1
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
2
|
Esmaeili M, Strasser B, Bogner W, Moser P, Wang Z, Andronesi OC. Whole-Slab 3D MR Spectroscopic Imaging of the Human Brain With Spiral-Out-In Sampling at 7T. J Magn Reson Imaging 2021; 53:1237-1250. [PMID: 33179836 PMCID: PMC8717862 DOI: 10.1002/jmri.27437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic imaging using proton magnetic resonance spectroscopic imaging (MRSI) has increased the sensitivity and spectral resolution at field strengths of ≥7T. Compared to the conventional Cartesian-based spectroscopic imaging, spiral trajectories enable faster data collection, promising the clinical translation of whole-brain MRSI. Technical considerations at 7T, however, lead to a suboptimal sampling efficiency for the spiral-out (SO) acquisitions, as a significant portion of the trajectory consists of rewinders. PURPOSE To develop and implement a spiral-out-in (SOI) trajectory for sampling of whole-brain MRSI at 7T. We hypothesized that SOI will improve the signal-to-noise ratio (SNR) of metabolite maps due to a more efficient acquisition. STUDY TYPE Prospective. SUBJECTS/PHANTOM Five healthy volunteers (28-38 years, three females) and a phantom. FIELD STRENGTH/SEQUENCE Navigated adiabatic spin-echo spiral 3D MRSI at 7T. ASSESSMENT A 3D stack of SOI trajectories was incorporated into an adiabatic spin-echo MRSI sequence with real-time motion and shim correction. Metabolite spectral fitting, SNR, and Cramér-Rao lower bound (CRLB) were obtained. We compared the signal intensity and CRLB of three metabolites of tNAA, tCr, and tCho. Peak SNR (PSNR), structure similarity index (SSIM), and signal-to-artifact ratio were evaluated on water maps. STATISTICAL TESTS The nonparametric Mann-Whitney U-test was used for statistical testing. RESULTS Compared to SO, the SOI trajectory: 1) increased the k-space sampling efficiency by 23%; 2) is less demanding for the gradient hardware, requiring 36% lower Gmax and 26% lower Smax ; 3) increased PSNR of water maps by 4.94 dB (P = 0.0006); 4) resulted in a 29% higher SNR (P = 0.003) and lower CRLB by 26-35% (P = 0.02, tNAA), 35-55% (P = 0.03, tCr), and 22-23% (P = 0.04, tCho), which increased the number of well-fitted voxels (eg, for tCr by 11%, P = 0.03). SOI did not significantly change the signal-to-artifact ratio and SSIM (P = 0.65) compared to SO. DATA CONCLUSION SOI provided more efficient MRSI at 7T compared to SO, which improved the data quality and metabolite quantification. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Philipp Moser
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Zhe Wang
- Siemens Medical Solutions, Charlestown, Massachusetts, USA
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Lee DH. Editorial for "Whole-Slab 3D MR Spectroscopic Imaging of the Human Brain With Spiral-Out-In Sampling at 7T". J Magn Reson Imaging 2020; 53:1251-1252. [PMID: 33190358 DOI: 10.1002/jmri.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dong-Hoon Lee
- Department of Radiation Convergence Engineering, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
4
|
Esmaeili M, Stockmann J, Strasser B, Arango N, Thapa B, Wang Z, van der Kouwe A, Dietrich J, Cahill DP, Batchelor TT, White J, Adalsteinsson E, Wald L, Andronesi OC. An integrated RF-receive/B 0-shim array coil boosts performance of whole-brain MR spectroscopic imaging at 7 T. Sci Rep 2020; 10:15029. [PMID: 32929121 PMCID: PMC7490394 DOI: 10.1038/s41598-020-71623-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Metabolic imaging of the human brain by in-vivo magnetic resonance spectroscopic imaging (MRSI) can non-invasively probe neurochemistry in healthy and disease conditions. MRSI at ultra-high field (≥ 7 T) provides increased sensitivity for fast high-resolution metabolic imaging, but comes with technical challenges due to non-uniform B0 field. Here, we show that an integrated RF-receive/B0-shim (AC/DC) array coil can be used to mitigate 7 T B0 inhomogeneity, which improves spectral quality and metabolite quantification over a whole-brain slab. Our results from simulations, phantoms, healthy and brain tumor human subjects indicate improvements of global B0 homogeneity by 55%, narrower spectral linewidth by 29%, higher signal-to-noise ratio by 31%, more precise metabolite quantification by 22%, and an increase by 21% of the brain volume that can be reliably analyzed. AC/DC shimming provide the highest correlation (R2 = 0.98, P = 0.001) with ground-truth values for metabolite concentration. Clinical translation of AC/DC and MRSI is demonstrated in a patient with mutant-IDH1 glioma where it enables imaging of D-2-hydroxyglutarate oncometabolite with a 2.8-fold increase in contrast-to-noise ratio at higher resolution and more brain coverage compared to previous 7 T studies. Hence, AC/DC technology may help ultra-high field MRSI become more feasible to take advantage of higher signal/contrast-to-noise in clinical applications.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bijaya Thapa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhe Wang
- Siemens Medical Solutions, USA, Charlestown, MA, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy T Batchelor
- Department Neurology, Brigham's and Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Building 149, Room 2301 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
5
|
Vidya Shankar R, Chang JC, Hu HH, Kodibagkar VD. Fast data acquisition techniques in magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2019; 32:e4046. [PMID: 30637822 DOI: 10.1002/nbm.4046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - John C Chang
- Banner M D Anderson Cancer Center, Gilbert, AZ, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Houchun H Hu
- Department of Radiology and Medical Imaging, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Steinseifer IK, Philips BWJ, Gagoski B, Weiland E, Scheenen TWJ, Heerschap A. Flexible proton 3D MR spectroscopic imaging of the prostate with low-power adiabatic pulses for volume selection and spiral readout. Magn Reson Med 2016; 77:928-935. [PMID: 26968422 DOI: 10.1002/mrm.26181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE Cartesian k-space sampling in three-dimensional magnetic resonance spectroscopic imaging (MRSI) of the prostate limits the selection of voxel size and acquisition time. Therefore, large prostates are often scanned at reduced spatial resolutions to stay within clinically acceptable measurement times. Here we present a semilocalized adiabatic selective refocusing (sLASER) sequence with gradient-modulated offset-independent adiabatic (GOIA) refocusing pulses and spiral k-space acquisition (GOIA-sLASER-Spiral) for fast prostate MRSI with enhanced resolution and extended matrix sizes. METHODS MR was performed at 3 tesla with an endorectal receive coil. GOIA-sLASER-Spiral at an echo time (TE) of 90 ms was compared to a point-resolved spectroscopy sequence (PRESS) with weighted, elliptical phase encoding at an TE of 145 ms using simulations and measurements of phantoms and patients (n = 9). RESULTS GOIA-sLASER-Spiral acquisition allows prostate MR spectra to be obtained in ∼5 min with a quality comparable to those acquired with a common Cartesian PRESS protocol in ∼9 min, or at an enhanced spatial resolution showing more precise tissue allocation of metabolites. Extended field of views (FOVs) and matrix sizes for large prostates are possible without compromising spatial resolution or measurement time. CONCLUSION The flexibility of spiral sampling enables prostate MRSI with a wide range of resolutions and FOVs without undesirable increases in acquisition times, as in Cartesian encoding. This approach is suitable for routine clinical exams of prostate metabolites. Magn Reson Med 77:928-935, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Isabell K Steinseifer
- Department of Radiology and Nuclear Medicine (667), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart W J Philips
- Department of Radiology and Nuclear Medicine (667), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine (667), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine (667), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Andronesi OC, Gagoski BA, Adalsteinsson E, Sorensen AG. Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories. NMR IN BIOMEDICINE 2012; 25:195-209. [PMID: 21774010 PMCID: PMC3261335 DOI: 10.1002/nbm.1730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
In this work we introduce the concept of correlation chemical shift imaging (CCSI). Novel CCSI pulse sequences are demonstrated on clinical scanners for two-dimensional Correlation Spectroscopy (COSY) and Total Correlation Spectroscopy (TOCSY) imaging experiments. To date there has been limited progress reported towards a feasible and robust multivoxel 2D COSY. Localized 2D TOCSY imaging is shown for the first time in this work. Excitation with adiabatic GOIA-W(16,4) pulses (Gradient Offset Independent Adiabaticity Wurst modulation) provides minimal chemical shift displacement error, reduced lipid contamination from subcutaneous fat, uniform optimal flip angles, and efficient mixing for coupled spins, while enabling short repetition times due to low power requirements. Constant-density spiral readout trajectories are used to acquire simultaneously two spatial dimensions and f(2) frequency dimension in (k(x),k(y),t(2)) space in order to speed up data collection, while f(1) frequency dimension is encoded by consecutive time increments of t(1) in (k(x),k(y),t(1),t(2)) space. The efficient spiral sampling of the k-space enables the acquisition of a single-slice 2D COSY dataset with an 8 × 8 matrix in 8:32 min on 3 T clinical scanners, which makes it feasible for in vivo studies on human subjects. Here we present the first results obtained on phantoms, human volunteers and patients with brain tumors. The patient data obtained by us represent the first clinical demonstration of a feasible and robust multivoxel 2D COSY. Compared to the 2D J-resolved method, 2D COSY and TOCSY provide increased spectral dispersion which scales up with increasing main magnetic field strength and may have improved ability to unambiguously identify overlapping metabolites. It is expected that the new developments presented in this work will facilitate in vivo application of 2D chemical shift correlation MRS in basic science and clinical studies.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | |
Collapse
|
8
|
Andronesi OC, Gagoski BA, Sorensen AG. Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology 2011; 262:647-61. [PMID: 22187628 DOI: 10.1148/radiol.11110277] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. RESULTS Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. CONCLUSION The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Suite 2301, Boston, MA 02129, USA.
| | | | | |
Collapse
|
9
|
Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging 2009; 29:412-21. [PMID: 19161197 DOI: 10.1002/jmri.21465] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate ultrashort TE spectroscopic imaging (UTESI) of short T2 tissues in the musculoskeletal (MSK) system. MATERIALS AND METHODS Ultrashort TE pulse sequence is able to detect rapidly decaying signals from tissues with a short T2 relaxation time. Here a time efficient spectroscopic imaging technique based on a multiecho interleaved variable TE UTE acquisition is proposed for high-resolution spectroscopic imaging of the short T2 tissues in the MSK system. The projections were interleaved into multiple groups with the data for each group being collected with progressively increasing TEs. The small number of projections in each group sparsely but uniformly sampled k-space. Spectroscopic images were generated through Fourier transformation of the time domain images at variable TEs. T2* was quantified through exponential fitting of the time domain images or line shape fitting of the magnitude spectrum. The feasibility of this technique was demonstrated in volunteer and cadaveric specimen studies on a clinical 3T scanner. RESULTS UTESI was applied to six cadaveric specimens and four human volunteers. High spatial resolution and contrast images were generated for the deep radial and calcified layers of articular cartilage, menisci, ligaments, tendons, and entheses, respectively. Line shape fitting of the UTESI magnitude spectroscopic images show a short T2* of 1.34 +/- 0.56 msec, 4.19 +/- 0.68 msec, 3.26 +/- 0.34 msec, 1.96 +/- 0.47 msec, and 4.21 +/- 0.38 msec, respectively. CONCLUSION UTESI is a time-efficient method to image and characterize the short T2 tissues in the MSK system with high spatial resolution and high contrast.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, California, USA.
| | | | | |
Collapse
|
10
|
Kim DH, Gu M, Spielman DM. Gradient moment compensated magnetic resonance spectroscopic imaging. Magn Reson Med 2009; 61:457-61. [PMID: 19161164 DOI: 10.1002/mrm.21832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spectroscopic imaging applications outside of the brain can suffer from artifacts due to inherent long scan times and susceptibility to motion. A fast spectroscopic imaging sequence has been devised with reduced sensitivity to motion. The sequence uses oscillating readout gradients and acquires k-space data in a spiral out-in fashion, which allows fast k-space coverage. We show that a spiral out-in readout acquisition is characterized by small gradient moments, reducing sensitivity to motion-induced artifacts. Data are acquired comparing the sequence to normal phase encoded spectroscopic imaging and conventional spiral spectroscopic imaging protocols. In addition, in vivo data are acquired from the liver, demonstrating potential usage as a multivoxel fat/water spectroscopic imaging tool. Results indicate that in the presence of motion, ghosting effects are reduced while metabolite signal increases of approximately 10% can be achieved.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
11
|
Provent P, Benito M, Hiba B, Farion R, López-Larrubia P, Ballesteros P, Rémy C, Segebarth C, Cerdán S, Coles JA, García-Martín ML. Serial In vivo Spectroscopic Nuclear Magnetic Resonance Imaging of Lactate and Extracellular pH in Rat Gliomas Shows Redistribution of Protons Away from Sites of Glycolysis. Cancer Res 2007; 67:7638-45. [PMID: 17699768 DOI: 10.1158/0008-5472.can-06-3459] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The acidity of the tumor microenvironment aids tumor growth, and mechanisms causing it are targets for potential therapies. We have imaged extracellular pH (pHe) in C6 cell gliomas in rat brain using 1H magnetic resonance spectroscopy in vivo. We used a new probe molecule, ISUCA [(±)2-(imidazol-1-yl)succinic acid], and fast imaging techniques, with spiral acquisition in k-space. We obtained a map of metabolites [136 ms echo time (TE)] and then infused ISUCA in a femoral vein (25 mmol/kg body weight over 110 min) and obtained two consecutive images of pHe within the tumor (40 ms TE, each acquisition taking 25 min). pHe (where ISUCA was present) ranged from 6.5 to 7.5 in voxels of 0.75 μL and did not change detectably when [ISUCA] increased. Infusion of glucose (0.2 mmol/kg·min) decreased tumor pHe by, on average, 0.150 (SE, 0.007; P < 0.0001, 524 voxels in four rats) and increased the mean area of measurable lactate peaks by 54.4 ± 3.4% (P < 0.0001, 287 voxels). However, voxel-by-voxel analysis showed that, both before and during glucose infusion, the distributions of lactate and extracellular acidity were very different. In tumor voxels where both could be measured, the glucose-induced increase in lactate showed no spatial correlation with the decrease in pHe. We suggest that, although glycolysis is the main source of protons, distributed sites of proton influx and efflux cause pHe to be acidic at sites remote from lactate production. [Cancer Res 2007;67(16):7638–45]
Collapse
Affiliation(s)
- Peggy Provent
- Institut National de la Santé et de la Recherche Médicale, U836, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gao Y, Strakowski SM, Reeves SJ, Hetherington HP, Chu WJ, Lee JH. Fast spectroscopic imaging using online optimal sparsek-space acquisition and projections onto convex sets reconstruction. Magn Reson Med 2006; 55:1265-71. [PMID: 16680731 DOI: 10.1002/mrm.20905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Long acquisition times, low resolution, and voxel contamination are major difficulties in the application of magnetic resonance spectroscopic imaging (MRSI). To overcome these difficulties, an online-optimized acquisition of k-space, termed sequential forward array selection (SFAS), was developed to reduce acquisition time without sacrificing spatial resolution. A 2D proton MRSI region of interest (ROI) was defined from a scout image and used to create a region of support (ROS) image. The ROS was then used to optimize and obtain a subset of k-space (i.e., a subset of nonuniform phase encodings) and hence reduce the acquisition time for MRSI. Reconstruction and processing software was developed in-house to process and reconstruct MRSI using the projections onto convex sets method. Phantom and in vivo studies showed that good-quality MRS images are obtainable with an approximately 80% reduction of data acquisition time. The reduction of the acquisition time depends on the area ratio of ROS to FOV (i.e., the smaller the ratio, the greater the time reduction). It is also possible to obtain higher-resolution MRS images within a reasonable time using this approach. MRSI with a resolution of 64 x 64 is possible with the acquisition time of the same as 24 x 24 using the traditional full k-space method.
Collapse
Affiliation(s)
- Yun Gao
- Center for Imaging Research, University of Cincinnati College of Medicine, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
13
|
Li S, Shen J. Integrated RF probe for in vivo multinuclear spectroscopy and functional imaging of rat brain using an 11.7 Tesla 89 mm bore vertical microimager. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2005; 18:119-27. [PMID: 16007474 DOI: 10.1007/s10334-005-0103-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/21/2005] [Accepted: 04/15/2005] [Indexed: 11/27/2022]
Abstract
To acquire high quality in vivo NMR data from rat brain using a vertical 89-mm bore magnet, specially designed NMR probes with integrated RF coils and animal handling capability are required. An RF probe design that is also capable of rat head fixation, body support and suitable for physiology monitoring and maintenance was constructed for an 89 mm bore, 11.7 T, vertical microimager which is equipped with a 57-mm i.d. gradient insert. Design concept and practical aspects of probe construction are described in detail. The device allows accurate and highly reproducible positioning of rat head inside the magnet while providing excellent RF performance. Typical results from fMRI, localized in vivo proton and multinuclear spectroscopy using this probe system are presented.
Collapse
Affiliation(s)
- S Li
- NIMH Magnetic Resonance Spectroscopy Core Facility, National Institute of Mental Health, National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892-1527, USA
| | | |
Collapse
|
14
|
Méric P, Autret G, Doan BT, Gillet B, Sébrié C, Beloeil JC. In vivo 2D magnetic resonance spectroscopy of small animals. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:317-38. [PMID: 15625585 DOI: 10.1007/s10334-004-0084-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 01/05/2023]
Abstract
Localized in vivo NMR spectroscopy, chemical shift imaging or multi-voxel spectroscopy are potentially useful tools in small animals that are complementary to MRI, adding biochemical information to the mainly anatomical data provided by imaging of water protons. However the contribution of such methods remains hampered by the low spectral resolution of the in vivo 1D spectra. Two-dimensional methods widely developed for in vitro studies have been proposed as suitable approaches to overcome these limitations in resolution. The different homonuclear and heteronuclear sequences adapted to in vivo studies are reviewed. Their specific contributions to the spectral resolution of spectroscopic data and their limitations for in vivo investigations are discussed. The applications to experimental models of pathological processes or pharmacological treatment in mainly brain and muscle are presented. According to their combined sensitivity, acquisition duration and spatial resolution, the heteronuclear 2D experiments, which are mainly used for 1H detected-13C spectroscopy after administration of 13C-labeled compounds, appear to be less efficient than 1H detected-13C 1D methods at high field. However, the applications of 2D proton homonuclear methods show that they remain the best tools for in vivo studies when an improved resolution is required.
Collapse
Affiliation(s)
- P Méric
- Laboratoire de RMN Biologique, ICSN-CNRS, Avenue de la Terrasse, 91198, Gif sur Yvette, France.
| | | | | | | | | | | |
Collapse
|
15
|
Hiba B, Serduc R, Provent P, Farion R, Rémy C, Ziegler A. 2DJ-resolved spiral spectroscopic imaging at 7 T: Application to mobile lipid mapping in a rat glioma. Magn Reson Med 2004; 52:658-62. [PMID: 15334587 DOI: 10.1002/mrm.20166] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactate (Lac) and mobile lipids (Lip), which are present in rat gliomas, are difficult to map because their 1H resonances overlap in the 1.3 ppm region. 2D J-resolved spectroscopy enables proper separation of the two resonance lines. To obtain high-spatial-resolution mapping of Lac and Lip resonances within a reasonable experiment time, we coupled 2D J-resolved spectroscopy with a fast spectroscopic imaging (SI) method, based on an out-and-in spiral k-space description. The method was applied to a rat glioma at 7 T, and Lac and Lip maps were reconstructed. The duration of SI (2D spatial, 2D spectral) was 64 min for a theoretical in-plane resolution of 1 x 1 mm, and a slice thickness of 2 mm (voxel size 8.2 microl, taking into account the point-spread function (PSF)).
Collapse
Affiliation(s)
- Bassem Hiba
- Laboratoire Mixte INSERM-Université Joseph Fourier U594, Centre Hospitalier Universitaire, Grenoble, France
| | | | | | | | | | | |
Collapse
|
16
|
|