1
|
Kroll T, Miranda A, Drechsel A, Beer S, Lang M, Drzezga A, Rosa-Neto P, Verhaeghe J, Elmenhorst D, Bauer A. Dynamic neuroreceptor positron emission tomography in non-anesthetized rats using point source based motion correction: A feasibility study with [ 11C]ABP688. J Cereb Blood Flow Metab 2024; 44:1852-1866. [PMID: 38684219 PMCID: PMC11504418 DOI: 10.1177/0271678x241239133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry. This study investigates the feasibility of fully awake acquisition and subsequent absolute quantification of dynamic brain PET data via pharmacokinetic modelling in moving rats using the glutamate 5 receptor radioligand [11C]ABP688 and point source based motion correction. Five male rats underwent three dynamic [11C]ABP688 PET scans: two test-retest awake PET scans and one scan under anesthesia for comparison. Specific radioligand binding was determined via the simplified reference tissue model (reference: cerebellum) and outcome parameters BPND and R1 were evaluated in terms of stability and reproducibility. Test-retest measurements in awake animals gave reliable results with high correlations of BPND (y = 1.08 × -0.2, r = 0.99, p < 0.01) and an acceptable variability (mean over all investigated regions 15.7 ± 2.4%). Regional [11C]ABP688 BPNDs under awake and anesthetized conditions were comparable although in awake scans, absolute radioactive peak uptakes were lower and relative blood flow in terms of R1 was higher. Awake small animal PET with absolute quantification of neuroreceptor availability is technically feasible and reproducible thereby providing a suitable alternative whenever effects of anesthesia are undesirable, e.g. in sleep research.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - Alexandra Drechsel
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Simone Beer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Markus Lang
- Institute of Neurosciences and Medicine (INM-5), Forschungszentrum Jülich GmbH, Germany
| | - Alexander Drzezga
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - David Elmenhorst
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Andreas Bauer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| |
Collapse
|
2
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
3
|
Biophysical review's 'meet the editors series'-a profile of Naranamangalam R. Jagannathan. Biophys Rev 2020; 12:607-614. [PMID: 32458372 DOI: 10.1007/s12551-020-00700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
|
4
|
Pérez-Cervera L, Caramés JM, Fernández-Mollá LM, Moreno A, Fernández B, Pérez-Montoyo E, Moratal D, Canals S, Pacheco-Torres J. Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI. Methods Mol Biol 2018; 1718:117-134. [PMID: 29341006 DOI: 10.1007/978-1-4939-7531-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.
Collapse
Affiliation(s)
- Laura Pérez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - José María Caramés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | | | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Begoña Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain.
| |
Collapse
|
5
|
Mishra AM, Bai X, Sanganahalli BG, Waxman SG, Shatillo O, Grohn O, Hyder F, Pitkänen A, Blumenfeld H. Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One 2014; 9:e95280. [PMID: 24748279 PMCID: PMC3991600 DOI: 10.1371/journal.pone.0095280] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/25/2014] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ) seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and contralateral parietal cortex and other regions. Our data provide the first evidence on abnormal functional connectivity after experimental TBI assessed with resting state BOLD-fMRI.
Collapse
Affiliation(s)
- Asht Mangal Mishra
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Xiaoxiao Bai
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Stephen G. Waxman
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience and Regeneration Research, West Haven, Connecticut, United States of America
| | - Olena Shatillo
- Department of Neurobiology, A. I. Virtanen Institute of Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Grohn
- Biomedical NMR research group, Biomedical Imaging Unit, University of Eastern Finland, Kuopio, Finland
| | - Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute of Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hal Blumenfeld
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
6
|
Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light. Curr Top Behav Neurosci 2012; 11:93-115. [PMID: 22411423 DOI: 10.1007/7854_2012_206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior.
Collapse
|
7
|
Kiryu S, Inoue Y, Watanabe M, Ohtomo K. Effect of isoflurane anesthesia and hypothermia on the hepatic kinetics of Gd-EOB-DTPA: evaluation using MRI of conscious mice. J Magn Reson Imaging 2011; 34:354-60. [PMID: 21692139 DOI: 10.1002/jmri.22650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/14/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a method for body magnetic resonance imaging (MRI) of conscious mice and investigate the effect of isoflurane anesthesia and hypothermia on the hepatic kinetics of gadoxetate disodium (Gd-EOB-DTPA). MATERIALS AND METHODS Conscious or anesthetized mice were restrained on a holder and the rectal temperature was measured serially. Serial MRI of the liver was performed after intravenous injection of Gd-EOB-DTPA with or without temperature control. Three mice were studied for each condition. RESULTS The temperature dropped rapidly in anesthetized mice beside the MR unit. The decline was less prominent in conscious mice. The temperature decreased less in anesthetized mice and remained constant in conscious mice in the radiofrequency (RF) coil. The washout of Gd-EOB-DTPA was slower in anesthetized hypothermic mice than in conscious normothermic mice. Warmed anesthetized mice showed faster washout, and cooled conscious mice showed delayed washout. Severer hypothermia in anesthetized mice resulted in weaker initial enhancement and slower washout. CONCLUSION By separately manipulating the presence or absence of anesthesia and hypothermia, we demonstrated that washout of Gd-EOB-DTPA was delayed under hypothermia, regardless of anesthesia. Serial body MRI of conscious mice was feasible and allowed the evaluation of kinetics of a contrast agent, while excluding the possible effects of anesthesia.
Collapse
Affiliation(s)
- Shigeru Kiryu
- Department of Radiology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
8
|
Naylor E, Aillon DV, Gabbert S, Harmon H, Johnson DA, Wilson GS, Petillo PA. Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep. J Electroanal Chem (Lausanne) 2011; 656:106-113. [PMID: 27076812 DOI: 10.1016/j.jelechem.2010.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report on electroencephalograph (EEG) and electromyograph (EMG) measurements concurrently with real-time changes in L-glutamate concentration. These data reveal a link between sleep state and extracellular neurotransmitter changes in a freely-moving (tethered) mouse. This study reveals, for the first time in mice, that the extracellular L-glutamate concentration in the pre-frontal cortex (PFC) increases during periods of extended wakefulness, decreases during extended sleep episodes and spikes during periods of REM sleep. Individual sleep epochs (10 s in duration) were scored as wake, slow-wave (SW) sleep or rapid eye movement (REM) sleep, and then correlated as a function of time with measured changes in L-glutamate concentrations. The observed L-glutamate levels show a statistically significant increase of 0.86 ± 0.26 μM (p < 0.05) over 37 wake episodes recorded from all mice (n = 6). Over the course of 49 measured sleep periods longer than 15 min, L-glutamate concentrations decline by a similar amount (0.88 ± 0.37 μM, p < 0.08). The analysis of 163 individual REM sleep episodes greater than one min in length across all mice (n = 6) demonstrates a significant rise in L-glutamate levels as compared to the 1 min preceding REM sleep onset (RM-ANOVA, DF = 20, F = 6.458, p < 0.001). The observed rapid changes in L-glutamate concentration during REM sleep last only between 1 and 3 min. The approach described can also be extended to other regions of the brain which are hypothesized to play a role in sleep. This study highlights the importance of obtaining simultaneous measurements of neurotransmitter levels in conjunction with sleep markers to help elucidate the underlying physiological and ultimately the genetic components of sleep.
Collapse
Affiliation(s)
- Erik Naylor
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Daniel V Aillon
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Seth Gabbert
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - Hans Harmon
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - David A Johnson
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| | - George S Wilson
- Department of Chemistry, Malott Hall, Room 3027, University of Kansas, Lawrence, KS 66045, United States
| | - Peter A Petillo
- Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States
| |
Collapse
|
9
|
Silva AC, Liu JV, Hirano Y, Leoni RF, Merkle H, Mackel JB, Zhang XF, Nascimento GC, Stefanovic B. Longitudinal functional magnetic resonance imaging in animal models. Methods Mol Biol 2011; 711:281-302. [PMID: 21279608 PMCID: PMC4748954 DOI: 10.1007/978-1-61737-992-5_14] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has had an essential role in furthering our understanding of brain physiology and function. fMRI techniques are nowadays widely applied in neuroscience research, as well as in translational and clinical studies. The use of animal models in fMRI studies has been fundamental in helping elucidate the mechanisms of cerebral blood-flow regulation, and in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. Because animals are inherently non-compliant, most fMRI performed to date have required the use of anesthesia, which interferes with brain function and compromises interpretability and applicability of results to our understanding of human brain function. An alternative approach that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during the data acquisition. In the present chapter, we review these two different approaches to obtaining fMRI data from animal models, with a specific focus on the acquisition of longitudinal data from the same subjects.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
CNS animal fMRI in pain and analgesia. Neurosci Biobehav Rev 2010; 35:1125-43. [PMID: 21126534 DOI: 10.1016/j.neubiorev.2010.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a "language of translation" between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia.
Collapse
|
11
|
Howles GP, Nouls JC, Qi Y, Johnson GA. Rapid production of specialized animal handling devices using computer-aided design and solid freeform fabrication. J Magn Reson Imaging 2009; 30:466-71. [PMID: 19629999 DOI: 10.1002/jmri.21821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a process for rapidly and inexpensively producing customized animal handling devices for small animal imaging. MATERIALS AND METHODS To meet the specific needs of a particular imaging experiment, measurements are taken from imaging data and the animal handling devices are designed using 3D computer-aided design (CAD) software. Parts are produced in a few days using solid freeform fabrication (SFF, a.k.a. rapid prototyping). RESULTS This process is illustrated with the production of an animal handling system for stereotaxically prescribed therapeutic ultrasound and MRI of the mouse brain. The device provides integrated head-fixation, anesthesia delivery, and physiological monitoring in a modular system. Design and production took approximately 1 week and the cost was a small fraction of a traditional machine shop. CONCLUSION Commercial animal handling products typically have limited functionality and are not integrated with other laboratory infrastructure. However, using CAD and SFF, sophisticated animal handling devices can be produced to meet the specific experimental needs. This process is typically faster and less expensive than using a traditional machine shop, and the products are more robust than typical homemade devices. Using high-quality purpose-built devices permits experiments to be executed with greater consistency and higher throughput.
Collapse
Affiliation(s)
- Gabriel P Howles
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatiotemporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and frontoparietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- QNMR, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Chahboune H, Mahdjoub R, Desgoutte P, Rousset C, Briguet A, Cespuglio R. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat. J Neurochem 2008; 106:1552-62. [PMID: 18507739 DOI: 10.1111/j.1471-4159.2008.05499.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of chloramphenicol (antibiotic inhibiting complex-1 of respiratory chain) and thioamphenicol (TAP, a structural analog of CAP inactive on complex-1) were examined on cerebral energy metabolites and sleep-wake cycle architecture in rat. In the first group, animals were chronically equipped with a cranial surface resonator and (31)P spectroscopic measurements were performed using a 2 T magnetic resonance spectrometer (operating frequency 34.46 MHz). CAP administration (400 mg/kg, tail vein, light period) induced deficits in phosphocreatine (-30%, p < 0.01) and ATP (-40%, p < 0.01), whereas TAP (400 mg/kg) had no effect. In the second group, animals were chronically implanted with polygraphic electrodes for EEG and electromyogram recordings. CAP administered intraperitoneally at light-onset reduced rapid-eye movement (REM) sleep (-60% in the first 6 h of light period, p < 0.01), increased waking state (+65% in the first 6 h of light period, p < 0.01), and slightly affected slow-wave sleep (SWS). During waking state, theta and sigma power bands of the EEG were, respectively, increased and decreased (p < 0.05). During SWS, delta power band was reinforced (p < 0.05), while theta, alpha, and sigma bands were decreased (p < 0.05). No changes occurred during REM sleep. TAP had no effect on sleep-wake states and spectral components of the EEG. Overall, these data indicate that REM sleep occurrence is linked to an aerobic production of ATP.
Collapse
Affiliation(s)
- Halima Chahboune
- Anlyan Center for Medical Research, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
14
|
A reliable positioning device for dorsoventral cephalometric radiography of the rat. Lab Anim (NY) 2008; 37:127-31. [DOI: 10.1038/laban0308-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/03/2007] [Indexed: 11/08/2022]
|
15
|
Hildebrandt IJ, Su H, Weber WA. Anesthesia and Other Considerations for in Vivo Imaging of Small Animals. ILAR J 2008; 49:17-26. [DOI: 10.1093/ilar.49.1.17] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Abstract
Functional magnetic resonance imaging (fMRI) has become a widely used imaging modality in the past decade in both human studies and animal models. Epilepsy presents unique challenges for neuroimaging due to subject movement during seizures, and the need to correlate the timing of often unpredictable seizure events with fMRI data acquisition. These challenges can readily be overcome in animal models of epilepsy. Animal models also provide an opportunity to investigate the fundamental relationships between fMRI signals and brain electrical activity through invasive studies not possible in humans. fMRI studies in animal models of epilepsy can enable us to correctly interpret fMRI signal increases and decreases in human studies, ultimately elucidating specific networks that will be targeted for improved treatment of epilepsy.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Department of Neurology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA.
| |
Collapse
|
17
|
Abstract
Despite its excellent temporal resolution, electroencephalogram (EEG) has poor spatial resolution to study the participation of different brain areas in epileptic discharges, and the propagation of seizures to subcortical areas is not revealed. Furthermore, EEG provides no information about metabolic changes that occur in the brain before and during the epileptic discharges. Thus, monitoring variations in blood flow and oxygenation in response to epileptic discharges can provide additional complementary information. Functional magnetic resonance imaging (fMRI) technology can be used to study the hemodynamic changes associated with interictal epileptiform discharges or epileptic seizures (i.e., before, during or after them) in experimental animal models and may noninvasively monitor these changes over time. Blood oxygenation level-dependent fMRI has superior spatial resolution compared with other functional imaging modalities and utilizes changes in local magnetic field properties to measure the amount of deoxyhemoglobin in each brain areas as an indicator of brain activity. Simultaneous recording of EEG and fMRI is required to achieve this objective. This article describes methods of acquiring and monitoring EEG during fMRI studies in experimental animals. Particular attention will be paid to methods used to eliminate artifacts induced in the acquired magnetic resonance images by EEG equipment and MR-related artifacts in EEG recordings.
Collapse
Affiliation(s)
- Seyed M Mirsattari
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Parzy E, Fromes Y, Thiaudiere E, Carlier PG. Refinement of cardiac NMR imaging in awake hamsters: proof of feasibility and characterization of cardiomyopathy. NMR IN BIOMEDICINE 2007; 20:615-23. [PMID: 17405188 DOI: 10.1002/nbm.1154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The goal of this study was to demonstrate the feasibility of cardiac NMR imaging in conscious hamsters and its usefulness in evaluating cardiac abnormalities in a small-animal model of cardiomyopathy. Awake hamsters, controls and cardiomyopathic ones (CHF 147), were immobilized in a dedicated holder. Half-Fourier single-shot FSE imaging, with outer-volume suppression and 'black-blood' contrast provided images free from motion artifact with good visualization of cardiac anatomy at any point in the cardiac cycle. Series of double-oblique views were acquired with or without electrocardiograph gating. Image acquisition time was 55 ms, with an in-plane resolution of 470 x 625 microm2. Left ventricular volumes, ejection fraction, and myocardium NMR signal heterogeneity were compared in CHF 147 and control hearts. Left ventricles of CHF 147 hamsters were dilated, as indicated by the increase in end-diastolic cavity volume (299 +/- 79 mm3 compared with the controls (141 +/- 39 mm3; P = 0.0002). Left ventricular ejection fraction was largely reduced (45 +/- 9% vs 86 +/- 4%; P < 0.0001). The NMR signal distribution at an effective echo time of 41 ms was more heterogeneous in the myocardial wall of CHF 147 hamsters than in controls (1.87 +/- 0.37 a.u. vs 0.98 +/- 0.12 a.u., respectively; P = 0.0002). This study is a refinement of animal experimentation, as it demonstrates for the first time that characteristic features of cardiac pathology can be evaluated with ultra-fast NMR imaging in conscious small rodents.
Collapse
Affiliation(s)
- Elodie Parzy
- NMR Laboratory, AFM CEA, Institute of Myology, IFR14, Paris, France.
| | | | | | | |
Collapse
|
19
|
Mirsattari SM, Bihari F, Leung LS, Menon RS, Wang Z, Ives JR, Bartha R. Physiological monitoring of small animals during magnetic resonance imaging. J Neurosci Methods 2005; 144:207-13. [PMID: 15910980 DOI: 10.1016/j.jneumeth.2004.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/23/2022]
Abstract
Maintaining a stable physiologic state is essential when studying animal models of epilepsy with simultaneous electroencephalograph (EEG) and functional magnetic resonance imaging (fMRI) or EEG and magnetic resonance spectroscopy (MRS). To achieve and maintain such stability in rats in the MRI environment, a minimally invasive but comprehensive system was developed to monitor body temperature, heart rate, blood pressure, blood oxygen saturation and end-tidal CO2 (ETCO2) of expired gas. All physiologic parameters were successfully monitored in Sprague-Dawley rats without interfering with EEG recordings during simultaneous fMRI and MRS studies. Body temperature, heart rate, blood pressure, blood oxygen saturation, and ETCO2, were maintained between 36.5 and 37.5 degrees C, 250-450 beats/min, 136+/-17 mmHg, >90%, and 20-35 mmHg, respectively for 6-8 h under inhalational anesthesia. This set-up could be extended to study in vivo applications in other laboratory animals with only minor modifications.
Collapse
Affiliation(s)
- Seyed M Mirsattari
- Department of Clinical Neurological Sciences, University of Western Ontario, 10-OP3, 339 Windermere Rd, London, Ont., Canada, N6A 5A5.
| | | | | | | | | | | | | |
Collapse
|
20
|
Mirsattari SM, Ives JR, Bihari F, Leung LS, Menon RS, Bartha R. Real-time display of artifact-free electroencephalography during functional magnetic resonance imaging and magnetic resonance spectroscopy in an animal model of epilepsy. Magn Reson Med 2005; 53:456-64. [PMID: 15678533 DOI: 10.1002/mrm.20357] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Simultaneous recording of electroencephalogram (EEG) and functional MRI (fMRI) or MR spectroscopy (MRS) can provide further insight into our understanding of the underlying mechanisms of neurologic disorders. Current technology for simultaneous EEG and MRI recording is limited by extensive postacquisition processing of the data. Real-time display of artifact-free EEG recording during fMRI/MRS studies is essential in studies that involve epilepsy to ensure that they address specific EEG features such as epileptic spikes or seizures. By optimizing the EEG recording equipment to maximize the common mode rejection ratio of its amplifiers, a unique EEG system was designed and tested that allowed real-time display of the artifact-free EEG during fMRI/MRS in an animal model of epilepsy. Spike recordings were optimized by suppression of the background EEG activity using fast-acting and easily controlled inhalational anesthesia. Artifact suppression efficiency of 70-100% was achieved following direct subtraction of referentially recorded filtered EEG tracings from active electrodes, which were located in close proximity to each other (over homologous occipital cortices) and a reference electrode. Two independent postacquisition processing tools, independent component analysis and direct subtraction of unfiltered digital EEG data in MATLAB, were used to verify the accuracy of real-time EEG display.
Collapse
Affiliation(s)
- Seyed M Mirsattari
- Neuroscience Graduate Program, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Khubchandani M, Jagannathan NR, Mallick HN, Mohan Kumar V. Functional MRI shows activation of the medial preoptic area during sleep. Neuroimage 2005; 26:29-35. [PMID: 15862202 DOI: 10.1016/j.neuroimage.2005.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 12/25/2004] [Accepted: 01/07/2005] [Indexed: 11/28/2022] Open
Abstract
Changes in the activity of the basal forebrain sleep regulating areas were studied noninvasively in conscious rats by employing functional magnetic resonance imaging (fMRI). Sleep-wakefulness (S-W) stages were identified with the help of electrophysiological recordings carried out simultaneously. An increase in the signal intensity was observed in the medial preoptic area (mPOA) during sleep indicating a heightened activity of neurons in this area. In some rats, there was a decrease in the activity of the fronto-parietal cortex. The sleep-induced increase in activity in the mPOA and decrease in the fronto-parietal cortex are in relation to their levels in the awake state. The findings helped to localize the critical area for the maintenance of slow wave sleep at the mPOA. These results further corroborate some of the previous suggestions based on neurotoxic lesion, chemical stimulation and electrophysiological recordings.
Collapse
Affiliation(s)
- M Khubchandani
- Department of N.M.R, All India Institute of Medical Sciences, New Delhi
| | | | | | | |
Collapse
|
22
|
Tenney JR, Marshall PC, King JA, Ferris CF. fMRI of generalized absence status epilepticus in conscious marmoset monkeys reveals corticothalamic activation. Epilepsia 2004; 45:1240-7. [PMID: 15461678 DOI: 10.1111/j.0013-9580.2004.21504.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE A nonhuman primate model of generalized absence status epilepticus was developed for use in functional magnetic resonance imaging (fMRI) experiments to elucidate the brain mechanisms underlying this disorder. METHODS Adult male marmoset monkeys (Callithrix jacchus) were treated with gamma-butyrolactone (GBL) to induce prolonged absence seizures, and the resulting spike-wave discharges (SWDs) were analyzed to determine the similarity to the 3-Hz SWDs that characterize the disorder. In addition, blood-oxygenation-level-dependent (BOLD) fMRI was measured at 4.7 Tesla after absence seizure induction with GBL. RESULTS Electroencephalographic recordings during imaging showed 3-Hz SWDs typical of human absence seizures. This synchronized EEG pattern started within 15 to 20 min of drug administration and persisted for >60 min. In addition, pretreatment with the antiepileptic drug, ethosuximide (ESM), blocked the behavioral and EEG changes caused by GBL. Changes in BOLD signal intensity in the thalamus and sensorimotor cortex correlated with the onset of 3-Hz SWDs. The change in BOLD signal intensity was bilateral but heterogeneous, affecting some brain areas more than others. No significant negative BOLD changes were seen. CONCLUSIONS The BOLD fMRI data obtained in this marmoset monkey model of absence status epilepticus shows activation within the thalamus and cortex.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | |
Collapse
|
23
|
Fricke ST, Vink R, Chiodo C, Cernak I, Ileva L, Faden AI. Consistent and reproducible slice selection in rodent brain using a novel stereotaxic device for MRI. J Neurosci Methods 2004; 136:99-102. [PMID: 15126050 DOI: 10.1016/j.jneumeth.2004.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 08/25/2003] [Accepted: 01/09/2004] [Indexed: 11/20/2022]
Abstract
Typically small animal radiological images are obtained after placing the animal in the center of the imaging device using beds or platforms, and then adjusting the position after obtaining a scout image. Such a process does not permit the reproducible visualization of the same anatomical plane with repeated examinations. We have developed a device that allows stereotaxic placement of an animal in precisely the same position for repeated examinations. The instrument incorporates a full range of physiological monitoring and life support systems including temperature control, anesthesia delivery and respiratory monitoring. Using magnetic resonance imaging (MRI), the accuracy and reliability of this device is demonstrated in a rat traumatic brain injury (TBI) model.
Collapse
Affiliation(s)
- S T Fricke
- Department of Neuroscience, Research Building, Room WB-01, Georgetown University, P.O. Box 571464, Washington, DC 20057-1464, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Dubowitz DJ. Direct Comparison of Visual Cortex Activation in Human and Nonhuman Primates Using Functional Magnetic Resonance Imaging. Methods Enzymol 2004; 385:102-34. [PMID: 15130736 DOI: 10.1016/s0076-6879(04)85007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- David J Dubowitz
- Department of Radiology, Center for Functional Magnetic Resonance Imaging, University of California-San Diego, La Jolla, CA 92093-0677, USA
| |
Collapse
|
25
|
Khubchandani M, Jagannathan NR. Simultaneous Electrophysiology and Functional Magnetic Resonance Imaging Studies in Conscious Rats. Methods Enzymol 2004; 385:63-84. [PMID: 15130733 DOI: 10.1016/s0076-6879(04)85004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- M Khubchandani
- Department of Nuclear Magnetic Resonance, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|