1
|
Díaz-Galindo CA, Garnica-Garza HM. Gold nanoparticle-enhanced radiotherapy: Dependence of the macroscopic dose enhancement on the microscopic localization of the nanoparticles within the tumor vasculature. PLoS One 2024; 19:e0304670. [PMID: 38968211 PMCID: PMC11226116 DOI: 10.1371/journal.pone.0304670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 07/07/2024] Open
Abstract
In gold nanoparticle-enhanced radiotherapy, intravenously administered nanoparticles tend to accumulate in the tumor tissue by means of the so-called permeability and retention effect and upon irradiation with x-rays, the nanoparticles release a secondary electron field that increases the absorbed dose that would otherwise be obtained from the interaction of the x-rays with tissue alone. The concentration of the nanoparticles in the tumor, number of nanoparticles per unit of mass, which determines the total absorbed dose imparted, can be measured via magnetic resonance or computed tomography images, usually with a resolution of several millimeters. Using a tumor vasculature model with a resolution of 500 nm, we show that for a given concentration of nanoparticles, the dose enhancement that occurs upon irradiation with x-rays greatly depends on whether the nanoparticles are confined to the tumor vasculature or have already extravasated into the surrounding tumor tissue. We show that, compared to the reference irradiation with no nanoparticles present in the tumor model, irradiation with the nanoparticles confined to the tumor vasculature, either in the bloodstream or attached to the inner blood vessel walls, results in a two to three-fold increase in the absorbed dose to the whole tumor model, with respect to an irradiation when the nanoparticles have already extravasated into the tumor tissue. Therefore, it is not enough to measure the concentration of the nanoparticles in a tumor, but the location of the nanoparticles within each volume element of a tumor, be it inside the vasculature or the tumor tissue, needs to be determined as well if an accurate estimation of the resultant absorbed dose distribution, a key element in the success of a radiotherapy treatment, is to be made.
Collapse
Affiliation(s)
- C. A. Díaz-Galindo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| | - H. M. Garnica-Garza
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apodaca NL, México
| |
Collapse
|
2
|
Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr Issues Mol Biol 2023; 45:8552-8585. [PMID: 37998716 PMCID: PMC10670324 DOI: 10.3390/cimb45110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation has a significant impact on different pathologies, such as stroke or spinal cord injury, intervening in their pathophysiology: expansion, progression, and resolution. Neuroinflammation involves oxidative stress, damage, and cell death, playing an important role in neuroplasticity and motor dysfunction by affecting the neuronal connection responsible for motor control. The diagnosis of this pathology is performed using neuroimaging techniques and molecular diagnostics based on identifying and measuring signaling molecules or specific markers. In parallel, new therapeutic targets are being investigated via the use of bionanomaterials and electrostimulation to modulate the neuroinflammatory response. These novel diagnostic and therapeutic strategies have the potential to facilitate the development of anticipatory patterns and deliver the most beneficial treatment to improve patients' quality of life and directly impact their motor skills. However, important challenges remain to be solved. Hence, the goal of this study was to review the implication of neuroinflammation in the evolution of motor function in stroke and trauma patients, with a particular focus on novel methods and potential biomarkers to aid clinicians in diagnosis, treatment, and therapy. A specific analysis of the strengths, weaknesses, threats, and opportunities was conducted, highlighting the key challenges to be faced in the coming years.
Collapse
Affiliation(s)
- Ane Larrea
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Eguzkiñe Díez-Martín
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| |
Collapse
|
3
|
Majumder S, Islam MT, Righetti R. Non-invasive imaging of interstitial fluid transport parameters in solid tumors in vivo. Sci Rep 2023; 13:7132. [PMID: 37130836 PMCID: PMC10154396 DOI: 10.1038/s41598-023-33651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
In this paper, new and non-invasive imaging methods to assess interstitial fluid transport parameters in tumors in vivo are developed, analyzed and experimentally validated. These parameters include extracellular volume fraction (EVF), interstitial fluid volume fraction (IFVF) and interstitial hydraulic conductivity (IHC), and they are known to have a critical role in cancer progression and drug delivery effectiveness. EVF is defined as the volume of extracellular matrix per unit volume of the tumor, while IFVF refers to the volume of interstitial fluid per unit bulk volume of the tumor. There are currently no established imaging methods to assess interstitial fluid transport parameters in cancers in vivo. We develop and test new theoretical models and imaging techniques to assess fluid transport parameters in cancers using non-invasive ultrasound methods. EVF is estimated via the composite/mixture theory with the tumor being modeled as a biphasic (cellular phase and extracellular phase) composite material. IFVF is estimated by modeling the tumor as a biphasic poroelastic material with fully saturated solid phase. Finally, IHC is estimated from IFVF using the well-known Kozeny-Carman method inspired by soil mechanics theory. The proposed methods are tested using both controlled experiments and in vivo experiments on cancers. The controlled experiments were performed on tissue mimic polyacrylamide samples and validated using scanning electron microscopy (SEM). In vivo applicability of the proposed methods was demonstrated using a breast cancer model implanted in mice. Based on the controlled experimental validation, the proposed methods can estimate interstitial fluid transport parameters with an error below 10% with respect to benchmark SEM data. In vivo results demonstrate that EVF, IFVF and IHC increase in untreated tumors whereas these parameters are observed to decrease over time in treated tumors. The proposed non-invasive imaging methods may provide new and cost-effective diagnostic and prognostic tools to assess clinically relevant fluid transport parameters in cancers in vivo.
Collapse
Affiliation(s)
- Sharmin Majumder
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:507-518. [DOI: 10.1007/s13246-018-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
5
|
Su MY, Yu HJ, Carpenter PM, McLaren CE, Nalcioglu O. Pharmacokinetic Parameters Analyzed from MR Contrast Enhancement Kinetics of Multiple Malignant and Benign Breast Lesions Detected in the Same Patients. Technol Cancer Res Treat 2016; 4:255-63. [PMID: 15896081 DOI: 10.1177/153303460500400305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ninety-nine patients with confirmed breast cancer were reviewed to identify patients who had two confirmed malignant lesions of identical pathology (Group-1, N=17), and patients who had one malignant lesion and the second benign lesion (Group-2, N=8). Contrast enhancement kinetics from every lesion was measured and analyzed using three different models to obtain fitting parameters related to up-slope, enhancement amplitude, and wash-out, including Model-1: modified Tofts model ( vp, Ktrans, kep), Model-2: standard Tofts model ( Ktrans, kep), and Model-3: a 3-parameter heuristic model ( Tc, A, C). By analyzing lesions from same patients, the differences in whole body hemodynamics thus the blood kinetics could be controlled. Two questions were addressed in this study: i) What is the association between pharmacokinetic parameters analyzed from multiple cancers of identical pathology in same patients?; and ii) What is the difference between secondary malignant lesions and secondary benign lesions with reference to the primary cancer? All three models could fit the enhancement kinetics satisfactorily. Regardless of the analysis model the parameter obtained from the primary cancer and the secondary cancer showed significant correlations. In comparison between Group-1 and Group-2 subjects, the wash-out parameter kep in Models-1 and 2 could significantly differentiate benign from malignant lesions, but not the magnitude parameters, Ktrans in Model-2 or the parameter A in Model-3. If analyzed using appropriate models the early up-slope parameters, vp in Model-1 and Tc in Model-3, might be able to distinguish between benign and malignant lesions. When more data are available a reference database can be established with the method described in this study, and from which to determine the likelihood of malignancy for each incidental lesion found in preoperative MRI, with reference to the primary cancer.
Collapse
Affiliation(s)
- Min-Y Su
- John Tu and Thomas Yuen Center for Functional Onco-Imaging, Irvine Hall 164, University of California, Irvine, CA 92697-5020, USA.
| | | | | | | | | |
Collapse
|
6
|
Uzgiris EE, Sood A, Bove K, Grimmond B, Lee D, Lomnes S. A Multimodal Contrast Agent for Preoperative MR Imaging and Intraoperative Tumor Margin Delineation. Technol Cancer Res Treat 2016; 5:301-9. [PMID: 16866560 DOI: 10.1177/153303460600500401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have constructed a multimodal contrast agent suitable for near-infrared, NIR, fluorescent imaging as well as magnetic resonance imaging, MRI. This class of agents may be useful for preoperative tumor localization and tumor functional evaluation and for intraoperative delineation of tumor margins. We have covalently attached dyes of the cyanine family to a previously described polymeric contrast agent, Gd-DTPA-polylysine, of an extended, uncoiled conformation. The dual modality agent is as effective in imaging tumors by MRI as the parent compound provided that the dye loading on the polymer is such that it does not eliminate all the available free-lysine groups on the parent Gd-DTPA-polylysine polymers. NIR fluorescence from preclinical subcutaneous and orthotopic mammary gland tumors could be detected with a signal to background ratio of as high as 4.5 at 12 hours post agent injection at a dye dose of 125 nmole/kg. For intraoperative delineation of tumor margins, a wide-field illumination camera system was devised giving high signal to background NIR fluorescent images of surgically exposed orthotopic mammary gland tumors. Histologic microscopy confirmed the location of the dual modality agent at the boundary of the tumor with a margin distance of about 0.3 mm from labeled tumor cells.
Collapse
Affiliation(s)
- Egidijus E Uzgiris
- General Electric Global Research Center, One Research Circle, Niskayuna, NY 12309, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Tsai EHR, Bentz BZ, Chelvam V, Gaind V, Webb KJ, Low PS. In vivo mouse fluorescence imaging for folate-targeted delivery and release kinetics. BIOMEDICAL OPTICS EXPRESS 2014; 5:2662-78. [PMID: 26236559 PMCID: PMC4132996 DOI: 10.1364/boe.5.002662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many cancer cells over-express folate receptors, and this provides an opportunity for both folate-targeted fluorescence imaging and the development of targeted anti-cancer drugs. We present an optical imaging modality that allows for the monitoring and evaluation of drug delivery and release through disulfide bond reduction inside a tumor in vivo for the first time. A near-infrared folate-targeting fluorophore pair was synthesized and used to image a xenograft tumor grown from KB cells in a live mouse. The in vivo results are shown to be in agreement with previous in vitro studies, confirming the validity and feasibility of our method as an effective tool for preclinical studies in drug development.
Collapse
Affiliation(s)
- Esther H. R. Tsai
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Brian Z. Bentz
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Venkatesh Chelvam
- Department of Chemistry, Indian Institute of Technology Indore, DAVV-IET Campus, Indore 452017, Madhya Pradesh,
India
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Vaibhav Gaind
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin J. Webb
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Zarinabad N, Chiribiri A, Hautvast GLTF, Breeuwer M, Nagel E. Influence of spatial resolution on the accuracy of quantitative myocardial perfusion in first pass stress perfusion CMR. Magn Reson Med 2014; 73:1623-31. [PMID: 24844947 PMCID: PMC4407925 DOI: 10.1002/mrm.25249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/20/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE High-resolution myocardial perfusion analysis allows for preserving spatial information with excellent sensitivity for subendocardial ischemia detection. However, it suffers from low signal-to-noise ratio. Commonly, spatial averaging is used to increase signal-to-noise ratio. This bears the risk of losing information about the extent, localization and transmurality of ischemia. This study investigates spatial-averaging effects on perfusion-estimates accuracy. METHODS Perfusion data were obtained from patients and healthy volunteers. Spatial averaging was performed on voxel-based data in transmural and angular direction to reduce resolution to 50, 20, and 10% of its original value. Fit quality assessment method is used to measure the fraction of modeled information and remaining unmodeled information in the residuals. RESULTS Fraction of modeled information decreased in patients as resolution reduced. This decrease was more evident for Fermi and exponential in transmural direction. Fermi and exponential showed significant difference at 50% resolution (Fermi P < 0.001, exponential P =0.0014). No significant differences were observed for autoregressive-moving-average model (P = 0.081). At full resolution, autoregressive-moving-average model has the lowest fraction of residual information (0.3). Differences were observed comparing ischemic regions perfusion-estimates coefficient of variation at transmural and angular direction. CONCLUSION Angular averaging preserves more information compared to transmural averaging. Reducing resolution level below 50% at transmural and 20% at angular direction results in losing information about transmural perfusion differences. Maximum voxel size of 2 × 2 mm(2) is necessary to avoid loss of physiological information due to spatial averaging.
Collapse
Affiliation(s)
- Niloufar Zarinabad
- Division of Imaging Sciences and Biomedical Engineering, King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, The Rayne Institute, St. Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | |
Collapse
|
9
|
Willmott LJ, Monk BJ. Cervical cancer therapy: current, future and anti-angiogensis targeted treatment. Expert Rev Anticancer Ther 2014; 9:895-903. [DOI: 10.1586/era.09.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Thomassin-Naggara I, De Bazelaire C, Chopier J, Bazot M, Marsault C, Trop I. Diffusion-weighted MR imaging of the breast: Advantages and pitfalls. Eur J Radiol 2013; 82:435-43. [DOI: 10.1016/j.ejrad.2012.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Parameter optimization for quantitative signal-concentration mapping using spoiled gradient echo MRI. Radiol Res Pract 2012; 2012:815729. [PMID: 23213523 PMCID: PMC3503446 DOI: 10.1155/2012/815729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/25/2012] [Accepted: 08/31/2012] [Indexed: 11/17/2022] Open
Abstract
Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR) MR sequences for the use of gadolinium (Gd-DTPA) as a kinetic tracer. Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained. Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR) and the flip angle (FA). At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5%) over a physiologic range of concentration tracer concentrations. Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.
Collapse
|
12
|
Haney CR, Fan X, Markiewicz E, Mustafi D, Karczmar GS, Stadler WM. Monitoring anti-angiogenic therapy in colorectal cancer murine model using dynamic contrast-enhanced MRI: comparing pixel-by-pixel with region of interest analysis. Technol Cancer Res Treat 2012; 12:71-8. [PMID: 22905809 DOI: 10.7785/tcrt.2012.500255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sorafenib is a multi-kinase inhibitor that blocks cell proliferation and angiogenesis. It is currently approved for advanced hepatocellular and renal cell carcinomas in humans, where its major mechanism of action is thought to be through inhibition of vascular endothelial growth factor and platelet-derived growth factor receptors. The purpose of this study was to determine whether pixel-by-pixel analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is better able to capture the heterogeneous response of Sorafenib in a murine model of colorectal tumor xenografts (as compared with region of interest analysis). MRI was performed on a 9.4 T pre-clinical scanner on the initial treatment day. Then either vehicle or drug were gavaged daily (3 days) up to the final image. Four days later, the mice were again imaged. The two-compartment model and reference tissue method of DCE-MRI were used to analyze the data. The results demonstrated that the contrast agent distribution rate constant (K(trans)) were significantly reduced (p < 0.005) at day-4 of Sorafenib treatment. In addition, the K(trans) of nearby muscle was also reduced after Sorafenib treatment. The pixel-by-pixel analysis (compared to region of interest analysis) was better able to capture the heterogeneity of the tumor and the decrease in K(trans) four days after treatment. For both methods, the volume of the extravascular extracellular space did not change significantly after treatment. These results confirm that parameters such as K(trans), could provide a non-invasive biomarker to assess the response to anti-angiogenic therapies such as Sorafenib, but that the heterogeneity of response across a tumor requires a more detailed analysis than has typically been undertaken.
Collapse
Affiliation(s)
- C R Haney
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
13
|
An analysis of the pharmacokinetic parameter ratios in DCE-MRI using the reference region model. Magn Reson Imaging 2012; 30:26-35. [DOI: 10.1016/j.mri.2011.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 09/07/2011] [Accepted: 09/18/2011] [Indexed: 11/19/2022]
|
14
|
Wang J, Svendsen A, Kmiecik J, Immervoll H, Skaftnesmo KO, Planagumà J, Reed RK, Bjerkvig R, Miletic H, Enger PØ, Rygh CB, Chekenya M. Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma. PLoS One 2011; 6:e23062. [PMID: 21829586 PMCID: PMC3146530 DOI: 10.1371/journal.pone.0023062] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/11/2011] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy.
Collapse
Affiliation(s)
- Jian Wang
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Agnete Svendsen
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justyna Kmiecik
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Heike Immervoll
- Haukeland University Hospital, Department of Pathology, Bergen, Norway
- The Gades Institute, University of Bergen, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jesús Planagumà
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Kåre Reed
- Heart and Circulatory Research Group, Haukeland University Hospital, Bergen, Norway
| | - Rolf Bjerkvig
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Hrvoje Miletic
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
- Haukeland University Hospital, Department of Pathology, Bergen, Norway
| | - Per Øyvind Enger
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Brekke Rygh
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
- Heart and Circulatory Research Group, Haukeland University Hospital, Bergen, Norway
| | - Martha Chekenya
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
15
|
Thayer D, Unlu MB, Lin Y, Yan K, Nalcioglu O, Gulsen G. Dual-contrast dynamic MRI-DOT for small animal imaging. Technol Cancer Res Treat 2010; 9:61-70. [PMID: 20082531 DOI: 10.1177/153303461000900107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper we present first-of-its-kind spatially resolved enhancement kinetics of optical and magnetic resonance (MR) agents obtained by a combined MR and Diffuse Optical Tomography (MR-DOT) animal imaging system. A unique MR compatible fiber optic interface allows co-registration of MR and DOT data in space and time. High temporal resolution of the hybrid system permits acquisition of data in dynamic mode. Rats bearing a R3230 AC breast cancer tumor model are used for in vivo studies. Thirty-two optical and thirty MR images are acquired during a single imaging session that lasts nearly ten minutes. Both optical, indocyanine green (ICG), and MR contrast agents, gadolinium-DTPA (Gd-DTPA), are injected simultaneously after the acquisition of several baseline frames. Contrast enhancement time curves obtained by MR and DOT systems both indicate higher average enhancement in tumor regions, up to ten-fold for MRI and 3-fold for DOT, compared to close by non-tumor regions. This feasibility study is the first step towards clinical translation of this hybrid imaging platform. The ultimate aim is to use the enhancement kinetics of the optical agent ICG, which binds to plasma proteins, as complementary information to the kinetics of the MR agent Gd-DTPA, a small molecular agent that does not bind to plasma proteins, to better differentiate benign and malignant lesions.
Collapse
Affiliation(s)
- David Thayer
- Tu and Yuen Center for Functional Onco-Imaging, University of California Irvine, CA 92692, USA
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Haney CR, Parasca AD, Fan X, Bell RM, Zamora MA, Karczmar GS, Mauceri HJ, Halpern HJ, Weichselbaum RR, Pelizzari CA. Characterization of response to radiation mediated gene therapy by means of multimodality imaging. Magn Reson Med 2009; 62:348-56. [PMID: 19449382 DOI: 10.1002/mrm.22008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Imaging techniques are under development to facilitate early analysis of spatial patterns of tumor response to combined radiation and antivascular gene therapy. A genetically modified, replication defective adenoviral vector (Ad.EGR-TNFalpha), injected intratumorally, mediates infected cells to express tumor necrosis factor alpha (TNFalpha), which is increased after exposure to radiation. The goal of this study was to characterize an image based "signature" for response to this combined radiation and gene therapy in mice with human prostate xenografts. This study is part of an imaged guided therapy project where such a signature would be useful in guiding subsequent treatments. Changes in the tumor micro-environment were assessed using MRI registered with electron paramagnetic resonance imaging which provides images of tissue oxygenation. Dynamic contrast-enhanced MRI was used to assess tissue perfusion. When compared with null vector (control) treatment, the ratio of contrast agent (Gd-DTPA-BMA) washout rate to uptake rate was lower (P = 0.001) after treatment, suggesting a more balanced perfusion. Concomitantly, oxygenation significantly increased in the treated animals and decreased or did not change in the control animals (P < 0.025). This is the first report of minimally invasive, quantitative, absolute oxygen measurements correlated with tissue perfusion in vivo.
Collapse
Affiliation(s)
- Chad R Haney
- University of Chicago, Department of Radiology, Chicago, IL 60637-1463, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJM. Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med 2009; 61:1173-84. [PMID: 19253360 DOI: 10.1002/mrm.21959] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When using tracer kinetic modeling to analyze dynamic contrast-enhanced MRI (DCE-MRI) it is necessary to identify an appropriate arterial input function (AIF). The measured AIF is often poorly sampled in both clinical and preclinical MR systems due to the initial rapid increase in contrast agent concentration and the subsequent large-scale signal change that occurs in the arteries. However, little work has been carried out to quantify the sensitivity of tracer kinetic modeling parameters to the form of AIF. Using a preclinical experimental data set, we sought to measure the effect of varying model forms of AIF on the extended Kety compartmental model parameters (K(trans), v(e), and v(p)) through comparison with the results of experimentally acquired high temporal resolution AIFs. The AIF models examined have the potential to be parameterized on lower temporal resolution data to predict the form of the true, higher temporal resolution AIF. The models were also evaluated through application to the population average AIF. It was concluded that, in the instance of low temporal resolution or noisy data, it may be preferable to use a bi-exponential model applied to the raw data AIF, or when individual measurements are not available a bi-exponential model of the average AIF.
Collapse
Affiliation(s)
- Deirdre M McGrath
- Imaging Science and Biomedical Engineering, School of Cancer and Imaging Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Uzgiris EE. A cell- surface polymer reptation mechanism for tumor transendothelial transport of macromolecules. Technol Cancer Res Treat 2008; 7:257-68. [PMID: 18473498 DOI: 10.1177/153303460800700312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymer reptation is a process by which flexible linear polymers can migrate around obstacles and through pores and around other polymer molecules. It has successfully described quantitative behavior of polymer melts and has been invoked in explaining DNA separation according to length in sequencing gels. This mechanism may therefore be useful in delivering contrast agents or therapeutic drugs to tumors as these must traverse from the intravascular space through the tumor endothelial junction gaps and into the tumor. In this work, we show that polymers capable of weak interactions with tumor endothelium can translocate into the tumor interstitium at up to 9 times the rate of polymers without such cell-surface interactions. We propose a new mechanism by which the polymers diffuse along the cell surface and through cell junction gaps that occur in the tumor endothelium. This process can be halted in a number of ways that demonstrate that the surface interaction is essential for the higher transport rate. Alternative transport mechanisms are ruled out by further tests of polymer length scaling dependence, and by comparison of transport rates to those for globular constructs. Polymers of Gd-DTPA-polylysine and related backbones were investigated in an animal model of breast cancer and prostate cancer. Polymer lengths ranged from 30 nm to 300 nm, (from 100 to 700 lysine residues) and the polymer constructs had a cross section of approximately 1.2 nm in radius. Polymer uptake rate into tumors for an equivalent hydrodynamic size globular macromolecule was some 135 times larger demonstrating the importance of this transport mechanism compared to free diffusion of globular macromolecules through the endothelium junction pores. The polymer length scaling, with monomer number N, on rate of tumor transport goes as N(-1), which rejects alternative transport processes such as pinocytosis, active transport, and particle like center of mass diffusion through pores. This N(-1) scaling implies a cell-surface assisted polymer reptation process. This new transport mechanism allows very strong discrimination of aggressive tumors from nonaggressive tumors in animal model studies.
Collapse
Affiliation(s)
- Egidijus E Uzgiris
- Physics Department, Rensselaer Polytechnique Institute, Troy, NY 12180, USA.
| |
Collapse
|
20
|
Uzgiris EE. Tumor microvasculature: endothelial leakiness and endothelial pore size distribution in a breast cancer model. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2008; 1:83-90. [PMID: 21655376 PMCID: PMC3091400 DOI: 10.4137/bcbcr.s481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumor endothelial leakiness is quantified in a rat mammary adenocarcinoma model using dynamic contrast enhancement MRI and contrast agents of widely varying sizes. The contrast agents were constructed to be of globular configuration and have their uptake rate into tumor interstitium be driven by the same diffusion process and limited only by the availability of endothelial pores of passable size. It was observed that the endothelial pore distribution has a steep power law dependence on size, r(-) (β), with an exponent of -4.1. The model of large pore dominance in tumor leakiness as reported in some earlier investigation with fluorescent probes and optical chamber methods is rejected for this tumor model and a number of other tumor types including chemically induced tumors. This steep power law dependence on size is also consistent with observations on human breast cancer.
Collapse
Affiliation(s)
- E E Uzgiris
- Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
21
|
Dedieu V, Bailly C, Vincent C, Achard JL, Le Bouedec G, Penault-Llorca F, Verrelle P, Vincensini D. Capillary permeability and extracellular volume fraction in uterine cervical cancer as patient outcome predictors: measurements by using dynamic MRI spin-lattice relaxometry. J Magn Reson Imaging 2008; 27:846-53. [PMID: 18383262 DOI: 10.1002/jmri.21324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To improve the outcome prediction of uterine cervical carcinoma by measuring the vascular permeability (k(ep)) and the extracellular volume fraction (v(e)) of the tumor from Dynamic T(1)- IRM Relaxometry. MATERIALS AND METHODS Twenty-six patients with proven cervical carcinoma were divided into good outcome and poor outcome groups. Classic tumor prognostic factors, the longest diameter L and the volume V of the tumor, were measured from morphologic MR images. The tumor parameters k(ep) and v(e) were determined from the relaxometry time-curve acquired during the contrast uptake after a bolus intravenous injection of an extracellular contrast agent. RESULTS All "small" tumors (L<35 mm or V<11 cm(3)) were good outcome with 100% sensitivity but a rather low specificity (36% and 43% for L and V, respectively). With regard to the physiopathological parameter k(ep), "large" tumors (L >or= 35 mm) can also be classified as good outcome on the condition that k(ep) >or= 2.2 min(-1) with 100% sensitivity and 89% specificity. Regarding the extracellular volume fraction (v(e)), no significant difference was observed between the two groups. CONCLUSION Measurement of the tumor vascular permeability might be useful to predict prognostic, to evaluate the treatment efficacy, and to adapt a proper therapy schedule.
Collapse
Affiliation(s)
- Véronique Dedieu
- Medical Physics, Department of Centre J. Perrin, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Orth RC, Bankson J, Price R, Jackson EF. Comparison of single- and dual-tracer pharmacokinetic modeling of dynamic contrast-enhanced MRI data using low, medium, and high molecular weight contrast agents. Magn Reson Med 2008; 58:705-16. [PMID: 17899608 DOI: 10.1002/mrm.21411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic parameters corresponding to perfused microvascular volume determined from dynamic contrast-enhanced (DCE) MRI data were compared to immunohistochemical measures of microvascular density (MVD) and perfused microvascular density. DCE MRI data from human mammary tumors (MDA-MB-435) implanted in nude mice using low (Gd-DTPA, MW approximately equal 0.6 kDa), medium (Gadomer-17, MW(eff) approximately equal 35 kDa), and high (PG-Gd-DTPA, MW approximately equal 220 kDa) molecular weight contrast agents were analyzed with single- and dual-tracer pharmacokinetic models. MVD values were determined by two manual counting methods, "hot spot" and summed region of interest (SROI). Pharmacokinetic parameters determined using the single-tracer model (Gd-DTPA [n = 15] and Gadomer-17 [n = 13]) did not correlate with MVD measures using either manual counting method. For dual-tracer studies (Gadomer-17/Gd-DTPA [n = 15] and PG-Gd-DTPA/Gd-DTPA [n = 13]), pharmacokinetic parameters demonstrated a statistically significant correlation with MVD determined by the SROI method, but not the "hot spot" method. Ten mice successfully underwent intravital FITC-labeled lectin perfusion with the hemisphere of highest lectin labeling correlating with pharmacokinetic parameter values in 9 of 10 tumors (single-tracer Gd-DTPA [n = 2], single-tracer Gadomer-17 [n = 3], and dual-tracer Gadomer-17/Gd-DTPA [n = 5]). This study demonstrates that dual-tracer DCE MRI studies yield pharmacokinetic parameters that correlate with immunohistochemical measures of MVD.
Collapse
Affiliation(s)
- Robert C Orth
- Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | |
Collapse
|
23
|
Orton MR, d'Arcy JA, Walker-Samuel S, Hawkes DJ, Atkinson D, Collins DJ, Leach MO. Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 2008; 53:1225-39. [PMID: 18296759 DOI: 10.1088/0031-9155/53/5/005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Saxena V, Gonzalez-Gomez I, Laug WE. A non-invasive, in vivo technique for monitoring vascular status of glioblastoma during angiogenesis. Technol Cancer Res Treat 2007; 6:641-50. [PMID: 17994795 DOI: 10.1177/153303460700600608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growth of solid tumors dependent on the process of angiogenesis in which growth factors secreted by tumor and stromal cells promote endothelial cell proliferation, migration, and maturation. This process generates a tumor-specific vascular supply and enables small or dormant tumors to grow rapidly with exponential increases in tumor volume. Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis, and therapeutic response, and will facilitate to develop protocols for studying tumor behavior. A non-invasive multi-modality approach based on near infrared spectroscopy (NIRS) technique, namely: Steady State Diffuse Optical Spectroscopy (SSDOS) along with Magnetic Resonance Imaging (MRI) is applied for monitoring the concentration of oxyhemoglobin, deoxyhemoglobin and water within tumor region and for studying the vascular status of tumor and the patho-physiological changes that occur during angiogenesis. Since, the growth of solid tumors depends on the formation of new blood vessels, an association between intramural microvessel density (MVD) and tumor oxygenation is also investigated. The relative decrease in oxygenation value with tumor growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.
Collapse
Affiliation(s)
- V Saxena
- Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027, USA.
| | | | | |
Collapse
|
25
|
Dewever J, Frérart F, Bouzin C, Baudelet C, Ansiaux R, Sonveaux P, Gallez B, Dessy C, Feron O. Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1619-28. [PMID: 17916598 DOI: 10.2353/ajpath.2007.060968] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the normal microvasculature, caveolin-1, the structural protein of caveolae, modulates transcytosis and paracellular permeability. Here, we used caveolin-1-deficient mice (Cav(-/-)) to track the potential active roles of caveolin-1 down-modulation in the regulation of vascular permeability and morphogenesis in tumors. In B16 melanoma-bearing Cav(-/-) mice, we found that fibrinogen accumulated in early-stage tumors to a larger extent than in wild-type animals. These results were confirmed by the observations of a net elevation of the interstitial fluid pressure and a relative deficit in albumin extravasation in Cav(-/-) tumors (versus healthy tissues). Immunostaining analyses of Cav(-/-) tumor sections further revealed a higher density of CD31-positive vascular structures and a dramatic deficit in alpha-smooth muscle actin-stained mural cells. The increase in blood plasma volume in Cav(-/-) tumors was confirmed by dynamic contrast enhanced-magnetic resonance imaging and found to be associated with a more rapid tumor growth. Finally, an in vitro wound test and the aorta ring assay revealed that silencing caveolin expression could directly impair the migration and the outgrowth of smooth muscle cells/pericytes, particularly in response to platelet-derived growth factor. In conclusion, a decrease in caveolin abundance, by promoting angiogenesis and preventing its termination by mural cell recruitment, appears as an important control point for the formation of new tumor blood vessels. Caveolin-1 therefore has the potential to be a marker of tumor vasculature maturity that may help adjusting anticancer therapies.
Collapse
Affiliation(s)
- Julie Dewever
- Unit of Pharmacology and Therapeutics (UCL-FATH 5349), Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saxena V, Gonzalez-Gomez I, Laug WE. A noninvasive multimodal technique to monitor brain tumor vascularization. Phys Med Biol 2007; 52:5295-308. [PMID: 17762087 DOI: 10.1088/0031-9155/52/17/013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.
Collapse
Affiliation(s)
- Vishal Saxena
- Department of Radiology, University of Southern California, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|
27
|
Aref M, Handbury JD, Xiuquan Ji J, Aref S, Wiener EC. Spatial and temporal resolution effects on dynamic contrast-enhanced magnetic resonance mammography. Magn Reson Imaging 2007; 25:14-34. [PMID: 17222712 DOI: 10.1016/j.mri.2006.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 09/05/2006] [Indexed: 10/23/2022]
Abstract
We tested the hypothesis that partial volume effects due to poor in-plane resolution and/or low temporal resolution used in clinical dynamic contrast-enhanced magnetic resonance imaging results in erroneous diagnostic information based on inaccurate estimates of tumor contrast agent extravasation and tested whether reduced encoding techniques can correct for dynamic data volume averaging. Image spatial resolution was reduced from 469 x 469 microm2 to those reported below by selecting a subset of k-space data. We then compared the top five K(trans)/V(T) "hot spots" obtained from the original data set, 469 x 469-microm in-plane spatial resolution and an 18-s temporal resolution processed by fast Fourier transform (FFT), with values obtained from data sets having in-plane spatial resolutions of 938 x 938, 1875 x 1875 and 2500 x 2500 microm2 and a temporal resolution of 18 s, or data sets with temporal resolutions of 36, 54 and 72 and a spatial resolution of 469 x 469 microm2, and found them to statistically differ from the parent data sets. We then tested four different post processing methods for improving the spatial resolution without sacrificing temporal resolution: zero-filled FFT, keyhole, reduced-encoding imaging by generalized-series reconstruction (RIGR) and two-reference RIGR (TRIGR). The top five values of K(trans)/V(T) obtained from data sets, the in-plane spatial resolutions of which were improved to 469 x 469 microm2 by zero-filling FFT, Keyhole and RIGR, statistically differed from those obtained from the original 469 x 469 microm2 FFT parent image data set. Only the 938 x 938 and 1875 x 1875 microm2 data sets reconstructed to 469 x 469 microm2 with TRIGR reconstruction method yielded values of the top five K(trans)/V(T) hot spots statistically the same as the original parent data set, 469 x 469 microm2 in-plane spatial and 18-s temporal-resolution FFT. That is, partial volume effects from data sets of different in-plane spatial resolution resulted in statistically different values of the top five K(trans)/V(T) hot spots relative to a high spatial and temporal resolution data set, and TRIGR reconstruction of these low resolution data sets to high resolution images provided statistically similar values with a savings in temporal resolution of 2 to 4 times.
Collapse
Affiliation(s)
- Michael Aref
- Department of Nuclear, Plasma, and Radiological Engineering, Beckman Institute Biomedical Imaging Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
28
|
Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24:319-24. [PMID: 16786565 DOI: 10.1002/jmri.20643] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To study the correlation between apparent diffusion coefficient (ADC) and pathology in patients with undefined breast lesion, to validate how accurately ADC is related to histology, and to define a threshold value of ADC to distinguish malignant from benign lesions. MATERIALS AND METHODS Seventy-eight patients (110 lesions) were referred for positive or dubious findings. Three-dimensional fast low-angle shot (3D-FLASH) with contrast injection was applied. EPI diffusion-weighted imaging (DWI) with fat saturation was performed, and ROIs were selected on subtraction 3D-FLASH images before and after contrast injection, and copied on an ADC map. Inter- and intraobserver analyses were performed. RESULTS At pathology 22 lesions were benign, 65 were malignant, and 23 were excluded. The ADCs of malignant and benign lesions were statistically different. In malignant tumors the ADC was (mean +/- SEM) 0.95 +/- 0.027 x 10(-3)mm(2)/second, and in benign tumors it was 1.51 +/- 0.068 x 10(-3)mm(2)/second. According to receiver operating characteristic (ROC) curves, we found a threshold between malignant and benign lesions for highest sensitivity and specificity (both 86%) around 1.13 +/- 0.10 x 10(-3)mm(2)/second. For a threshold of 0.95 +/- 0.10 x 10(-3)mm(2)/second, specificity was 100% but sensitivity was very low. Inter- and intraobserver studies showed good reproducibility. CONCLUSION The ADC may help to differentiate benign and malignant lesions with good specificity, and may increase the overall specificity of breast MRI.
Collapse
Affiliation(s)
- Erika Rubesova
- Department of Radiology, CHU Saint Pierre, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
29
|
Yahaghi E, Soltanian-Zadeh H, Shahriari M, Fatouraee N, Ewing JR. Estimation of contrast agent concentration in intra- and extra-vascular spaces of brain tissue. Math Biosci 2006; 204:102-18. [PMID: 16978665 DOI: 10.1016/j.mbs.2006.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 05/15/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
This article presents a new method for estimating the leakage of a contrast agent out of a vessel. The proposed method is developed based on tissue homogeneity (TH) model, modified Patlak model, and Monte Carlo simulation. The analytical methods published in the literature estimate the contrast agent leakage by solving the coupled differential equations associated with the TH model under adiabatic conditions. These methods employ unrealistic simplifying assumptions and become intractable in their applications to the vessels that have a non-uniform permeability. Without making any unrealistic assumptions, our approach simply tracks the passage of the contrast agent through the capillary and its crossing of the vessel walls based on the blood flow in the vessel, the vessel's permeability, and the condition of the blood-brain barrier (BBB). These are treated as statistical processes that can be modeled reasonably well using the Monte Carlo method. In the proposed approach, the intra- and extra-vascular spaces are divided into multiple compartments, similar to the Patlak model. A real, measured arterial input function (AIF) is used as the capillary input and the concentration of the contrast agent is found as a function of time and distance, inside and outside of the capillary. This is done for normal and abnormal capillaries with uniform and non-uniform permeability. The proposed method generates concentration curves similar to those of the analytical method for simple AIF models. It also generates reasonable concentration curves for a real AIF. The proposed method does not fit a mathematical function to the measured AIF and does not make unrealistic simplifying assumptions. It is not therefore prone to the fitting errors and generates more realistic and more accurate results than the analytical methods.
Collapse
Affiliation(s)
- E Yahaghi
- Department of Physics, Amir-Kabir University of Technology, Tehran, Iran
| | | | | | | | | |
Collapse
|
30
|
Martinive P, De Wever J, Bouzin C, Baudelet C, Sonveaux P, Grégoire V, Gallez B, Feron O. Reversal of temporal and spatial heterogeneities in tumor perfusion identifies the tumor vascular tone as a tunable variable to improve drug delivery. Mol Cancer Ther 2006; 5:1620-7. [PMID: 16818522 DOI: 10.1158/1535-7163.mct-05-0472] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maturation of tumor vasculature involves the recruitment of pericytes that protect the endothelial tubes from a variety of stresses, including antiangiogenic drugs. Mural cells also provide mature tumor blood vessels with the ability to either relax or contract in response to substances present in the tumor microenvironment. The observed cyclic alterations in tumor blood flow and the associated deficit in chemotherapeutic drug delivery could in part arise from this vasomodulatory influence. To test this hypothesis, we focused on endothelin-1 (ET-1), which, besides its autocrine effects on tumor cell growth, is a powerful vasoconstrictor. We first document that an ET(A) receptor antagonist induced relaxation of microdissected tumor arterioles and selectively and quantitatively increased tumor blood flow in experimental tumor models. We then combined dye staining of functional vessels, fluorescent microsphere-based mapping, and magnetic resonance imaging to identify heterogeneities in tumor blood flow and to examine the reversibility of such phenomena. Data from all these techniques concurred to show that administration of an ET(A) receptor antagonist could reduce the extent of underperfused tumor areas, proving the key role of vessel tone variations in tumor blood flow heterogeneity. We also provide evidence that ET(A) antagonist administration could, despite an increase in tumor interstitial fluid pressure, improve access of cyclophosphamide to the tumor compartment and significantly influence tumor growth. In conclusion, tumor endogenous ET-1 production participates largely in the temporal and spatial variations in tumor blood flow. ET(A) antagonist administration may wipe out such heterogeneities, thus representing an adjuvant strategy that could improve the delivery of conventional chemotherapy to tumors.
Collapse
Affiliation(s)
- Philippe Martinive
- Unit of Pharmacology and Therapeutics, UCL Medical School, 53 Ave E. Mounier, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:171-4. [PMID: 16671449 DOI: 10.1007/3-211-30714-1_38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Previous studies have shown that edema formation after diffuse traumatic brain injury (TBI) with secondary insult is cytotoxic and not vasogenic. This assumption is based on observations of reduced apparent diffusion coefficient (ADC) and lack of significant accumulation of intravascular tracer in brain tissue. However, ADC reduction does not exclude vasogenic edema, and intravascular tracer can only accumulate when it reaches the tissue and is not perfusion limited. This study aims to confirm tissue delivery of intravascular tracer and lack of BBB opening during a phase of rapid brain swelling after diffuse TBI. METHODS Rats were exposed to either TBI using the impact acceleration model combined with 30 minutes of hypoxia and hypotension, or sham injury. At 2 or 4 hours after injury, ADC and tissue water content were assessed using MRI. Gd-DTPA was given followed by a combination of rapid T2 imaging (60 seconds) and T1 imaging (30 minutes). Signal intensity changes were analyzed to determine a bolus effect (dynamic susceptibility contrast) and longer-term tissue accumulation of Gd-DTPA. RESULTS Mean increase in cortical water content on the left was 0.8% at 2 hours, 2.1% at 4 hours; on the right it was 0.5% at 2 hours and 1.7% at 4 hours (p < 0.05). Mean ADC reduction over 4 hours was 0.04 x 10(-3) mm2/s on the left and 0.06 x 10(-3) mm2/s on the right. Kinetic analysis of signal intensity changes after Gd-DTPA showed no significant difference in inward transfer coefficient (BBB permeability) between sham injury and 2 or 4 hours post-injury. T2 imaging showed consistent tissue delivery of a bolus of Gd-DTPA to the tissue at 2 and 4 hours post-injury, comparable to sham animals. CONCLUSIONS Progressive cerebral edema formation after diffuse TBI occurred during ADC reduction and without continued BBB permeability. Tissue delivery of Gd-DTPA was confirmed, verifying that lack of tracer accumulation is due to an intact BBB and not to limited perfusion.
Collapse
Affiliation(s)
- A Beaumont
- Dept of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
32
|
Huszthy PC, Brekken C, Pedersen TB, Thorsen F, Sakariassen PO, Skaftnesmo KO, Haraldseth O, Lønning PE, Bjerkvig R, Enger PO. Antitumor efficacy improved by local delivery of species-specific endostatin. J Neurosurg 2006; 104:118-28. [PMID: 16509155 DOI: 10.3171/jns.2006.104.1.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Conflicting results have been reported concerning the antitumor efficacy of the angiogenesis inhibitor endostatin. This may be due to differences in the biological distribution of endostatin between studies or to the varying biological efficacies of the different protein forms that were examined. To address this issue, the authors used a local delivery approach in which each tumor cell secreted endostatin, providing uniform endostatin levels throughout the tumors. This allowed a direct assessment of the biological efficacy of soluble endostatin in vivo. METHODS The authors genetically engineered BT4C gliosarcoma cells so that they would stably express and secrete either the human or murine form of endostatin. Endostatin-producing cells or mock-infected cells were implanted intracerebrally in syngeneic BD-IX rats. The antitumor efficacy of endostatin was evaluated on the basis of survival data and tumor volume comparisons. In addition, microvascular parameters were assessed. The authors confirmed the continuous release of endostatin by the BT4C cells. A magnetic resonance imaging-assisted comparison of tumor volumes revealed that local production of murine endostatin significantly inhibited tumor growth. Notably, 40% of the animals in this treatment group experienced long-term survival without histologically verifiable tumors 7 months after cell implantation. After local treatment with murine endostatin, tumor blood plasma volumes were reduced by 71%, microvessel density counts by 84%, and vascular area fractions by 75%. In contrast, human endostatin did not inhibit tumor growth significantly in this model. Centrally located regions of necrosis were present in tumors secreting both the human and the murine species-specific form of endostatin. CONCLUSIONS The results suggest that endostatin inhibits tumor angiogenesis in vivo in a species-specific manner.
Collapse
Affiliation(s)
- Peter C Huszthy
- Gene Therapy Program, Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Issa B. Improved discrimination of breast lesions using selective sampling of segmented MR images. MAGMA (NEW YORK, N.Y.) 2006; 19:34-40. [PMID: 16465550 DOI: 10.1007/s10334-005-0024-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
OBJECTIVE The aim of this work is to examine if the specificity of differentiation between malignant and benign tumours can be improved by retrospectively examining lesion-extracted distributions. A semi-automated method for selecting a region-of-interest (ROI) is described. A new histogram segmentation approach for sampling pharmacokinetic breast maps of transfer uptake is defined in order to assign classification variables for the lesion. METHOD Fifty exchange rate parameter maps were extracted from 49 subjects and retrospectively analysed. Distributions obtained from semi-automatically delineated ROIs were subdivided into ten overlapping segments. Parameters were extracted from each segment which effectively presents a new pixel intensity sampling strategy. Mann-Whitney non-parametric tests and ROC curves were generated. RESULTS Correlation exists between mean parameter values drawn from semi-automatically or manually drawn ROIs. However, the former yield higher specificity values as applied to this subset of enhancing benign lesions. Segmenting the exchange rate parameter histogram allows the identification of which part of the distribution correlates most with tumour type. Significant improvement in specificity is obtained when using half the pixels within the ROI. CONCLUSION Improved specificity values are obtained by a new method of selecting the differentiation parameters which relies on intensity rather than spatial segmentation. Only half the pixels available within the ROI contributed to the measured classification parameters.
Collapse
Affiliation(s)
- Bashar Issa
- Department of Physics, UAE University, Al-Ain, P.O. Box 17551, United Arab Emirates.
| |
Collapse
|
34
|
Fan X, Medved M, Foxley S, River JN, Zamora M, Karczmar GS, Corot C, Robert P, Bourrinet P. Multi-slice DCE-MRI data using P760 distinguishes between metastatic and non-metastatic rodent prostate tumors. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2006; 19:15-21. [PMID: 16416323 DOI: 10.1007/s10334-005-0022-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/25/2005] [Indexed: 11/30/2022]
Abstract
An intermediate molecular weight contrast agent P760 was used to investigate the ability of multi-slice dynamic contrast-enhanced MRI (DCE-MRI) to distinguish metastatic from non-metastatic rodent prostate tumors. Non-metastatic AT2.1 and metastatic AT3.1 prostate tumors originally derived from the Dunning prostate cancer model were implanted on the hind leg of Copenhagen rats. Multi-sliced DCE-MRI data were acquired on a SIGNA 1.5 T scanner and analyzed using a recently developed empirical mathematical model. The P760 multi-slice DCE-MRI data in combination with the empirical mathematical model successfully distinguished between metastatic and non-metastatic rodent prostate tumors. Specifically, fitting the data with the empirical model showed that metastatic tumors had significantly faster contrast media uptake (p<0.001) and slower washout rates (p<0.01) than non-metastatic tumors.
Collapse
Affiliation(s)
- Xiaobing Fan
- Department of Radiology, University of Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rasila KK, Burger RA, Smith H, Lee FC, Verschraegen C. Angiogenesis in gynecological oncology-mechanism of tumor progression and therapeutic targets. Int J Gynecol Cancer 2006; 15:710-26. [PMID: 16174217 DOI: 10.1111/j.1525-1438.2005.00132.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The purpose of this article is to review the current literature pertaining to various angiogenic stimulators and angiogenesis inhibitors in gynecological malignancies and the relevance of these markers in the prognosis of these diseases. We also summarize the antiangiogenic drugs currently in development and in clinical use in gynecological oncology. The information was obtained from a computer search of MEDLINE for studies published in the English language regarding angiogenesis and angiogenesis inhibitors in gynecological malignancies between 1970 and December 2003; additional sources were identified through cross-referencing. In ovarian cancer, various different angiogenic activators have been found to correlate with microvessed density (MVD), stage, lymph node and peritoneal metastasis, and survival. In cervical cancer, correlation has been seen between increased angiogenic markers and stage, grade, tumor size, and survival. Studies in endometriat cancer show correlation of angiogenic markers with stage, grade, MVD, and survival. Whereas, in gestational trophoblastic neoplasm (GTD) only few markers have been studied, and some correlated with progression. Information on anti angiogenic drugs currently in ongoing and upcoming trials in gynecological malignancies is also presented. Angiogenesis factors may have a prognostic role to play in patients with gynecological cancers and should continue to be investigated as clinically useful tumor markers. Antiangiogenic-targeted therapies offer an attractive strategy for clinical investigation in gynecologic oncology.
Collapse
Affiliation(s)
- K K Rasila
- University of New Mexico Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
36
|
Brekke C, Lundervold A, Enger PØ, Brekken C, Stålsett E, Pedersen TB, Haraldseth O, Krüger PG, Bjerkvig R, Chekenya M. NG2 expression regulates vascular morphology and function in human brain tumours. Neuroimage 2005; 29:965-76. [PMID: 16253523 DOI: 10.1016/j.neuroimage.2005.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/18/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022] Open
Abstract
Tumour angiogenesis is a tightly regulated process involving cross-talk between tumour cells and the host tissue. The underlying mechanisms that regulate such interactions remain largely unknown. NG2 is a transmembrane proteoglycan whose presence on transformed cells has been demonstrated to increase proliferation in vitro and angiogenesis in vivo. To study the effects of NG2 during tumour growth and progression, we engineered an NG2 positive human glioma cell line (U251-NG2) from parental NG2 negative cells (U251-WT) and implanted both cell types stereotactically into immunodeficient nude rat brains. The tumours were longitudinally monitored in vivo using multispectral MRI employing two differently sized contrast agents (Gd-DTPA-BMA and Gadomer) to assess vascular leakiness, vasogenic oedema, tumour volumes and necrosis. Comparisons of Gd-DTPA-BMA and Gadomer revealed differences in their spatial distribution in the U251-NG2 and U251-WT tumours. The U251-NG2 tumours exhibited a higher leakiness of the larger molecular weight Gadomer and displayed a stronger vasogenic oedema (69.9 +/- 15.2, P = 0.018, compared to the controls (10.7 +/- 7.7). Moreover, immunohistochemistry and electron microscopy revealed that the U251-NG2 tumours had a higher microvascular density (11.81 +/- 0.54; P = 0.0010) compared to controls (5.76 +/- 0.87), with vessels that displayed larger gaps between the endothelial cells. Thus, tumour cells can regulate both the function and structure of the host-derived tumour vasculature through NG2 expression, suggesting a role for NG2 in the cross-talk between tumour-host compartments.
Collapse
Affiliation(s)
- C Brekke
- Department of Biomedicine, Section for Anatomy and cell biology, University of Bergen Jonas Lies Vei 91, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim YR, Yudina A, Figueiredo J, Reichardt W, Hu-Lowe D, Petrovsky A, Kang HW, Torres D, Mahmood U, Weissleder R, Bogdanov AA. Detection of Early Antiangiogenic Effects in Human Colon Adenocarcinoma Xenografts: In vivo Changes of Tumor Blood Volume in Response to Experimental VEGFR Tyrosine Kinase Inhibitor. Cancer Res 2005; 65:9253-60. [PMID: 16230386 DOI: 10.1158/0008-5472.can-03-2619] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiangiogenesis is emerging as efficient strategy for targeting and potentially eliminating neoplastic tumor vessels. The main goal of this study was to establish whether absolute tumor blood volume (V(b)) change could be used as an early predictor of antiangiogenesis in ectopic and orthotopic colon carcinomas. To assess therapy-induced changes of V(b), we did comparative analysis of signal intensities in tumors and muscle using steady-state magnetic resonance imaging (MRI) assisted with an intravascular paramagnetic contrast agent [gadolinium-labeled protected graft copolymer (PGC-Gd)]. Athymic mice with implanted human MV522 tumors were treated with vascular endothelial growth factor type 2 receptor tyrosine kinase inhibitor (VEGFR2-TKI) that has been shown to inhibit VEGFR2 phosphorylation and tumor growth in vivo. Animals were imaged either after a single day or after a 1-week course of treatments. The measured V(b) in ectopic tumors was 2.5 +/- 1.5% of total tissue volume 1 week after the implantation (n = 8). Two doses of VEGFR2-TKI (25 mg/kg, p.o., b.i.d.) resulted in a decrease of V(b) to 1.3 +/- 0.3%. In orthotopic tumors, the measured V(b) was initially higher (11.9 +/- 2.0%); however, VEGFR2-TKI treatment also resulted in a statistically significant decrease of V(b). The absolute V(b) was not affected in the muscle as a result of treatments. MRI measurements were corroborated by using isotope and correlative histology experiments. Our results show that steady-state MRI is highly sensitive to early antiangiogenic effects caused by small molecule drugs.
Collapse
Affiliation(s)
- Young Ro Kim
- Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thoeny HC, De Keyzer F, Vandecaveye V, Chen F, Sun X, Bosmans H, Hermans R, Verbeken EK, Boesch C, Marchal G, Landuyt W, Ni Y. Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 2005; 237:492-9. [PMID: 16192323 DOI: 10.1148/radiol.2372041638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To compare dynamic contrast material-enhanced magnetic resonance (MR) imaging and diffusion-weighted MR imaging for noninvasive evaluation of early and late effects of a vascular targeting agent in a rat tumor model. MATERIALS AND METHODS The study protocol was approved by the local ethics committee for animal care and use. Thirteen rats with one rhabdomyosarcoma in each flank (26 tumors) underwent dynamic contrast-enhanced imaging and diffusion-weighted echo-planar imaging in a 1.5-T MR unit before intraperitoneal injection of combretastatin A4 phosphate and at early (1 and 6 hours) and later (2 and 9 days) follow-up examinations after the injection. Histopathologic examination was performed at each time point. The apparent diffusion coefficient (ADC) of each tumor was calculated separately on the basis of diffusion-weighted images obtained with low b gradient values (ADC(low); b = 0, 50, and 100 sec/mm(2)) and high b gradient values (ADC(high); b = 500, 750, and 1000 sec/mm(2)). The difference between ADC(low) and ADC(high) was used as a surrogate measure of tissue perfusion (ADC(low) - ADC(high) = ADC(perf)). From the dynamic contrast-enhanced MR images, the volume transfer constant k and the initial slope of the contrast enhancement-time curve were calculated. For statistical analyses, a paired two-tailed Student t test and linear regression analysis were used. RESULTS Early after administration of combretastatin, all perfusion-related parameters (k, initial slope, and ADC(perf)) decreased significantly (P < .001); at 9 days after combretastatin administration, they increased significantly (P < .001). Changes in ADC(perf) were correlated with changes in k (R(2) = 0.46, P < .001) and the initial slope (R(2) = 0.67, P < .001). CONCLUSION Both dynamic contrast-enhanced MR imaging and diffusion-weighted MR imaging allow monitoring of perfusion changes induced by vascular targeting agents in tumors. Diffusion-weighted imaging provides additional information about intratumoral cell viability versus necrosis after administration of combretastatin.
Collapse
Affiliation(s)
- Harriet C Thoeny
- Department of Radiology and Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Many novel antiangiogenic agents are currently in various phases of clinical testing. These agents tend to be cytostatic, and therefore few responses are observed with conventional imaging by computerized tomography. Furthermore, toxicity with these agents is seen when the maximum-tolerated dose is combined with chemotherapy. Hence, there is a need to develop imaging strategies that can determine the minimum and optimum biologically active doses. There is increasing awareness of the need to obtain evidence of drug activity through the use of surrogate markers of the biologic mechanism of action during early clinical trials, in addition to determining the pharmacokinetics, toxicity profile, and maximum-tolerated dose. One of the major impediments to the rapid development of antiangiogenic agents in the past has been the lack of validated assays capable of measuring an antiangiogenic effect directly in patients. Recently, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has emerged as a useful technique for noninvasive imaging of tumor vasculature in preclinical and clinical models. The problem of tumor heterogeneity remains to be addressed. The major challenge is the standardization of the technique worldwide for the purpose of early clinical studies that are likely to be multicenter. Convincing data on correlations between changes observed through molecular imaging and changes in tumor angiogenesis, and hence tumor biology, are still lacking. Whether this would translate into a survival advantage remains to be seen. The ultimate test of the surrogate biological end points determined by molecular imaging will occur in randomized phase III trials. Results of the first randomized trial that showed a survival advantage in favor of antiangiogenic agents were released at the American Society of Clinical Oncology meeting in 2003. There it was reported that the combination of 5-fluorouracil, leucovorin, and irinotecan (Camptosar; Pfizer Pharmaceuticals; New York, NY) with anti-vascular endothelial growth factor antibody (bevacizumab-Avastin; Genentech, Inc.; South San Francisco, CA) was superior to the chemotherapy regimen alone when used to treat patients with metastatic colorectal cancer. However, until further phase III clinical trials confirm these results, surrogate end points of clinical efficacy of the newer agents are urgently needed so that development of ineffective drugs can be halted early. This review briefly discusses the role of molecular imaging in general, and DCE-MRI in particular, in relation to treatment with antiangiogenic agents and highlights some of the difficulties encountered in this area.
Collapse
Affiliation(s)
- Shazza Rehman
- Cancer Research UK, Department of Medical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, United Kingdom.
| | | |
Collapse
|
40
|
Cao Y, Brown SL, Knight RA, Fenstermacher JD, Ewing JR. Effect of intravascular-to-extravascular water exchange on the determination of blood-to-tissue transfer constant by magnetic resonance imaging. Magn Reson Med 2005; 53:282-93. [PMID: 15678542 DOI: 10.1002/mrm.20340] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Water exchange across capillary walls couples intra- and extravascular (IV-EV) protons and their magnetization. A bolus i.v. injection of an extracellular MRI contrast agent (MRCA) causes a large increase in the spin-lattice relaxation rate, R1, of water protons in the plasma and blood cells within the capillaries and changes the effective relaxation rate R1eff in tissue via IV-EV water exchange. An analysis of the effect of plasma-red cell and IV-EV water exchange on the MRI-measured influx and permeability of capillaries to the MRCA is presented and focused on the brain and the blood-brain barrier. The effect of arrival of a bolus of an MRCA in the capillary on the relaxation rate R1eff in tissue via IV-EV water exchange occurs more rapidly than the MRCA uptake in tissue and can dominate the initial time curve of the R1eff change before the MRCA uptake in tissue becomes significant. This raises the possibility that (tissue dependent) IV-EV rate of exchange of water molecules can affect estimates of MRCA transfer constant. We demonstrate that an approach that considers IV-EV water exchange and uses the theoretical model of blood-brain tracer distribution developed by Patlak et al. (J Cereb Blood Flow Metab 1983;3:1-7) can lead to an accurate estimate of the MRI-determined influx rate constant of the MRCA and to an underestimation of the tissue blood volume.
Collapse
Affiliation(s)
- Y Cao
- Department of Radiology, Michigan State University, Ann Arbor, Michigan 48109-0010, USA.
| | | | | | | | | |
Collapse
|
41
|
Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J, Martinive P, Grégoire V, Feron O, Gallez B. Thalidomide Radiosensitizes Tumors through Early Changes in the Tumor Microenvironment. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.743.11.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Purpose: The aim of this work was to study changes in the tumor microenvironment early after an antiangiogenic treatment using thalidomide (a promising angiogenesis inhibitor in a variety of cancers), with special focus on a possible “normalization” of the tumor vasculature that could be exploited to improve radiotherapy.
Experimental Design: Tumor oxygenation, perfusion, permeability, interstitial fluid pressure (IFP), and radiation sensitivity were studied in an FSAII tumor model. Mice were treated by daily i.p. injection of thalidomide at a dose of 200 mg/kg. Measurements of the partial pressure of oxygen (pO2) were carried out using electron paramagnetic resonance oximetry. Three complementary techniques were used to assess the blood flow inside the tumor: dynamic contrast-enhanced magnetic resonance imaging, Patent Blue staining, and laser Doppler imaging. IFP was measured by a “wick-in-needle” technique.
Results: Our results show that thalidomide induces tumor reoxygenation within 2 days. This reoxygenation is correlated with a reduction in IFP and an increase in perfusion. These changes can be attributed to extensive vascular remodeling that we observed using CD31 labeling.
Conclusions: In summary, the microenvironmental changes induced by thalidomide were sufficient to radiosensitize tumors. The fact that thalidomide radiosensitization was not observed in vitro, and that in vivo radiosensitization occurred in a narrow time window, lead us to believe that initial vascular normalization by thalidomide accounts for tumor radiosensitization.
Collapse
Affiliation(s)
| | - Christine Baudelet
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | - Bénédicte F. Jordan
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | - Nelson Beghein
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | | | | | | | - Vincent Grégoire
- 4Radiobiology and Radioprotection Unit, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernard Gallez
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| |
Collapse
|
42
|
Balvay D, Frouin F, Calmon G, Bessoud B, Kahn E, Siauve N, Clément O, Cuenod CA. New criteria for assessing fit quality in dynamic contrast-enhancedT1-weighted MRI for perfusion and permeability imaging. Magn Reson Med 2005; 54:868-77. [PMID: 16155897 DOI: 10.1002/mrm.20650] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Contrast-enhanced (CE) MRI provides in vivo physiological information that cannot be obtained by conventional imaging methods. This information is generally extracted by using models to represent the circulation of contrast agent in the body. However, the results depend on the quality of the fit obtained with the chosen model. Therefore, one must check the fit quality to avoid working on physiologically irrelevant parameters. In this study two dimensionless criteria-the fraction of modeling information (FMI) and the fraction of residual information (FRI)-are proposed to identify errors caused by poor fit. These are compared with more conventional criteria, namely the quadratic error and the correlation coefficient, both theoretically and with the use of simulated and real CE-MRI data. The results indicate the superiority of the new criteria. It is also shown that these new criteria can be used to detect oversimplified models.
Collapse
Affiliation(s)
- Daniel Balvay
- U678 INSERM/UPMC, APHP, CHU Pitié Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Selective antiangiogenesis and vascular targeting drugs hold out the promise of improved efficacy and tolerability for anticancer treatments. Early phase 1 drug trials have shown good tolerability for antiangiogenesis agents with biological activity below the maximum tolerated dose. Advanced clinical trials have demonstrated that morphological assessments of tumour response are of limited value in gauging the efficacy of treatment. MRI is a versatile technique which is sensitive to contrast mechanisms that can be affected by antivascular treatments; this use for MRI has been validated in xenografts and humans. Dynamic contrast-enhanced MRI (DCE-MRI), which demonstrates tissue perfusion and permeability, is being used clinically as a pharmacodynamic indicator of biological activity for antivascular cancer drugs. Early data show that DCE-MRI studies can define the biologically active dose and predict the efficacy of treatment on the basis of changes observed. MRI with macromolecular contrast media (MMCM) depicts microvessel permeability and fractional plasma volume. Xenograft studies with MMCM have shown great promise for evaluating antivascular treatments but this has not been used clinically. Intrinsic susceptibility-weighted MRI, which is sensitive to blood oxygenation and flow, is emerging as a technique that may be able to monitor vascular targeting therapies.
Collapse
Affiliation(s)
- A R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| |
Collapse
|
44
|
Affiliation(s)
- David J Collins
- Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| | | |
Collapse
|
45
|
Kim EJ, Kim DH, Lee SH, Huh YM, Song HT, Suh JS. Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson Imaging 2004; 22:307-14. [PMID: 15062926 DOI: 10.1016/j.mri.2004.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 01/25/2004] [Indexed: 11/28/2022]
Abstract
This study compared two methods, corrected (separation of T(1) and T(2)* effects) and uncorrected, in order to determine the suitability of the perfusion and permeability measures through Delta R(2)* and Delta R(1) analyses. A dynamic susceptibility contrast dual gradient echo (DSC-DGE) was used to image the fixed phantoms and flow phantoms (Sephadex perfusion phantoms and dialyzer phantom for the permeability measurements). The results confirmed that the corrected relaxation rate was linearly proportional to gadolinium-diethyltriamine pentaacetic acid (Gd-DTPA) concentration, whereas the uncorrected relaxation rate did not in the fixed phantom and simulation experiments. For the perfusion measurements, it was found that the correction process was necessary not only for the Delta R(1) time curve but also for the Delta R(2)* time curve analyses. Perfusion could not be measured without correcting the Delta R(2)* time curve. The water volume, which was expressed as the perfusion amount, was found to be closer to the theoretical value when using the corrected Delta R(1) curve in the calculations. However, this may occur in the low concentration of Gd-DTPA in tissue used in this study. For the permeability measurements based on the two-compartment model, the permeability factor (k(ev); e = extravascular, v = vascular) from the outside to the inside of the hollow fibers was greater in the corrected Delta R(1) method than in the uncorrected Delta R(1) method. The differences between the corrected and the uncorrected Delta R(1) values were confirmed by the simulation experiments. In conclusion, this study proposes that the correction for the relaxation rates, Delta R(2)* and Delta R(1), is indispensable in making accurate perfusion and permeability measurements, and that DSC-DGE is a useful method for obtaining information on perfusion and permeability, simultaneously.
Collapse
Affiliation(s)
- Eun-Ju Kim
- Department of Diagnostic Radiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon, Seodaemun Seoul 120-752, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Ahearn TS, Staff RT, Redpath TW, Semple SIK. The effects of renal variation upon measurements of perfusion and leakage volume in breast tumours. Phys Med Biol 2004; 49:2041-51. [PMID: 15214540 DOI: 10.1088/0031-9155/49/10/014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic contrast enhanced MRI (DCE-MRI) and pharmacokinetic models have been used to measure tumour permeability (K(trans)) and leakage volume (ve) in numerous studies. The construction of pharmacokinetic models describing such tissue properties relies on defining the blood plasma concentration of contrast agent with respect to time (Cp(t)). When direct measurement is not possible a bi-exponential decay has been applied using data from healthy volunteers. This work investigates, by simulation, the magnitude of errors resulting from this definition with respect to normal variation in renal function and for cases with renal impairment. Errors up to 23% in ve and 28% in K(trans) were found for the normal simulations, and 67% in ve and 61% in K(trans) for the impaired simulations. If this bi-exponential curve is used as an input function to the generalized kinetic model and used in oncology, estimates of tissue permeability and leakage volume will possess large errors due to variation in Cp(t) curves between subjects.
Collapse
Affiliation(s)
- T S Ahearn
- Department of Bio-Medical Physics, University of Aberdeen, Grampian University Hospitals NHS Trust, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | |
Collapse
|
47
|
Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) using small molecular weight gadolinium chelates enables noninvasive imaging characterization of tissue vascularity. Depending on the technique used, data reflecting tissue perfusion (blood flow, blood volume, mean transit time), microvessel permeability surface area product, and extracellular leakage space can be obtained. Insights into these physiological processes can be obtained from inspection of kinetic enhancement curves or by the application of complex compartmental modeling techniques. Combining morphologic and kinetic features can increase the accuracy of clinical diagnoses. Potential clinical applications include screening for malignant disease, lesion characterization, monitoring lesion response to treatment, and assessment of residual disease. Newer applications include prognostication, pharmacodynamic assessments of antivascular anticancer drugs, and predicting efficacy of treatment. For dynamic MRI to enter into widespread clinical practice, it will be necessary to develop standardized approaches to measurement and robust analysis approaches.
Collapse
Affiliation(s)
- Anwar R Padhani
- *Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex, UK.
| | | |
Collapse
|
48
|
Su MY, Cheung YC, Fruehauf JP, Yu H, Nalcioglu O, Mechetner E, Kyshtoobayeva A, Chen SC, Hsueh S, McLaren CE, Wan YL. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging 2004; 18:467-77. [PMID: 14508784 DOI: 10.1002/jmri.10380] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the association between parameters obtained from dynamic contrast enhanced MRI (DCE-MRI) of breast cancer using different analysis approaches, as well as their correlation with angiogenesis biomarkers (vascular endothelial growth factor and vessel density). MATERIALS AND METHODS DCE-MRI results were obtained from 105 patients with breast cancer (108 lesions). Three analysis methods were applied: 1) whole tumor analysis, 2) regional hot-spot analysis, and 3) intratumor pixel-by-pixel analysis. Early enhancement intensities and fitted pharmacokinetic parameters were studied. Paraffin blocks of 71 surgically resected specimens were analyzed by immunohistochemical staining to measure microvessel counts (with CD31) and vascular endothelial growth factor (VEGF) expression levels. RESULTS MRI parameters obtained from the three analysis methods showed significant correlations (P < 0.0001), but a substantial dispersion from the linear regression line was noted (r = 0.72-0.97). The entire region of interest (ROI) vs. pixel population analyses had a significantly higher association compared to the entire ROI vs. hot-spot analyses. Cancer specimens with high VEGF expression had significantly higher CD31 microvessel densities than did specimens with low VEGF levels (P < 0.005). No significant association was found between MRI parameters obtained from the three analysis strategies and IHC based measurements of angiogenesis. CONCLUSION A consistent analysis strategy was important in the DCE-MRI study. In this series, none of these strategies yielded results for MRI based quantitation of tumor vascularity that were associated with IHC based measurements. Therefore, different analyses could not account for the lack of association.
Collapse
Affiliation(s)
- Min-Ying Su
- Center for Functional Onco-Imaging and Chao Family Comprehensive Cancer Center, University of California Irvine, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Davies CDL, Lundstrøm LM, Frengen J, Eikenes L, Bruland S ØS, Kaalhus O, Hjelstuen MHB, Brekken C. Radiation Improves the Distribution and Uptake of Liposomal Doxorubicin (Caelyx) in Human Osteosarcoma Xenografts. Cancer Res 2004; 64:547-53. [PMID: 14744768 DOI: 10.1158/0008-5472.can-03-0576] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal drug delivery appears to improve the antitumor effect and reduce toxicity compared with the free drug. The therapeutic index may be improved further by combining cytotoxic drugs and radiotherapy. Successful therapy requires that the cytotoxic agents reach the tumor cells. Therefore, we studied tumor growth and the microdistribution of liposomal doxorubicin (Caelyx) with and without additional ionizing radiation in human osteosarcoma xenografts in athymic mice. Caelyx was injected i.v. 1 day before single or fractionated radiotherapy. Both chemoirradiation regimens induced significant tumor growth delays and worked synergistically. Confocal laser scanning microscopy showed that intact liposomes were located in close proximity to endothelial cells, and the distribution of released doxorubicin was heterogeneous. Before radiotherapy, hardly any doxorubicin was localized in the central parts of the tumor. Radiotherapy increased the tumor uptake of doxorubicin by a factor of two to four, with drug being redistributed farther from the vessels in the tumor periphery and located around vessels in the central parts of the tumor. Colocalization of doxorubicin and hypoxic cells showed no distribution of drug into hypoxic areas. Dynamic contrast-enhanced magnetic resonance imaging (MRI) 1 day before the injection of Caelyx and 2 days after treatment start showed that the combined treatment reduced the vascular volume and the vascular transfer rate of the MRI tracer. The results show that chemoirradiation with Caelyx induces synergistic treatment effects. Improved intratumoral drug uptake and distribution are responsible to some extent for the enhanced antitumor effect.
Collapse
Affiliation(s)
- Catharina de L Davies
- Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krause MHJ, Kwong KK, Xiong J, Gragoudas ES, Young LHY. MRI of blood volume with MS 325 in experimental choroidal melanoma. Magn Reson Imaging 2003; 21:725-32. [PMID: 14559336 DOI: 10.1016/s0730-725x(03)00100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional magnetic resonance imaging (MRI) allows quantitative blood volume imaging in vivo at high tissue resolution. The purpose is to apply this technique for untreated and hyperthermia-treated experimental choroidal melanoma. MS 325 was used as new intravascular albumin-bound gadolinium-based contrast agent. Pigmented choroidal melanomas were established in albino rabbits. MRI was performed in 7 untreated eyes and 7 eyes treated with a Neodymium:Yttrium-Lanthanum-Fluoride-laser at 1047 nm. 3D-spoiled gradient echo pulse sequences were used to acquire T' weighted axial images. First, a set of images was collected without contrast agent. MS 325 was then injected i.v. and images were obtained within 12 min after injection. Signal intensities were measured within tumor, ciliary body, choroid, and iris and relative signal intensities were determined for these tissues in relation to vitreous. In untreated tumors, the relative signal intensity was higher after injection of MS 325 (5.61+0.70) than without MS 325 (2.90+0.33; p = 0.0002). In contrast, the relative signal intensity of treated tumors did not differ significantly before and after MS 325 (6.19+1.59 and 6.13+1.64). Histopathological sections indicated vascular occlusion in treated tumors. All other studied tissues of untreated and treated eyes showed a significant increase of relative signal intensities in the presence of MS 325. An animal model for the research on contrast agents in MRI is presented. Blood volume measurement with MS 325 was adapted for experimental choroidal melanomas. Reduced change of relative signal intensity indicates compromised blood volume after vascular occlusion in hyperthermia-treated melanoma. Further studies are needed to investigate whether this technique allows the evaluation of tumor viability following treatments.
Collapse
Affiliation(s)
- Matthias H J Krause
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|