout the ACZ challenge in most patients. The maximum increase in CBF occurred most frequently at 5 min post-ACZ injection. However, peaks at 15 or 25 min were also present in some patients. In 68% of the affected vascular territories, the maximum increase in CBF did not occur at 15 min. In individual cases, the difference in CVR between different time points was between 1 and 30% points (mean difference 8% points). In conclusion, there is a substantial variation in CVR between different time points after the ACZ challenge in patients with MMD. Thus, there is a risk that the use of a single post-ACZ measurement time point overestimates disease progression, which could have wide implications for decision-making regarding revascularisation surgery and the interpretation of the outcome thereof. Further studies with larger sample sizes using multiple CBF measurements post-ACZ injection in patients with MMD are encouraged.
Collapse
Affiliation(s)
- Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Ljubisa Borota
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Frey D, Livne M, Leppin H, Akay EM, Aydin OU, Behland J, Sobesky J, Vajkoczy P, Madai VI. A precision medicine framework for personalized simulation of hemodynamics in cerebrovascular disease. Biomed Eng Online 2021; 20:44. [PMID: 33933080 PMCID: PMC8088619 DOI: 10.1186/s12938-021-00880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cerebrovascular disease, in particular stroke, is a major public health challenge. An important biomarker is cerebral hemodynamics. To measure and quantify cerebral hemodynamics, however, only invasive, potentially harmful or time-to-treatment prolonging methods are available. RESULTS We present a simulation-based approach which allows calculation of cerebral hemodynamics based on the patient-individual vessel configuration derived from structural vessel imaging. For this, we implemented a framework allowing segmentation and annotation of brain vessels from structural imaging followed by 0-dimensional lumped simulation modeling of cerebral hemodynamics. For annotation, a 3D-graphical user interface was implemented. For 0D-simulation, we used a modified nodal analysis, which was adapted for easy implementation by code. The simulation enables identification of areas vulnerable to stroke and simulation of changes due to different systemic blood pressures. Moreover, sensitivity analysis was implemented allowing the live simulation of changes to simulate procedures and disease progression. Beyond presentation of the framework, we demonstrated in an exploratory analysis in 67 patients that the simulation has a high specificity and low-to-moderate sensitivity to detect perfusion changes in classic perfusion imaging. CONCLUSIONS The presented precision medicine approach using novel biomarkers has the potential to make the application of harmful and complex perfusion methods obsolete.
Collapse
Affiliation(s)
- Dietmar Frey
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany.
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany.
| | - Michelle Livne
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
| | - Heiko Leppin
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
| | - Ela M Akay
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Orhun U Aydin
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jonas Behland
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Sobesky
- Johanna Etienne Hospital Neuss, Berlin, Germany
- Centre for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Vince I Madai
- Charite Lab for Artificial Intelligence in Medicine, Department of Neurosurgery, Charité University Medicine Berlin, Chariteplatz 1, 10115, Berlin, Germany
- School of Computing and Digital Technology, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| |
Collapse
|
7
|
Afzali-Hashemi L, Baas KPA, Schrantee A, Coolen BF, van Osch MJP, Spann SM, Nur E, Wood JC, Biemond BJ, Nederveen AJ. Impairment of Cerebrovascular Hemodynamics in Patients With Severe and Milder Forms of Sickle Cell Disease. Front Physiol 2021; 12:645205. [PMID: 33959037 PMCID: PMC8093944 DOI: 10.3389/fphys.2021.645205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
In patients with sickle cell disease (SCD), cerebral blood flow (CBF) is elevated to counteract anemia and maintain oxygen supply to the brain. This may exhaust the vasodilating capacity of the vessels, possibly increasing the risk of silent cerebral infarctions (SCI). To further investigate cerebrovascular hemodynamics in SCD patients, we assessed CBF, arterial transit time (ATT), cerebrovascular reactivity of CBF and ATT (CVR CBF and CVR ATT ) and oxygen delivery in patients with different forms of SCD and matched healthy controls. We analyzed data of 52 patients with severe SCD (HbSS and HbSβ0-thal), 20 patients with mild SCD (HbSC and HbSβ+-thal) and 10 healthy matched controls (HbAA and HbAS). Time-encoded arterial spin labeling (ASL) scans were performed before and after a vasodilatory challenge using acetazolamide (ACZ). To identify predictors of CBF and ATT after vasodilation, regression analyses were performed. Oxygen delivery was calculated and associated with hemoglobin and fetal hemoglobin (HbF) levels. At baseline, severe SCD patients showed significantly higher CBF and lower ATT compared to both the mild SCD patients and healthy controls. As CBF postACZ was linearly related to CBF preACZ , CVR CBF decreased with disease severity. CVR ATT was also significantly affected in severe SCD patients compared to mild SCD patients and healthy controls. Considering all groups, women showed higher CBF postACZ than men (p < 0.01) independent of baseline CBF. Subsequently, post ACZ oxygen delivery was also higher in women (p < 0.05). Baseline, but not post ACZ, GM oxygen delivery increased with HbF levels. Our data showed that baseline CBF and ATT and CVR CBF and CVR ATT are most affected in severe SCD patients and to a lesser extent in patients with milder forms of SCD compared to healthy controls. Cerebrovascular vasoreactivity was mainly determined by baseline CBF, sex and HbF levels. The higher vascular reactivity observed in women could be related to their lower SCI prevalence, which remains an area of future work. Beneficial effects of HbF on oxygen delivery reflect changes in oxygen dissociation affinity from hemoglobin and were limited to baseline conditions suggesting that high HbF levels do not protect the brain upon a hemodynamic challenge, despite its positive effect on hemolysis.
Collapse
Affiliation(s)
- Liza Afzali-Hashemi
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Koen P. A. Baas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location AMC, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Stefan M. Spann
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - John C. Wood
- Division of Cardiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bart J. Biemond
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
8
|
Su P, Fan H, Liu P, Li Y, Qiao Y, Hua J, Lin D, Jiang D, Pillai JJ, Hillis AE, Lu H. MR fingerprinting ASL: Sequence characterization and comparison with dynamic susceptibility contrast (DSC) MRI. NMR IN BIOMEDICINE 2020; 33:e4202. [PMID: 31682305 PMCID: PMC7229700 DOI: 10.1002/nbm.4202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 06/03/2023]
Abstract
MR Fingerprinting (MRF)-based Arterial-Spin-Labeling (ASL) has the potential to measure multiple parameters such as cerebral blood flow (CBF), bolus arrival time (BAT), and tissue T1 in a single scan. However, the previous reports have only demonstrated a proof-of-principle of the technique but have not examined the performance of the sequence in the context of key imaging parameters. Furthermore, there has not been a study to directly compare the technique to clinically used perfusion method of dynamic-susceptibility-contrast (DSC) MRI. The present report consists of two studies. In the first study (N = 8), we examined the dependence of MRF-ASL sequence on TR time pattern. Ten different TR patterns with a range of temporal characteristics were examined by both simulations and experiments. The results revealed that there was a significance dependence of the sequence performance on TR pattern (p < 0.001), although there was not a single pattern that provided dramatically improvements. Among the TR patterns tested, a sinusoidal pattern with a period of 125 TRs provided an overall best estimation in terms of spatial consistency. These experimental observations were consistent with those of numerical simulations. In the second study (N = 8), we compared MRF-ASL results with those of DSC MRI. It was found that MRF-ASL and DSC MRI provided highly comparable maps of cerebral blood flow (CBF) and bolus-arrival-time (BAT), with spatial correlation coefficients of 0.79 and 0.91, respectively. However, in terms of quantitative values, BAT obtained with MRF-ASL was considerably lower than that from DSC (p < 0.001), presumably because of the differences in tracer characteristics in terms of diffusible versus intravascular tracers. Test-retest assessment of MRF-ASL MRI revealed that the spatial correlations of parametric maps were 0.997, 0.962, 0.746 and 0.863 for B1+ , T1 , CBF, and BAT, respectively. MRF-ASL is a promising technique for assessing multiple perfusion parameters simultaneously without contrast agent.
Collapse
Affiliation(s)
- Pan Su
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J. Pillai
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Aanerud J, Borghammer P, Rodell A, Jónsdottir KY, Gjedde A. Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 2017; 37:2433-2440. [PMID: 27629099 PMCID: PMC5531342 DOI: 10.1177/0271678x16668536] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO2) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.
Collapse
Affiliation(s)
- Joel Aanerud
- Department of Nuclear Medicine and PET Center, Aarhus University Hospitals, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Center, Aarhus University Hospitals, Aarhus, Denmark
| | - Anders Rodell
- Centre for Clinical Research, University of Queensland, Australia
| | | | - Albert Gjedde
- Center for Functionally Integrative Neuroscience, University of Aarhus, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Hu HH, Li Z, Pokorney AL, Chia JM, Stefani N, Pipe JG, Miller JH. Assessment of cerebral blood perfusion reserve with acetazolamide using 3D spiral ASL MRI: Preliminary experience in pediatric patients. Magn Reson Imaging 2016; 35:132-140. [PMID: 27580517 DOI: 10.1016/j.mri.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MATERIALS AND METHODS MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. RESULTS 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. CONCLUSION 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Zhiqiang Li
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Amber L Pokorney
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - James G Pipe
- Keller Center for Imaging Innovation, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jeffrey H Miller
- Department of Medical Imaging and Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
11
|
Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36:842-61. [PMID: 26945019 PMCID: PMC4853843 DOI: 10.1177/0271678x16636393] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Noninvasive imaging of cerebral blood flow provides critical information to understand normal brain physiology as well as to identify and manage patients with neurological disorders. To date, the reference standard for cerebral blood flow measurements is considered to be positron emission tomography using injection of the [(15)O]-water radiotracer. Although [(15)O]-water has been used to study brain perfusion under normal and pathological conditions, it is not widely used in clinical settings due to the need for an on-site cyclotron, the invasive nature of arterial blood sampling, and experimental complexity. As an alternative, arterial spin labeling is a promising magnetic resonance imaging technique that magnetically labels arterial blood as it flows into the brain to map cerebral blood flow. As arterial spin labeling becomes more widely adopted in research and clinical settings, efforts have sought to standardize the method and validate its cerebral blood flow values against positron emission tomography-based cerebral blood flow measurements. The purpose of this work is to critically review studies that performed both [(15)O]-water positron emission tomography and arterial spin labeling to measure brain perfusion, with the aim of better understanding the accuracy and reproducibility of arterial spin labeling relative to the positron emission tomography reference standard.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Steketee RME, Mutsaerts HJMM, Bron EE, van Osch MJP, Majoie CBLM, van der Lugt A, Nederveen AJ, Smits M. Quantitative Functional Arterial Spin Labeling (fASL) MRI--Sensitivity and Reproducibility of Regional CBF Changes Using Pseudo-Continuous ASL Product Sequences. PLoS One 2015; 10:e0132929. [PMID: 26172381 PMCID: PMC4501671 DOI: 10.1371/journal.pone.0132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/21/2015] [Indexed: 11/23/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging is increasingly used to quantify task-related brain activation. This study assessed functional ASL (fASL) using pseudo-continuous ASL (pCASL) product sequences from two vendors. By scanning healthy participants twice with each sequence while they performed a motor task, this study assessed functional ASL for 1) its sensitivity to detect task-related cerebral blood flow (CBF) changes, and 2) its reproducibility of resting CBF and absolute CBF changes (delta CBF) in the motor cortex. Whole-brain voxel-wise analyses showed that sensitivity for motor activation was sufficient with each sequence, and comparable between sequences. Reproducibility was assessed with within-subject coefficients of variation (wsCV) and intraclass correlation coefficients (ICC). Reproducibility of resting CBF was reasonably good within (wsCV: 14.1–15.7%; ICC: 0.69–0.77) and between sequences (wsCV: 15.1%; ICC: 0.69). Reproducibility of delta CBF was relatively low, both within (wsCV: 182–297%; ICC: 0.04–0.32) and between sequences (wsCV: 185%; ICC: 0.45), while inter-session variation was low. This may be due to delta CBF’s small mean effect (0.77–1.32 mL/100g gray matter/min). In conclusion, fASL seems sufficiently sensitive to detect task-related changes on a group level, with acceptable inter-sequence differences. Resting CBF may provide a consistent baseline to compare task-related activation to, but absolute regional CBF changes are more variable, and should be interpreted cautiously when acquired with two pCASL product sequences.
Collapse
Affiliation(s)
- Rebecca M. E. Steketee
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Esther E. Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Aad van der Lugt
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Marion Smits
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
13
|
Xing D, Zha Y, Yan L, Wang K, Gong W, Lin H. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time. J Magn Reson Imaging 2015; 42:1314-20. [PMID: 25854511 DOI: 10.1002/jmri.24891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/08/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Dong Xing
- Department of Radiology; Renmin Hospital of Wuhan University; Wuhan Hubei China
| | - Yunfei Zha
- Department of Radiology; Renmin Hospital of Wuhan University; Wuhan Hubei China
| | - Liyong Yan
- Department of Radiology; Renmin Hospital of Wuhan University; Wuhan Hubei China
| | - Kejun Wang
- Department of Radiology; Renmin Hospital of Wuhan University; Wuhan Hubei China
| | - Wei Gong
- Department of Radiology; Renmin Hospital of Wuhan University; Wuhan Hubei China
| | - Hui Lin
- MR Research; GE Healthcare China; Shanghai China
| |
Collapse
|
14
|
Jor’dan AJ, Manor B, Novak V. Slow gait speed - an indicator of lower cerebral vasoreactivity in type 2 diabetes mellitus. Front Aging Neurosci 2014; 6:135. [PMID: 25018729 PMCID: PMC4071640 DOI: 10.3389/fnagi.2014.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Gait speed is an important predictor of health that is negatively affected by aging and type 2 diabetes. Diabetes has been linked to reduced vasoreactivity, i.e., the capacity to regulate cerebral blood flow in response to CO2 challenges. This study aimed to determine the relationship between cerebral vasoreactivity and gait speed in older adults with and without diabetes. RESEARCH DESIGN AND METHODS We studied 61 adults with diabetes (65 ± 8 years) and 67 without diabetes (67 ± 9 years) but with similar distribution of cardiovascular risk factors. Preferred gait speed was calculated from a 75 m walk. Global and regional perfusion, vasoreactivity and vasodilation reserve were measured using 3-D continuous arterial spin labeling MRI at 3 Tesla during normo-, hyper- and hypocapnia and normalized for end-tidal CO2. RESULTS Diabetic participants had slower gait speed as compared to non-diabetic participants (1.05 ± 0.15 m/s vs. 1.14 ± 0.14 m/s, p < 0.001). Lower global vasoreactivity (r (2) adj = 0.13, p = 0.007), or lower global vasodilation reserve (r (2) adj = 0.33, p < 0.001), was associated with slower walking in the diabetic group independently of age, BMI and hematocrit concentration. For every 1 mL/100 g/min/mmHg less vasodilation reserve, for example, gait speed was 0.05 m/s slower. Similar relationships between vasodilation reserve and gait speed were also observed regionally within the cerebellum, frontal, temporal, parietal, and occipital lobes (r (2) adj = 0.27-0.33, p < 0.0001). In contrast, vasoreactivity outcomes were not associated with walking speed in non-diabetic participants, despite similar vasoreactivity ranges across groups. CONCLUSION In the diabetic group only, lower global vasoreactivity was associated with slower walking speed. Slower walking in older diabetic adults may thus hallmark reduced vasomotor reserve and thus the inability to increase perfusion in response to greater metabolic demands during walking.
Collapse
Affiliation(s)
- Azizah J. Jor’dan
- Syncope and Falls in the Elderly Laboratory, Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Brad Manor
- Syncope and Falls in the Elderly Laboratory, Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical SchoolBoston, MA, USA
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
15
|
Shiroishi MS, Castellazzi G, Boxerman JL, D'Amore F, Essig M, Nguyen TB, Provenzale JM, Enterline DS, Anzalone N, Dörfler A, Rovira À, Wintermark M, Law M. Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 2014; 41:296-313. [DOI: 10.1002/jmri.24648] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 04/03/2014] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mark S. Shiroishi
- Keck School of Medicine; University of Southern California; Los Angeles California USA
| | - Gloria Castellazzi
- Department of Industrial and Information Engineering; University of Pavia; Pavia Italy
- Brain Connectivity Center, IRCCS “C. Mondino Foundation,”; Pavia Italy
| | - Jerrold L. Boxerman
- Warren Alpert Medical School of Brown University; Providence Rhode Island USA
| | - Francesco D'Amore
- Keck School of Medicine; University of Southern California; Los Angeles California USA
- Department of Neuroradiology; IRCCS “C. Mondino Foundation,” University of Pavia; Pavia Italy
| | - Marco Essig
- University of Manitoba's Faculty of Medicine; Winnipeg Manitoba Canada
| | - Thanh B. Nguyen
- Faculty of Medicine, Ottawa University; Ottawa Ontario Canada
| | - James M. Provenzale
- Duke University Medical Center; Durham North Carolina USA
- Emory University School of Medicine; Atlanta Georgia USA
| | | | | | - Arnd Dörfler
- University of Erlangen-Nuremberg, Erlangen; Germany
| | - Àlex Rovira
- Vall d'Hebron University Hospital; Barcelona Spain
| | - Max Wintermark
- School of Medicine; University of Virginia; Charlottesville Virginia USA
| | - Meng Law
- Keck School of Medicine; University of Southern California; Los Angeles California USA
| |
Collapse
|
16
|
Inoue Y, Tanaka Y, Hata H, Hara T. Arterial spin-labeling evaluation of cerebrovascular reactivity to acetazolamide in healthy subjects. AJNR Am J Neuroradiol 2013; 35:1111-6. [PMID: 24371025 DOI: 10.3174/ajnr.a3815] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling MR imaging permits safe, repeated CBF measurement. We investigated the potential and technical factors of arterial spin-labeling imaging in assessing cerebrovascular reactivity to acetazolamide. MATERIALS AND METHODS The regional CBF was measured in 8 healthy volunteers by use of a 3D pseudocontinuous arterial spin-labeling sequence. Arterial spin labeling imaging was performed at rest and every 2 minutes after intravenous acetazolamide injection. To evaluate repeatability, regional CBF measurements were repeated without acetazolamide within an imaging session and on a separate day. Additionally, arterial spin-labeling imaging was performed at rest and after acetazolamide injection with different postlabeling delays, and regional cerebrovascular reactivity was calculated. RESULTS The regional CBF started to increase immediately after acetazolamide injection and peaked at approximately 10 minutes, followed by a slow decrease. Favorable intrasession repeatability was demonstrated, especially when scanner tuning was omitted between scans. Rest regional CBF was slightly lower with a postlabeling delay of 2525 ms than with a postlabeling delay of 1525 ms, and the postlabeling delay-dependent difference was more evident for regional CBF after acetazolamide injection and regional cerebrovascular reactivity. CONCLUSIONS Arterial spin-labeling imaging allows evaluation of the distribution, magnitude, and time course of cerebrovascular response to acetazolamide. The influence of the postlabeling delay on the estimated cerebrovascular reactivity should be noted.
Collapse
Affiliation(s)
- Y Inoue
- From the Departments of Diagnostic Radiology (Y.I., T.H.)
| | - Y Tanaka
- Radiology (Y.T., H.H.), Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - H Hata
- Radiology (Y.T., H.H.), Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - T Hara
- From the Departments of Diagnostic Radiology (Y.I., T.H.)
| |
Collapse
|
17
|
Wu WC, Lin SC, Wang DJ, Chen KL, Li YD. Measurement of cerebral white matter perfusion using pseudocontinuous arterial spin labeling 3T magnetic resonance imaging--an experimental and theoretical investigation of feasibility. PLoS One 2013; 8:e82679. [PMID: 24324822 PMCID: PMC3855805 DOI: 10.1371/journal.pone.0082679] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL) 3T magnetic resonance imaging (MRI) at a relatively fine resolution to mitigate partial volume effect from gray matter. MATERIALS AND METHODS The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28 ± 3 years) were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms) and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms), at a spatial resolution (1.56 x 1.56 x 5 mm(3)) finer than commonly used (3.5 x 3.5 mm(2), 5-8 mm in thickness). Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay. RESULTS Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2) to support perfusion measurement in the majority (~60%) of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. CONCLUSION PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.
Collapse
Affiliation(s)
- Wen-Chau Wu
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chi Lin
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Danny J. Wang
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kuan-Lin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Ding Li
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Sousa I, Vilela P, Figueiredo P. Reproducibility of the quantification of arterial and tissue contributions in multiple postlabeling delay arterial spin labeling. J Magn Reson Imaging 2013; 40:1453-62. [PMID: 24227019 DOI: 10.1002/jmri.24493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the reproducibility of estimation of cerebral blood flow (CBF), bolus arrival time (BAT), and arterial blood volume (aBV) from arterial spin labeling (ASL) data acquired at multiple postlabeling delays (PLDs). MATERIALS AND METHODS CBF, BAT, and aBV parameters were estimated from flow-suppressed and nonflow-suppressed multiple-PDL PICORE-Q2TIPS ASL using model-based Bayesian and least-squares fitting frameworks, and aBV was also obtained from a model-free approach. Reproducibility of these parameters was assessed by computing the within- and between-subject coefficients of variability (CVw and CVb). RESULTS CVw and CVb were comparable across model-based approaches, but were greater for the aBV from the model-free approach. Overall, the Bayesian model estimation procedure was found to provide the best compromise between reliability and reproducibility, yielding CVw/CVb values of 21/21, 3/4, and 24/26% for CBF, BAT, and aBV, respectively. Although a CBF range of 45 mL/100g/min to 59 mL/100g/min was found on average and a BAT of 0.7-1.0 seconds across methods, the corresponding maps were comparable in terms of the parameters' spatial distributions, and in particular in the identification of macrovascular locations, as assessed through comparison with time-of-flight images. CONCLUSION Reproducible estimates of CBF, BAT, and aBV values can be obtained from non-macroflow-suppressed ASL using both least-squares and Bayesian model-based methods.
Collapse
Affiliation(s)
- Inês Sousa
- Institute for Systems and Robotics, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Healthcare Sector, Siemens, S.A., Portugal
| | | | | |
Collapse
|
19
|
Hodkinson DJ, Krause K, Khawaja N, Renton TF, Huggins JP, Vennart W, Thacker MA, Mehta MA, Zelaya FO, Williams SCR, Howard MA. Quantifying the test-retest reliability of cerebral blood flow measurements in a clinical model of on-going post-surgical pain: A study using pseudo-continuous arterial spin labelling. NEUROIMAGE-CLINICAL 2013; 3:301-310. [PMID: 24143296 PMCID: PMC3797555 DOI: 10.1016/j.nicl.2013.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arterial spin labelling (ASL) is increasingly being applied to study the cerebral response to pain in both experimental human models and patients with persistent pain. Despite its advantages, scanning time and reliability remain important issues in the clinical applicability of ASL. Here we present the test–retest analysis of concurrent pseudo-continuous ASL (pCASL) and visual analogue scale (VAS), in a clinical model of on-going pain following third molar extraction (TME). Using ICC performance measures, we were able to quantify the reliability of the post-surgical pain state and ΔCBF (change in CBF), both at the group and individual case level. Within-subject, the inter- and intra-session reliability of the post-surgical pain state was ranked good-to-excellent (ICC > 0.6) across both pCASL and VAS modalities. The parameter ΔCBF (change in CBF between pre- and post-surgical states) performed reliably (ICC > 0.4), provided that a single baseline condition (or the mean of more than one baseline) was used for subtraction. Between-subjects, the pCASL measurements in the post-surgical pain state and ΔCBF were both characterised as reliable (ICC > 0.4). However, the subjective VAS pain ratings demonstrated a significant contribution of pain state variability, which suggests diminished utility for interindividual comparisons. These analyses indicate that the pCASL imaging technique has considerable potential for the comparison of within- and between-subjects differences associated with pain-induced state changes and baseline differences in regional CBF. They also suggest that differences in baseline perfusion and functional lateralisation characteristics may play an important role in the overall reliability of the estimated changes in CBF. Repeated measures designs have the important advantage that they provide good reliability for comparing condition effects because all sources of variability between subjects are excluded from the experimental error. The ability to elicit reliable neural correlates of on-going pain using quantitative perfusion imaging may help support the conclusions derived from subjective self-report. Test-retest reliability of pCASL is considered in a post-surgical pain model. Pain-state and ∆CBF measurements were reliable at the group and individual level. Single or average baseline measurements improve reliability of ∆CBF. pCASL is a reliable technique for detecting cerebral responses to on-going pain.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Kings College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Assessing Cerebrovascular Reactivity in Carotid Steno-Occlusive Disease Using MRI BOLD and ASL Techniques. Radiol Res Pract 2012; 2012:268483. [PMID: 22919485 PMCID: PMC3388310 DOI: 10.1155/2012/268483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022] Open
Abstract
Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.
Collapse
|
21
|
Zaharchuk G. Arterial spin label imaging of acute ischemic stroke and transient ischemic attack. Neuroimaging Clin N Am 2012; 21:285-301, x. [PMID: 21640300 DOI: 10.1016/j.nic.2011.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Since acute stroke and transient ischemic attack (TIA) are disruptions of brain hemodynamics, perfusion neuroimaging might be of clinical utility. Recently, arterial spin labeling (ASL), a noncontrast perfusion method, has become clinically feasible. It has advantages compared to contrast bolus perfusion-weighted imaging (PWI) including lack of exposure to gadolinium, improved quantitation, and decreased sensitivity to susceptibility and motion. Drawbacks include reduced signal-to-noise and high sensitivity to arterial transit delays. However, this sensitivity can enable visualization of collateral flow. This article discusses ASL findings in patients with acute stroke and TIA, focusing on typical appearances, common artifacts, and comparisons with PWI.
Collapse
Affiliation(s)
- Greg Zaharchuk
- Stanford University Medical Center, Stanford University, 1201 Welch Road, Mailcode 5488, Stanford, CA 94305-5488, USA.
| |
Collapse
|
22
|
Pinkham A, Loughead J, Ruparel K, Wu WC, Overton E, Gur R, Gur R. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res 2011; 194:64-72. [PMID: 21831608 PMCID: PMC3185150 DOI: 10.1016/j.pscychresns.2011.06.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023]
Abstract
Arterial spin labeling (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily come from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utility of this approach was examined in 24 healthy controls and 30 patients with schizophrenia. Differences between groups in quantitative CBF were assessed, as were relationships between CBF and psychiatric symptoms. Group comparisons demonstrated greater CBF for controls in several regions including bilateral precuneus and middle frontal gyrus. Patients showed increased CBF in left putamen/superior corona radiata and right middle temporal gyrus. For patients, greater severity of negative symptoms was associated with reduced CBF in bilateral superior temporal gyrus, cingulate gyrus, and left middle frontal gyrus. Increased severity of positive symptoms was related to both higher CBF in cingulate gyrus and superior frontal gyrus and decreased CBF in precentral gyrus/middle frontal gyrus. These findings support the feasibility and utility of implementing ASL in schizophrenia research and expand upon previous results.
Collapse
Affiliation(s)
- Amy Pinkham
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - James Loughead
- Department of Neuropsychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Kosha Ruparel
- Department of Neuropsychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Wen-Chau Wu
- Graduate Institutes of Oncology and Clinical Medicine, National Taiwan University, Taipei, Taiwan,Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Eve Overton
- Department of Neuropsychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel Gur
- Department of Neuropsychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben Gur
- Department of Neuropsychiatry, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Bremmer JP, van Berckel BNM, Persoon S, Kappelle LJ, Lammertsma AA, Kloet R, Luurtsema G, Rijbroek A, Klijn CJM, Boellaard R. Day-to-day test-retest variability of CBF, CMRO2, and OEF measurements using dynamic 15O PET studies. Mol Imaging Biol 2011; 13:759-68. [PMID: 20700768 PMCID: PMC3128261 DOI: 10.1007/s11307-010-0382-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose We assessed test–retest variability of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO2), and oxygen extraction fraction (OEF) measurements derived from dynamic 15O positron emission tomography (PET) scans. Procedures In seven healthy volunteers, complete test–retest 15O PET studies were obtained; test–retest variability and left-to-right ratios of CBF, CBV, OEF, and CMRO2 in arterial flow territories were calculated. Results Whole-brain test–retest coefficients of variation for CBF, CBV, CMRO2, and OEF were 8.8%, 13.8%, 5.3%, and 9.3%, respectively. Test–retest variability of CBV left-to-right ratios was <7.4% across all territories. Corresponding values for CBF, CMRO2, and OEF were better, i.e., <4.5%, <4.0%, and <1.4%, respectively. Conclusions The test–retest variability of CMRO2 measurements derived from dynamic 15O PET scans is comparable to within-session test–retest variability derived from steady-state 15O PET scans. Excellent regional test–retest variability was observed for CBF, CMRO2, and OEF. Variability of absolute CBF and OEF measurements is probably affected by physiological day-to-day variability of CBF.
Collapse
Affiliation(s)
- Jochem P Bremmer
- Department of Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Preibisch C, Sorg C, Förschler A, Grimmer T, Sax I, Wohlschläger AM, Perneczky R, Förstl H, Kurz A, Zimmer C, Alexopoulos P. Age-related cerebral perfusion changes in the parietal and temporal lobes measured by pulsed arterial spin labeling. J Magn Reson Imaging 2011; 34:1295-302. [PMID: 21953683 DOI: 10.1002/jmri.22788] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/28/2011] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate age-related regional perfusion changes focused on the medial temporal lobes and related parietal areas using a pulsed arterial spin labeling technique. MATERIALS AND METHODS Resting cerebral blood flow (CBF) maps were obtained from 44 healthy volunteers (18 male, 26 female; age range, 19 to 79 years) using a pulsed arterial spin labeling (PASL) MRI technique at 3 Tesla focused on the parietal and temporal lobes. Repeated measurements were performed in 20 subjects to assure the reliability and reproducibility of the applied PASL technique. RESULTS Focal age-related CBF decreases were detected in the parietal cortex, cuneus and caudate, whereas increases were seen in the lateral and medial temporal lobe such as hippocampus, the calcarine gyrus and the thalamus. Moreover, repeated measurements demonstrated a high reliability and reproducibility of the applied PASL technique. CONCLUSION Data provide evidence for regionally dissociated patterns of perfusion increases and decreases during ageing in the temporal and parietal lobes.
Collapse
Affiliation(s)
- Christine Preibisch
- Department of Neuroradiology, Technische Universität München, Munich, Germany; Department of Neurology, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen Y, Wang DJJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging 2011; 33:940-9. [PMID: 21448961 DOI: 10.1002/jmri.22345] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To compare the test-retest reproducibility of three variants of arterial spin labeling (ASL): pseudo-continuous (pCASL), pulsed (PASL) and continuous (CASL). MATERIALS AND METHODS Twelve healthy subjects were scanned on a 3.0T scanner with PASL, CASL, and pCASL. Scans were repeated within-session, after 1 hour, and after 1 week to assess reproducibility at different scan intervals. RESULTS Comparison of within-subject coefficients of variation (wsCV) demonstrated high within-session reproducibility (ie, low wsCV) for CASL-based methods (gray matter [GM] wsCV for pCASL: 3.5% ± 0.02%, CASL: 4.1% ± 0.07%) compared to PASL (wsCV: 7.5% ± 0.06%), due to the higher signal-to-noise ratio (SNR) associated with continuous labeling, evident in the 20% gain in temporal SNR and 58% gain in raw SNR for pCASL relative to PASL. At the 1-week scan interval, comparable reproducibility between PASL (GM wsCV 9.2% ± 0.12%) and pCASL (GM wsCV 8.5% ± 0.14%) was observed, indicating the dominance of physiological fluctuations. CONCLUSION Although all three approaches are capable of measuring cerebral blood flow within a few minutes of scanning, the high precision and SNR of pCASL, with its insensitivity to vessel geometry, make it an appealing method for future ASL application studies.
Collapse
Affiliation(s)
- Yufen Chen
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
26
|
Uchihashi Y, Hosoda K, Zimine I, Fujita A, Fujii M, Sugimura K, Kohmura E. Clinical application of arterial spin-labeling MR imaging in patients with carotid stenosis: quantitative comparative study with single-photon emission CT. AJNR Am J Neuroradiol 2011; 32:1545-51. [PMID: 21757531 DOI: 10.3174/ajnr.a2525] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling is an emerging technique for noninvasive measurement of cerebral perfusion, but concerns remain regarding the reliability of CBF quantification and clinical applications. Recently, an ASL implementation called QUASAR was proposed, and it was shown to have good reproducibility of CBF assessment in healthy volunteers. This study aimed to determine the utility of QUASAR for CBF assessment in patients with cerebrovascular diseases. MATERIALS AND METHODS Twenty patients with carotid stenosis underwent CBF quantification by ASL (QUASAR) within 3 days of performance of (123)I-iodoamphetamine-SPECT. CVR to acetazolamide also was assessed by ASL and SPECT. In surgically treated patients, the respective scans before and after the procedures were compared. RESULTS Regional CBF and CVR values measured by ASL were significantly correlated and agreed with those measured by SPECT (r(s) = 0.92 and 0.88, respectively). A Bland-Altman plot demonstrated good agreement between 2 methods in terms of CBF quantification. Furthermore, ASL could detect pathologic states such as hypoperfusion, impaired vasoreactivity, and postoperative hyperperfusion, equivalent to SPECT. However, ASL tended to overestimate CBF values especially in high-perfusion regions. CONCLUSIONS ASL perfusion MR imaging is clinically applicable and can be an alternative method for CBF assessment in patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- Y Uchihashi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Zirak P, Delgado-Mederos R, Martí-Fàbregas J, Durduran T. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study. BIOMEDICAL OPTICS EXPRESS 2010; 1:1443-1459. [PMID: 21258561 PMCID: PMC3018112 DOI: 10.1364/boe.1.001443] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/07/2010] [Accepted: 11/07/2010] [Indexed: 05/24/2023]
Abstract
Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.
Collapse
Affiliation(s)
- Peyman Zirak
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology
Park, 08860 Castelldefels, Barcelona, Spain
| | | | - Joan Martí-Fàbregas
- Department of Neurology, Hospital de la Santa Creu i Sant Pau,
Barcelona, Spain
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology
Park, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
28
|
Wang Y, Saykin AJ, Pfeuffer J, Lin C, Mosier KM, Shen L, Kim S, Hutchins GD. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 2010; 54:1188-95. [PMID: 20800097 DOI: 10.1016/j.neuroimage.2010.08.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
Arterial spin labeling (ASL) is a promising non-invasive magnetic resonance imaging (MRI) technique for measuring regional cerebral blood flow (rCBF) or perfusion in vivo. To evaluate the feasibility of ASL as a biomarker for clinical trials, it is important to examine test-retest reproducibility. We investigated both inter- and intra-session reproducibility of perfusion MRI using a pulsed ASL (PASL) sequence PICORE Q2TIPS with an echo-planar imaging (EPI) readout. Structural MRI regions of interest (ROIs) were extracted individually by automated parcellation and segmentation methods using FreeSurfer. These cortical and subcortical ROIs were used to assess regional perfusion stability. Our results indicated regional variability in grey matter rCBF. Although rCBF measurements were characterized by intersubject variation, our results also indicated relatively less within-subject variability estimated as within-subject standard deviation (SD(W)) (intersession SD(W): 2.0 to 8.8; intrasession SD(W): 2.8 to 9.6) and acceptable reliabilities as measured using intraclass correlation coefficient (ICC) (intersession ICC: 0.68 to 0.94; intrasession ICC: 0.66 to 0.95) for regional MRI perfusion measurements using the PICORE Q2TIPS technique. Overall, our findings suggest that PASL is a technique with good within and between session reproducibility. Further reproducibility studies in target populations relevant for specific clinical trials of neurovascular related agents will be important and the present results provide a framework for such assessments.
Collapse
Affiliation(s)
- Yang Wang
- IU Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang L, Kim M, Chodkowski B, Donahue MJ, Pekar JJ, Van Zijl PCM, Albert M. Reliability and reproducibility of perfusion MRI in cognitively normal subjects. Magn Reson Imaging 2010; 28:1283-9. [PMID: 20573464 DOI: 10.1016/j.mri.2010.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/25/2010] [Accepted: 05/08/2010] [Indexed: 11/26/2022]
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is becoming a popular method for measuring perfusion due to its ability of generating perfusion maps noninvasively. This allows for frequent repeat scanning, which is especially useful for follow-up studies. However, limited information is available regarding the reliability and reproducibility of ASL perfusion measurements. Here, the reliability and reproducibility of pulsed ASL was investigated in an elderly population to determine the variation in perfusion among cognitively normal individuals in different brain structures. Intraclass correlation coefficients (ICC) and within-subject variation coefficients (wsCV) were used to estimate reliability and reproducibility over a period of 1 year. Twelve cognitively normal subjects (75.5 ± 5.3 years old, six male and six female) were scanned four times (at 0, 3, 6 and 12 months). No significant difference in cerebral blood flow (CBF) was found over this period. CBF values ranged from 46 to 53 ml/100 g per minute in the medial frontal gyrus (MFG) and from 40 to 44 ml/100 g per minute over all gray matter regions in the superior part of the brain. Data obtained from the first two scans were processed by two readers and showed high reliability (ICC >0.97) and reproducibility (wsCV <6%). However, over the total period of 1 year, reliability reduced to a moderate level (ICC=0.63-0.74) with wsCVs of gray matter, left MFG, right MFG of 13.5%, 12.3%, and 15.4%, respectively. In conclusion, measurement of CBF with pulsed ASL provided good agreement between inter-raters. A moderate level of reliability was obtained over a 1-year period, which was attributed to variance in slice positioning and coregistration. As such pulsed ASL has the potential to be used for CBF comparison in longitudinal studies.
Collapse
Affiliation(s)
- Li Jiang
- FM Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kassner A, Winter JD, Poublanc J, Mikulis DJ, Crawley AP. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging 2010; 31:298-304. [PMID: 20099341 DOI: 10.1002/jmri.22044] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate the reproducibility and gender differences in cerebrovascular reactivity (CVR) measurements obtained using the blood-oxygen level dependent (BOLD) response to controlled changes in end-tidal partial pressure of carbon dioxide (PETCO(2)). MATERIALS AND METHODS We obtained ethical approval to image 19 healthy volunteers (10 men, 9 women) on a 1.5 Tesla (T) MRI scanner twice on two separate days using identical procedures. CVR images were generated by collecting BOLD MRI data during controlled changes in PETCO(2) induced by a sequential gas delivery system. RESULTS Using the intraclass correlation coefficient (ICC), we demonstrated excellent within-day CVR measures in gray matter (GM) (ICC = 0.92) and white matter (WM) (ICC = 0.88) regions, excellent between-day reproducibility in GM (ICC = 0.81), and good between-day reproducibility in the WM (ICC = 0.66). CVR values between men and women were significantly different in the GM and WM. Men exhibited a 22 +/- 2% greater CVR in GM and a 17 +/- 2% greater CVR in WM compared with females. CONCLUSION Our results demonstrate the reliability of BOLD MRI CVR measurements obtained using a controlled cerebrovascular challenge. Using this technique, we also revealed significantly increased BOLD response to CO(2) in males compared with females.
Collapse
Affiliation(s)
- Andrea Kassner
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
31
|
Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC. Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR IN BIOMEDICINE 2010; 23:286-93. [PMID: 19953503 PMCID: PMC2843795 DOI: 10.1002/nbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Arterial spin labeling (ASL) offers MRI measurement of cerebral blood flow (CBF) in vivo, and may offer clinical diagnostic utility in populations such as those with early Alzheimer's disease (AD). In the current study, we investigated the reliability and precision of a pseudo-continuous ASL (pcASL) sequence that was performed two or three times within one hour on eight young normal control subjects, and 14 elderly subjects including 11 with normal cognition, one with AD and two with Mild Cognitive Impairment (MCI). Six of these elderly subjects including one AD, two MCIs and three controls also received (15)O-water positron emission tomography (PET) scans 2 h before their pcASL MR scan. The instrumental reliability of pcASL was evaluated with the intraclass correlation coefficient (ICC). The ICCs were greater than 0.90 in pcASL global perfusion measurements for both the young and the elderly groups. The cross-modality perfusion imaging comparison yielded very good global and regional agreement in global gray matter and the posterior cingulate cortex. Significant negative correlation was found between age and the gray/white matter perfusion ratio (r = -0.62, p < 0.002). The AD and MCI patients showed the lowest gray/white matter perfusion ratio among all the subjects. The data suggest that pcASL provides a reliable whole brain CBF measurement in young and elderly adults whose results converge with those obtained with the traditional (15)O-water PET perfusion imaging method. pcASL perfusion MRI offers an alternative method for non-invasive in vivo examination of early pathophysiological changes in AD.
Collapse
Affiliation(s)
- Guofan Xu
- GRECC, Madison VA Hospital, Madison, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu WC, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010; 21:65-73. [PMID: 21613872 DOI: 10.1097/rmr.0b013e31821e570a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arterial spin labeling (ASL) perfusion magnetic resonance imaging has gained wide acceptance for its value in clinical and neuroscience applications during recent years. Its capability for noninvasive and absolute perfusion quantification is a key characteristic that makes ASL attractive for many clinical applications. In the present review, we discuss the main parameters or factors that affect the reliability and accuracy of ASL perfusion measurements. Our secondary goal was to outline potential solutions that may improve the reliability and accuracy of ASL in clinical settings. It was found that, through theoretical analyses, flow quantification is most sensitive to tagging efficiency and estimation of the equilibrium magnetization of blood signal (M(0b)). Variations of blood T1 have a greater effect on perfusion quantification than variations of tissue T1. Arterial transit time becomes an influential factor when it is longer than the postlabeling delay time. The T2's of blood and tissue impose minimal effects on perfusion calculation at field strengths equal to or lower than 3.0 T. Subsequently, we proposed various approaches for in vivo estimation or calibration of the above parameters, such as the use of phase-contrast magnetic resonance imaging for calibration of the labeling efficiency as well as the use of inversion recovery TrueFISP (true fast imaging with steady-state precession) sequence for blood T1 mapping. We also list representative clinical cases in which implicit assumptions for ASL perfusion quantification may be violated, such as the venous outflow effect in children with sickle cell disease. Finally, an optimal imaging protocol including in vivo measurements of several critical parameters was recommended for clinical ASL studies.
Collapse
Affiliation(s)
- Wen-Chau Wu
- Graduate Institute of Oncology and Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 2009; 49:104-13. [PMID: 19660557 DOI: 10.1016/j.neuroimage.2009.07.068] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/23/2022] Open
Abstract
Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test-retest study across sites from around the world, dubbed "The QUASAR reproducibility study". Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87+/-0.95 mm and rotations of 1.56+/-0.66 degrees . Mean gray matter CBF was 47.4+/-7.5 [ml/100 g/min] with a between-subject standard variation SD(b)=5.5 [ml/100 g/min] and a within-subject standard deviation SD(w)=4.7 [ml/100 g/min]. The corresponding repeatability was 13.0 [ml/100 g/min] and was found to be within the range of previous studies.
Collapse
|
34
|
Dubowitz DJ, Dyer EAW, Theilmann RJ, Buxton RB, Hopkins SR. Early brain swelling in acute hypoxia. J Appl Physiol (1985) 2009; 107:244-52. [PMID: 19423837 PMCID: PMC2711789 DOI: 10.1152/japplphysiol.90349.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/04/2009] [Indexed: 11/22/2022] Open
Abstract
Acute mountain sickness (AMS) and high-altitude cerebral edema share common clinical characteristics, suggesting cerebral swelling may be an important factor in the pathophysiology of AMS. Hypoxia and hypocapnia associated with high altitude are known to exert strong effects on the control of the cerebral circulation, yet how these effects interact during acute hypoxia, and whether AMS-susceptible subjects may have a unique response, is still unclear. To test if self-identified AMS-susceptible individuals show altered brain swelling in response to acute hypoxia, we used quantitative arterial spin-labeling and volumetric MRI to measure cerebral blood flow and cerebrospinal fluid (CSF) volume changes during 40 min of acute hypoxia. We estimated changes in cerebral blood volume (CBV) (from changes in cerebral blood flow) and brain parenchyma swelling (from changes in CBV and CSF). Subjects with extensive high-altitude experience in two groups participated: self-identified AMS-susceptible (n = 6), who invariably experienced AMS at altitude, and self-identified AMS-resistant (n = 6), who almost never experienced symptoms. During 40-min hypoxia, intracranial CSF volume decreased significantly [-10.5 ml (SD 6.9), P < 0.001]. There were significant increases in CBV [+2.3 ml (SD 2.5), P < 0.005] and brain parenchyma volume [+8.2 ml (SD 6.4), P < 0.001]. However, there was no significant difference between self-identified AMS-susceptible and AMS-resistant groups for these acute-phase changes. In acute hypoxia, brain swelling occurs earlier than previously described, with significant shifts in intracranial CSF occurring as early as 40 min after exposure. These acute-phase changes are present in all individuals, irrespective of susceptibility to AMS.
Collapse
Affiliation(s)
- David J Dubowitz
- UCSD Centre for Functional MRI, 9500 Gilman Dr., MC 0677, La Jolla, CA 92093-0677, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
INTRODUCTION Cerebral perfusion imaging using magnetic resonance imaging (MRI) is widely used in the research and clinical fields to assess the profound changes in blood flow related to ischemic events such as acute stroke, chronic steno-occlusive disease, vasospasm, and abnormal vessel formations from congenital conditions or tumoral neovascularity. With continuing improvements in the precision of MRI-based perfusion techniques, it is increasingly feasible to use this tool in the study of the subtle brain perfusion changes occurring in psychiatric illnesses. This article aims to review the existing literature on applications of perfusion MRI in psychiatric disorder and substance abuse research. The article also provides a brief introductory overview of dynamic susceptibility contrast MRI and arterial spin labeling techniques. An outlook of necessary steps to bring perfusion MRI into the realm of clinical psychiatry as a diagnostic tool is brought forth. Opportunities for research in unexplored disorders and with higher field strengths are briefly examined. METHODS PubMed, ISI Web of Knowledge & Scopus were used to search the literature and cross reference several neuropsychiatric disorders with a search term construct, including "magnetic resonance imaging," "dynamic susceptibility contrast," "arterial spin labeling," perfusion or "cerebral blood flow" or "cerebral blood volume" or "mean transit time." The list of disorders used in the search included schizophrenia, depression and bipolar disorder, dementia and Alzheimer's disease, Parkinson's disease, posttraumatic stress disorder, autism, Asperger disease, attention deficit, Tourette syndrome, obsessive-compulsive disorder, Huntington's disease, bulimia nervosa, anorexia nervosa, and substance abuse. For each disorder for which perfusion MRI studies were found, a brief overview of the disorder symptoms, treatment, prevalence, and existing models is provided, and previous findings from nuclear medicine-based perfusion imaging are overviewed. Findings of perfusion MRI studies are then summarized, and overlap of findings are discussed. Overarching conclusions are made, or an outlook for future work in the area is offered, where appropriate. RESULTS Despite the now fairly broad availability of perfusion MRI, only a limited number of studies were found using this technology. The search produced 13 studies of schizophrenia, 7 studies in major depression, 12 studies in Alzheimer's disease, and 2 studies in Parkinson's disease. Drug abuse and other disorders have mainly been studied with nuclear medicine-based perfusion imaging. The literature concerning the use of perfusion imaging in psychiatry has not been reviewed in the last 5 years or more. The use of MRI for perfusion measurements in psychiatry has not been reviewed in 10 years. CONCLUSIONS Although MRI-based perfusion imaging in psychiatry has mainly been used as a research tool, a path is progressively being cleared for its application in clinical diagnostic and treatment monitoring. The precision of perfusion MRI methods now rivals that of nuclear medicine-based perfusion imaging techniques. Because of their noninvasive nature, arterial spin labeling methods have gained popularity in studies of neuropsychiatric disorders such as schizophrenia, depression, Alzheimer's, and Parkinson's diseases. Perfusion imaging measurements have yet to be included within the diagnostic criteria of neuropsychiatric disorders despite having shown to have great discriminant power in specific disorders. As this young methodology continues to improve and research studies demonstrate the correlation of measured perfusion abnormalities to microcirculatory abnormalities and neuropsychiatric symptomatology, the idea of including such a test within diagnostic criteria for certain mental illnesses becomes increasingly plausible.
Collapse
|
36
|
Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol 2009; 30:876-84. [PMID: 19246526 DOI: 10.3174/ajnr.a1538] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The acetazolamide (ACZ) challenge test is a useful clinical tool and a reliable predictor of critically reduced perfusion. In patients with chronic steno-occlusive disease, the ability to maintain normal cerebral blood flow by reducing vascular resistance secondary to autoregulatory vasodilation is compromised. Identification of the presence and degree of autoregulatory vasodilation (reflecting the cerebrovascular reserve) is a significant prognostic factor in patients with chronic cerebrovascular disease. The pharmacologic challenge of a vasodilatory stimulus such as ACZ can also be used to optimize the treatment strategies for these patients. The pathophysiology, methods, and clinical applications of the ACZ challenge test are discussed in this article.
Collapse
Affiliation(s)
- A S Vagal
- Department of Radiology, Section of Neuroradiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0762, USA.
| | | | | | | |
Collapse
|
37
|
MacIntosh BJ, Pattinson KTS, Gallichan D, Ahmad I, Miller KL, Feinberg DA, Wise RG, Jezzard P. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab 2008; 28:1514-22. [PMID: 18506198 DOI: 10.1038/jcbfm.2008.46] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arterial spin labelling (ASL) has proved to be a promising magnetic resonance imaging (MRI) technique to measure brain perfusion. In this study, volumetric three-dimensional (3D) gradient and spin echo (GRASE) ASL was used to produce cerebral blood flow (CBF) and arterial arrival time (AAT) maps during rest and during an infusion of remifentanil. Gradient and spin echo ASL perfusion-weighted images were collected at multiple inflow times (500 to 2,500 ms in increments of 250 ms) to accurately fit an ASL perfusion model. Fit estimates were assessed using z-statistics, allowing voxels with a poor fit to be excluded from subsequent analyses. Nonparametric permutation testing showed voxels with a significant difference in CBF and AAT between conditions across a group of healthy participants (N=10). Administration of remifentanil produced an increase in end-tidal CO(2), an increase in CBF from 57+/-12.0 to 77+/-18.4 mL/100 g tissue per min and a reduction in AAT from 0.73+/-0.073 to 0.64+/-0.076 sec. Within grey matter, remifentanil produced a cerebrovascular response of 5.7+/-1.60 %CBF per mm Hg. Significant differences between physiologic conditions were observed in both CBF and AAT maps, indicating that 3D GRASE-ASL has the sensitivity to study changes in physiology at a voxel level.
Collapse
Affiliation(s)
- Bradley J MacIntosh
- FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zaharchuk G, Martin AJ, Dillon WP. Noninvasive imaging of quantitative cerebral blood flow changes during 100% oxygen inhalation using arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 2008; 29:663-7. [PMID: 18397966 DOI: 10.3174/ajnr.a0896] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Tracer studies have demonstrated that 100% oxygen inhalation causes a small cerebral blood flow (CBF) decrease. This study was performed to determine whether arterial spin-labeling (ASL), a noninvasive MR imaging technique, could image these changes with clinically reasonable imaging durations. MATERIALS AND METHODS Continuous ASL imaging was performed in 7 healthy subjects before, during, and after 100% oxygen inhalation. ASL difference signal intensity (DeltaM, control - label), CBF, and CBF percentage change were measured. A test-retest paradigm was used to calculate the variability of the initial and final room air CBF measurements. RESULTS During oxygen inhalation, DeltaM decreased significantly in all regions (eg, global DeltaM decreased by 23 +/- 11%, P < .01, all values mean +/- SD). Accounting for the reduced T1 of hyperoxygenated blood, we found a smaller CBF decrease, which did not reach significance in any of the regions. Global CBF dropped from 50 +/- 10 mL per 100 g/minute to 47 +/- 10 mL per 100 g/minute following 100% oxygen inhalation, a decrease of 5 +/- 14% (P > .17). The root-mean-square variability of the initial and final room air CBF measurements was 7-8 mL per 100 g/minute. CONCLUSIONS The DeltaM signal intensity decreased significantly with oxygen inhalation; however, after accounting for changes in blood T1 with oxygen, CBF decreases were small. Such measurements support the use of hyperoxia as an MR imaging contrast agent and may be helpful to interpret hyperoxia-based stroke trials.
Collapse
Affiliation(s)
- G Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA 94305-5487, USA.
| | | | | |
Collapse
|
39
|
Mandell DM, Han JS, Poublanc J, Crawley AP, Kassner A, Fisher JA, Mikulis DJ. Selective reduction of blood flow to white matter during hypercapnia corresponds with leukoaraiosis. Stroke 2008; 39:1993-8. [PMID: 18451357 DOI: 10.1161/strokeaha.107.501692] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Age-related white matter disease (leukoaraiosis) clusters in bands in the centrum semiovale, about the occipital and frontal horns of the lateral ventricles, in the corpus callosum, and internal capsule. Cerebrovascular anatomy suggests that some of these locations represent border zones between arterial supply territories. We hypothesized that there are zones of reduced cerebrovascular reserve (susceptible to selective reductions in blood flow, ie, steal phenomenon) in the white matter of young, healthy subjects, the physiological correlate of these anatomically defined border zones. Furthermore, we hypothesized that these zones spatially correspond with the regions where the elderly develop leukoaraiosis. METHODS Twenty-eight healthy volunteers underwent functional MR mapping of the cerebrovascular response to hypercapnia. We studied 18 subjects by blood oxygen level-dependent MRI and 10 subjects by arterial spin labeling MRI. We controlled both end-tidal pCO(2) and pO(2). All functional data was registered in Montreal Neurological Institute space and generated composite blood oxygen level-dependent MR and arterial spin labeling MR maps of cerebrovascular reserve. We compared these maps with frequency maps of leukoaraiosis published previously. RESULTS Composite maps demonstrated significant (90% CI excluding the value zero) steal phenomenon in the white matter. This steal was induced by relatively small changes in end-tidal pCO(2). It occurred precisely in those locations where elderly patients develop leukoaraiosis. CONCLUSIONS This steal phenomenon likely represents the physiological correlate of the previously anatomically defined internal border zones. Spatial concordance with white matter changes in the elderly raises the possibility that this steal phenomenon may have a pathogenetic role.
Collapse
Affiliation(s)
- Daniel M Mandell
- Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Mandell DM, Han JS, Poublanc J, Crawley AP, Stainsby JA, Fisher JA, Mikulis DJ. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in Patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 2008; 39:2021-8. [PMID: 18451352 DOI: 10.1161/strokeaha.107.506709] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Blood oxygen level-dependent MRI (BOLD MRI) of hypercapnia-induced changes in cerebral blood flow is an emerging technique for mapping cerebrovascular reactivity (CVR). BOLD MRI signal reflects cerebral blood flow, but also depends on cerebral blood volume, cerebral metabolic rate, arterial oxygenation, and hematocrit. The purpose of this study was to determine whether, in patients with stenoocclusive disease, the BOLD MRI signal response to hypercapnia is directly related to changes in cerebral blood flow. METHODS Thirty-eight patients with stenoocclusive disease underwent mapping of CVR by both BOLD MRI and arterial spin labeling MRI. The latter technique was used as a reference standard for measurement of cerebral blood flow changes. RESULTS Hemispheric CVR measured by BOLD MRI was significantly correlated with that measured by arterial spin labeling MRI for both gray matter (R=0.83, P<0.0001) and white matter (R=0.80, P<0.0001). Diagnostic accuracy (area under receiver operating characteristic curve) for BOLD MRI discrimination between normal and abnormal hemispheric CVR was 0.90 (95% CI=0.81 to 0.98; P<0.001) for gray matter and 0.82 (95% CI=0.70 to 0.94; P<0.001) for white matter. Regions of paradoxical CVR on BOLD MRI had a moderate predictive value (14 of 19 hemispheres) for spatially corresponding paradoxical CVR on arterial spin labeling MRI. Complete absence of paradoxical CVR on BOLD MRI had a high predictive value (31 of 31 hemispheres) for corresponding nonparadoxical CVR on arterial spin labeling MRI. CONCLUSIONS Arterial spin labeling MRI confirms that, even in patients with stenoocclusive disease, the BOLD MRI signal response to hypercapnia predominantly reflects changes in cerebral blood flow.
Collapse
Affiliation(s)
- Daniel M Mandell
- Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Jahng GH, Weiner MW, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. Med Phys 2007; 34:4519-25. [PMID: 18072518 PMCID: PMC2443744 DOI: 10.1118/1.2795675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Measurements of cerebral blood flow (CBF) with arterial spin labeling (ASL) MRI are challenging primarily due to a poor signal-to-noise (SNR) ratio. Therefore, methods that improve SNR and minimize measurement errors can play a significant role for better estimations of CBF. The purpose of this work was to develop an ASL method for measurements of CBF at high magnetic field strength. In the proposed multislice ASL method, using in-plane double inversion for labeling, stationary spins are kept at equilibrium to avoid T1 relaxation effects, while blood water is labeled using a lower magnetic field gradient. Improvement for CBF measurements is demonstrated on subjects and by comparison with other multislice ASL MRI methods at 1.5 Tesla. Furthermore, echo-planar imaging (EPI) and Turbo-FLASH (TFL) at 4 T MRI are compared for mapping CBF in human brain using various postlabeling delay times. CBF maps were obtained and analyzed within region-of-interests encompassing either gray matter or white matter. Elimination of T1 dependence of stationary spins in conjunction with avoidance of magnetization transfer mismatch between labeling and control scans lead to improved CBF measurements. Although measurements of CBF in brain tissue are feasible at 4 T using either EPI or TFL, TFL reduced contaminations from an intravascular signal and susceptibility-related artifacts, providing overall more robust CBF measurements than EPI. Therefore, the proposed ASL method in combination with TFL should be used for measuring CBF of human brain at 4T.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, East-West Neo Medical Center School of Medicine, Kyung Hee University, 149 Sangil-dong, Gangdong-gu, Seoul 134-090, South Korea
| | | | | |
Collapse
|
42
|
Dyer EAW, Hopkins SR, Perthen JE, Buxton RB, Dubowitz DJ. Regional cerebral blood flow during acute hypoxia in individuals susceptible to acute mountain sickness. Respir Physiol Neurobiol 2007; 160:267-76. [PMID: 18088570 DOI: 10.1016/j.resp.2007.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/01/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Individuals susceptible to high altitude pulmonary edema show altered pulmonary vascular responses within minutes of exposure to hypoxia. We hypothesized that a similar acute-phase vulnerability to hypoxia may exist in the brain of individuals susceptible to acute mountain sickness (AMS). In established AMS and high altitude cerebral edema, there is a propensity for vasogenic white matter edema. We therefore hypothesized that increased cerebral blood flow (CBF) during acute hypoxia would also be disproportionately greater in white matter (WM) than grey matter (GM) in AMS-susceptible subjects. We quantified regional CBF using arterial spin labeling MRI during 30 min hypoxia (F(I)O(2) = 0.125) in two groups: AMS-susceptible (AMS-S, n = 6) who invariably experienced AMS at altitude, and AMS-resistant (AMS-R, n = 6) who never experienced AMS despite multiple rapid ascents to high altitude. SaO(2) during hypoxia did not differ between groups (AMS-S = 87+/-4%, AMS-R = 89+/-3%, p = 0.3). Steady-state whole-brain CBF increased in hypoxia (p<0.005), but did not differ between groups (normoxia: AMS-S = 42.7+/-14.0 ml/(100 g min), AMS-R = 41.7+/-10.1 ml/(100 g min); hypoxia: AMS-S = 47.8+/-19.5 ml/(100 g min), AMS-R = 48.2+/-10.1 ml/(100 g min), p = 0.65), and cerebral oxygen delivery remained constant. The percent change in CBF did not differ between brain regions or between groups (although absolute CBF change was greater in GM): (GM: AMS-S = 6.1+/-7.7 ml/(100 g min) (10+/-11%), AMS-R = 8.3+/-5.7 ml/(100 g min) (17+/-11%), p = 0.57; WM: AMS-S = 4.3+/-5.1 ml/(100 g min) (12+/-15%), AMS-R = 4.8+/-2.9 ml/(100 g min) (16+/-9%), p = 0.82). CONCLUSION CBF increases in acute hypoxia, but is not different between WM and GM, irrespective of AMS susceptibility. Acute phase differences in regional CBF during acute hypoxia are not a primary feature of susceptibility to AMS.
Collapse
Affiliation(s)
- Edward A W Dyer
- Department of Medicine, Division of Physiology, University of California San Diego, USA
| | | | | | | | | |
Collapse
|
43
|
Asllani I, Borogovac A, Wright C, Sacco R, Brown TR, Zarahn E. An investigation of statistical power for continuous arterial spin labeling imaging at 1.5 T. Neuroimage 2007; 39:1246-56. [PMID: 18036834 DOI: 10.1016/j.neuroimage.2007.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/16/2022] Open
Abstract
Variance estimates can be used in conjunction with scientifically meaningful effect sizes to design experiments with type II error control. Here we present estimates of intra- and inter-subject variances for region of interest (ROI) from resting cerebral blood flow (CBF) maps obtained using whole brain, spin echo echoplanar (SE-EPI) continuous arterial spin labeling (CASL) imaging on 52 elderly subjects (age=70.5+/-7.9 years, 29 males). There was substantial intrasubject systematic variability in CBF of gray matter ROIs corresponding to a range of standard deviations=[39-168] (ml/(100 g min)). This variability was mainly due to two factors: (1) an expected inverse relationship between ROI volume and intrasubject variance and (2) an increased effective post-labeling delay for more superior slices acquired later in the sequence. For example, intrasubject variance in Brodmann area 4 (BA 4) was approximately 8 times larger than in hippocampus, despite their similar gray matter volumes. Estimated ROI-wise power was computed for various numbers of acquired CBF images, numbers of subjects, and CBF effect sizes for two experimental designs: independent sample t-test and paired t-test. The theoretical effects of pulse sequence and field strength on general applicability of these results are discussed.
Collapse
Affiliation(s)
- Iris Asllani
- The Department of Radiology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Ma Y, Eidelberg D. Functional imaging of cerebral blood flow and glucose metabolism in Parkinson's disease and Huntington's disease. Mol Imaging Biol 2007; 9:223-33. [PMID: 17334854 PMCID: PMC4455550 DOI: 10.1007/s11307-007-0085-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain imaging of cerebral blood flow and glucose metabolism has been playing key roles in describing pathophysiology of Parkinson's disease (PD) and Huntington's disease (HD), respectively. Many biomarkers have been developed in recent years to investigate the abnormality in molecular substrate, track the time course of disease progression, and evaluate the efficacy of novel experimental therapeutics. A growing body of literature has emerged on neurobiology of these two movement disorders in resting states and in response to brain activation tasks. In this paper, we review the latest applications of these approaches in patients and normal volunteers at rest conditions. The discussions focus on brain mapping studies with univariate and multivariate statistical analyses on a voxel basis. In particular, we present data to validate the reproducibility and reliability of unique spatial covariance patterns related with PD and HD.
Collapse
Affiliation(s)
- Yilong Ma
- Center for Neurosciences, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, New York University School of Medicine, Manhasset, NY, USA.
| | | |
Collapse
|
45
|
Bendlin BB, Trouard TP, Ryan L. Caffeine attenuates practice effects in word stem completion as measured by fMRI BOLD signal. Hum Brain Mapp 2007; 28:654-62. [PMID: 17094121 PMCID: PMC6871275 DOI: 10.1002/hbm.20295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caffeine ingestion results in increased brain cell metabolism (Nehlig et al. [1992] Brain Res Brain Res Rev 17:139-170) and decreased cerebral blood flow (Field et al. [2003] Radiology 227:129-135; Mulderink et al. [2002] Neuroimage 15:37-44). The current study investigated the effect of caffeine in a word stem completion task using only novel word stems (no repeated stimuli). Resting perfusion was measured with arterial spin labeled perfusion MRI, along with blood oxygenation level-dependent (BOLD) signal before and after ingestion of regular coffee, decaffeinated coffee, and water. Based on previous research (Laurienti et al. [2002] Neuroimage 17:751-757; Mulderink et al. [2002] Neuroimage 15:37-44), we hypothesized that caffeine would result in increased BOLD signal intensity and extent of BOLD activation. As expected, caffeine resulted in a significant decrease in cerebral perfusion. However, both the control and caffeine groups showed an increase in BOLD signal amplitude across two sets of novel word stems. Additionally, the control group showed a 50% reduction in the extent of BOLD activation, while the caffeine group showed no change in activation extent. Neither group showed changes in BOLD baseline signal over time, which had been suggested to mediate caffeine-related BOLD signal changes. The results suggest that caffeine may attenuate general task practice effects that have been described in recent functional MRI studies of word stem completion (Buckner et al. [2000] Brain 123:620-640).
Collapse
Affiliation(s)
- Barbara B. Bendlin
- Department of Psychology, Cognition and Neuroimaging Laboratories, University of Arizona, Tucson, Arizona
| | - Theodore P. Trouard
- Biomedical Engineering Program, Cognition and Neuroimaging Laboratories, University of Arizona, Tucson, Arizona
| | - Lee Ryan
- Department of Psychology, Cognition and Neuroimaging Laboratories, University of Arizona, Tucson, Arizona
| |
Collapse
|
46
|
Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 2007; 4:346-59. [PMID: 17599701 PMCID: PMC2031222 DOI: 10.1016/j.nurt.2007.04.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The two most common methods for measuring perfusion with MRI are based on dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL). Although clinical experience to date is much more extensive with DSC perfusion MRI, ASL methods offer several advantages. The primary advantages are that completely noninvasive absolute cerebral blood flow (CBF) measurements are possible with relative insensitivity to permeability, and that multiple repeated measurements can be obtained to evaluate one or more interventions or to perform perfusion-based functional MRI. ASL perfusion and perfusion-based functional MRI methods have been applied in many clinical settings, including acute and chronic cerebrovascular disease, CNS neoplasms, epilepsy, aging and development, neurodegenerative disorders, and neuropsychiatric diseases. Recent technical advances have improved the sensitivity of ASL perfusion MRI, and increasing use is expected in the coming years. The present review focuses on ASL perfusion MRI and applications in clinical neuroimaging.
Collapse
Affiliation(s)
- Ronald L Wolf
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
47
|
Hermes M, Hagemann D, Britz P, Lieser S, Rock J, Naumann E, Walter C. Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:103-15. [PMID: 17429703 DOI: 10.1007/s10334-007-0073-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Continuous arterial spin labeling (CASL) is a non-invasive technique for the measurement of cerebral blood flow (CBF). The aim of the present study was to examine the reproducibility of CASL measurements and its suitability to consistently detect differences between groups, regions, and resting states. MATERIALS AND METHODS Thirty-eight healthy subjects (19 female) were examined at 1.5 T on two measurement occasions that were seven weeks apart. Resting CBF was measured with eyes open and eyes closed. RESULTS In different regions of interest (ROIs) the repeatability estimates varied between 9 and 19 ml/100 g/min. There were no significant mean differences between occasions in all ROIs (P > 0.05). Greater CBF in the eyes-open than in the eyes-closed state was consistently present in the primary and secondary visual areas. Furthermore, CBF was consistently greater in the right than in the left hemisphere (P < 0.05) and differed between lobes and between arterial territories (P < 0.001). Finally, we consistently observed greater CBF in women than in men (P < 0.001). CONCLUSION This study demonstrates the suitability of CASL to consistently detect differences between groups, regions, and resting states even after seven weeks. This emphasizes its usefulness for longitudinal designs.
Collapse
Affiliation(s)
- Michael Hermes
- Department of Psychology, University of Trier, Trier, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ma J, Mehrkens JH, Holtmannspoetter M, Linke R, Schmid-Elsaesser R, Steiger HJ, Brueckmann H, Bruening R. Perfusion MRI before and after acetazolamide administration for assessment of cerebrovascular reserve capacity in patients with symptomatic internal carotid artery (ICA) occlusion: comparison with 99mTc-ECD SPECT. Neuroradiology 2007; 49:317-26. [PMID: 17200864 DOI: 10.1007/s00234-006-0193-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 11/14/2006] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Impaired cerebral vascular reserve (CVR) in patients with symptomatic internal carotid artery (ICA) occlusion is regarded as a possible indication for performing extra-/intracranial (EC/IC) bypass surgery. As perfusion MR imaging (MRI) can demonstrate cerebral haemodynamics at capillary level, our hypothesis was that perfusion MRI could be used in these patients for the evaluation of CVR following acetazolamide challenge in a similar way to single photon emission CT (SPECT) and might provide additional information. METHODS Enrolled in the study were 12 patients (mean age 61.3 years; 11 male, 1 female) with symptomatic unilateral ICA occlusion proven by angiography. Both perfusion MRI and 99m-technetium-ethyl-cysteinate dimer ((99m)Tc-ECD) SPECT were performed before and after injection of acetazolamide (Diamox ,1000 mg i.v.). CVR parameters including regional cerebral blood flow (rCBF) and volume (rCBV), and mean transit times (MTT) were measured by perfusion MRI. RESULTS The patients with impaired CVR proven by SPECT (n = 9) had a negative mean rCBF increment (-46.52%), negative rCBV increment (-13.5%) and delayed MTT (mean +2.98 s), respectively, on the occluded side (Student's t-test all P < 0.05). The patients with sufficient CVR (n = 3) had a mean rCBF increment of 1.2%, a decrement of rCBV of 10.46%, and a mean MTT shortening of 0.27 s following the acetazolamide injection. CONCLUSIONS Perfusion MRI before and after acetazolamide administration compares favourably with (99m)Tc-ECD SPECT for the detection of impaired CVR. The impact that perfusion MRI studies (before and after acetazolamide administration) might have on the treatment decision in patients with ICA occlusion has yet to be determined by a prospective study.
Collapse
Affiliation(s)
- J Ma
- Department of Neuroradiology, Klinikum Grosshadern, University of Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Petersen ET, Zimine I, Ho YCL, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006; 79:688-701. [PMID: 16861326 DOI: 10.1259/bjr/67705974] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The non-invasive nature of arterial spin labelling (ASL) has opened a unique window into human brain function and perfusion physiology. High spatial and temporal resolution makes the technique very appealing not only for the diagnosis of vascular diseases, but also in basic neuroscience where the aim is to develop a more comprehensive picture of the physiological events accompanying neuronal activation. However, low signal-to-noise ratio and the complexity of flow quantification make ASL one of the more demanding disciplines within MRI. In this review, the theoretical background and main implementations of ASL are revisited. In particular, the perfusion quantification methods, including the problems and pitfalls involved, are thoroughly discussed in this article. Finally, a brief summary of applications is provided.
Collapse
Affiliation(s)
- E T Petersen
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | | | | | | |
Collapse
|
50
|
Sangill R, Wallentin M, Østergaard L, Vestergaard-Poulsen P. The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2006; 19:105-14. [PMID: 16823579 DOI: 10.1007/s10334-006-0033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 04/18/2006] [Indexed: 11/30/2022]
Abstract
High sensitivity to magnetic susceptibility changes and accurate localization of functional activations are key requisites for pulse sequences used for BOLD fMRI. This paper seeks to develop a framework for analysing the performance of various k-space sampling techniques in this respect, with special emphasis on spiral EPI (spiral) and cartesian EPI (EPI) and their performance under influence of induced field gradients (SFGs) and stochastic noise. A numerical method for calculating synthetic MR images is developed and used to simulate BOLD fMRI experiments using EPI and spirals. The data is then examined for activation using a pixel-wise t test. Nine subjects are scanned with both techniques while performing a motor task. SPM99 is used for analysing the experimental data. The simulated spirals provide generally higher t scores at low SFGs but lose more strength than EPI at higher SFGs, where EPI activation is offset from the true position. In the primary motor area spirals provide significantly higher t scores (P < 0.0002). In-plane variation of EPI is higher in phase-encoding direction than in frequency-encoding direction (P < 0.003). In the low SFG areas spirals provide stronger activation than EPI and less spatial variability. Thus, spirals are recommended for fMRI in motor area and language areas.
Collapse
Affiliation(s)
- Ryan Sangill
- Department of Neuroradiology, Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|