1
|
Çavuşoğlu M. Arterial spin labeling MRI using spiral acquisitions and concurrent field monitoring. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107572. [PMID: 37847985 DOI: 10.1016/j.jmr.2023.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Perfusion MRI based on arterial spin labeling (ASL) has intrinsically very low signal-to-noise ratio (SNR). Signal acquisition at shorter echo times (TE) is necessary to boost the SNR of the ASL images. Spiral trajectories provide substantially shorter TE yielding increased SNR and are among the fastest k-space sampling schemes to encode a given field of view and resolution. Moreover, they provide approximately isotropic point-spread functions and inherent refocusing of motion- and flow-induced phase errors. However, the efficiency of the spiral acquisitions in ASL-MRI has been limited because these advantages are counterbalanced by practical technical challenges. This is because spiral acquisitions are highly sensitive to encoding deficiencies such as static off-resonance in the main magnetic field manifested as blurring artifacts in the image. Moreover, deviation of the gradient fields from the nominal waveforms due to the imperfection of the employed hardware critically limits the practical utilization of spiral trajectories. In this work, I provide single- and multiple-shot spiral ASL images that are robust against typical spiral encoding drawbacks enabled by deploying a comprehensive signal model involving static off-resonance and coil sensitivity maps and actual B0 and gradient field dynamics up to third order in space. The spiral ASL signal acquisition was concurrently monitored using a 3rd order dynamic field camera based on NMR field probes. The reconstructed ASL images at 3 mm and 2 mm in-plane resolution associating with the monitored field dynamics and the static off-resonances exhibited strongly reduced blurring- and aliasing artifacts and distortion. Concurrent field monitoring also enables to account for quasi-static B0 drifts by encompassing the parametric input data with consistent encoding geometry and physiological field fluctuations. In conclusion, concurrent field monitoring in spiral ASL acquisition largely overcomes traditional vulnerability of spiral trajectories in practice providing high quality ASL images with increased SNR, speed and motion robustness.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Institute for Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
2
|
Labriji W, Clauzel J, Mestas JL, Lafond M, Lafon C, Salabert AS, Hirschler L, Warnking JM, Barbier EL, Loubinoux I, Desmoulin F. Evidence of cerebral hypoperfusion consecutive to ultrasound-mediated blood-brain barrier opening in rats. Magn Reson Med 2023; 89:2281-2294. [PMID: 36688262 DOI: 10.1002/mrm.29596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE This work aims to explore the effect of Blood Brain Barrier (BBB) opening using ultrasound combined with microbubbles injection on cerebral blood flow in rats. METHODS Two groups of n = 5 rats were included in this study. The first group was used to investigate the impact of BBB opening on the Arterial Spin Labeling (ASL) signal, in particular on the arterial transit time (ATT). The second group was used to analyze the spatiotemporal evolution of the change in cerebral blood flow (CBF) over time following BBB opening and validate these results using DSC-MRI. RESULTS Using pCASL, a decrease in CBF of up to 29 . 6 ± 15 . 1 % $$ 29.6\pm 15.1\% $$ was observed in the target hemisphere, associated with an increase in arterial transit time. The latter was estimated to be 533 ± 121ms $$ 533\pm 12\mathrm{1ms} $$ in the BBB opening impacted regions against 409 ± 93ms $$ 409\pm 93\mathrm{ms} $$ in the contralateral hemisphere. The spatio-temporal analysis of CBF maps indicated a nonlocal hypoperfusion. DSC-MRI measurements were consistent with the obtained results. CONCLUSION This study provided strong evidence that BBB opening using microbubble intravenous injection induces a transient hypoperfusion. A spatiotemporal analysis of the hypoperfusion changes allows to establish some points of similarity with the cortical spreading depression phenomenon.
Collapse
Affiliation(s)
- Wafae Labriji
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Julien Clauzel
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France.,Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Lydiane Hirschler
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan M Warnking
- U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, Inserm, Grenoble, France
| | - Emmanuel L Barbier
- U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, Inserm, Grenoble, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Franck Desmoulin
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France.,CREFRE-Anexplo, Université de Toulouse, INSERM, UPS, ENVT, Toulouse, France
| |
Collapse
|
3
|
Ye F, Du L, Liu B, Gao X, Yang A, Liu D, Chen Y, Lv K, Xu P, Chen Y, Liu J, Zhang L, Li S, Shmuel A, Zhang Q, Ma G. Application of pseudocontinuous arterial spin labeling perfusion imaging in children with autism spectrum disorders. Front Neurosci 2022; 16:1045585. [PMID: 36425476 PMCID: PMC9680558 DOI: 10.3389/fnins.2022.1045585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Pseudocontinuous Arterial Spin Labeling (pCASL) perfusion imaging allows non-invasive quantification of regional cerebral blood flow (CBF) as part of a multimodal magnetic resonance imaging (MRI) protocol. This study aimed to compare regional CBF in autism spectrum disorders (ASD) individuals with their age-matched typically developing (TD) children using pCASL perfusion imaging. Materials and methods This cross-sectional study enrolled 17 individuals with ASD and 13 TD children. All participants underwent pCASL examination on a 3.0 T MRI scanner. Children in two groups were assessed for clinical characteristics and developmental profiles using Autism Behavior Checklist (ABC) and Gesell development diagnosis scale (GDDS), respectively. We compared CBF in different cerebral regions of ASD and TD children. We also assessed the association between CBF and clinical characteristics/developmental profile. Results Compared with TD children, individuals with ASD demonstrated a reduction in CBF in the left frontal lobe, the bilateral parietal lobes, and the bilateral temporal lobes. Within the ASD group, CBF was significantly higher in the right parietal lobe than in the left side. Correlation analysis of behavior characteristics and CBF in different regions showed a positive correlation between body and object domain scores on the ABC and CBF of the bilateral occipital lobes, and separately, between language domain scores and CBF of the left frontal lobe. The score of the social and self-help domain was negatively correlated with the CBF of the left frontal lobe, the left parietal lobe, and the left temporal lobe. Conclusion Cerebral blood flow was found to be negatively correlated with scores in the social and self-help domain, and positively correlated with those in the body and object domain, indicating that CBF values are a potential MRI-based biomarker of disease severity in ASD patients. The findings may provide novel insight into the pathophysiological mechanisms of ASD.
Collapse
Affiliation(s)
- Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiology, Peking University, Cancer Hospital and Institute, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinying Gao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lipeng Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shijun Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Qi Zhang,
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guolin Ma,
| |
Collapse
|
4
|
Chen Y, Li H, Liu B, Gao W, Yang A, Lv K, Xia H, Zhang W, Yu H, Liu J, Liu X, Wang Y, Han H, Ma G. Cerebral Blood Flow Pattern Changes in Unilateral Sudden Sensorineural Hearing Loss. Front Neurosci 2022; 16:856710. [PMID: 35356053 PMCID: PMC8959761 DOI: 10.3389/fnins.2022.856710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study analyzed the differences in the cerebral blood flow (CBF) between unilateral Sudden Sensorineural Hearing Loss (SSNHL) patients and healthy controls (HCs). We also investigated CBF differences in auditory-related areas in patients with left- and right-sided SSNHL (lSSNHL and rSSNHL) and HCs. We further explore the correlation between unilateral SSNHL characteristics and changes in the CBF.Methods36 patients with unilateral SSNHL (15 males and 21 females, 40.39 ± 13.42 years) and 36 HCs (15 males and 21 females, 40.39 ± 14.11 years) were recruited. CBF images were collected and analyzed using arterial spin labeling (ASL). CereFlow software was used for the post-processing of the ASL data to obtain the CBF value of 246 subregions within brainnetome atlas (BNA). The Two-sample t-test was used to compare CBF differences between SSNHL patients and HCs. One-way ANOVA or Kruskal-Wallis test was used to compare the CBF difference of auditory-related areas among the three groups (lSSNHL, rSSNHL, and HCs). Then, the correlation between CBF changes and specific clinical characteristics were calculated.ResultsThe SSNHL patients exhibited decreased CBF in the bilateral middle frontal gyrus (MFG, MFG_7_1 and MFG_7_3), the contralateral precentral gyrus (PrG, PrG_6_3) and the bilateral superior parietal lobule (SPL, bilateral SPL_5_1, SPL_5_2, and ipsilateral SPL_5_4), p < 0.0002. Compared with HCs, unilateral SSNHL patients exhibited increased rCBF in the bilateral orbital gyrus (OrG, OrG_6_5), the bilateral inferior temporal gyrus (ITG, contralateral ITG_7_1 and bilateral ITG_7_7), p < 0.0002. lSSNHL showed abnormal CBF in left BA21 caudal (p = 0.02) and left BA37 dorsolateral (p = 0.047). We found that the CBF in ipsilateral MFG_7_1 of SSNHL patients was positively correlated with tinnitus Visual Analog Scale (VAS) score (r = 0.485, p = 0.008).ConclusionOur preliminary study explored CBF pattern changes in unilateral SSNHL patients in auditory-related areas and non-auditory areas, suggesting that there may exist reduced attention and some sensory compensation in patients with SSNHL. These findings could advance our understanding of the potential pathophysiology of unilateral SSNHL.
Collapse
Affiliation(s)
- Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Haimei Li
- Department of Radiology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Xia
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenwei Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Honglei Han
- Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China
- Honglei Han,
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guolin Ma,
| |
Collapse
|
5
|
Callewaert B, Jones EAV, Himmelreich U, Gsell W. Non-Invasive Evaluation of Cerebral Microvasculature Using Pre-Clinical MRI: Principles, Advantages and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11060926. [PMID: 34064194 PMCID: PMC8224283 DOI: 10.3390/diagnostics11060926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.
Collapse
Affiliation(s)
- Bram Callewaert
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
| | - Elizabeth A. V. Jones
- CMVB, Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium;
- CARIM, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Uwe Himmelreich
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
- Correspondence:
| | - Willy Gsell
- Biomedical MRI Group, University of Leuven, Herestraat 49, bus 505, 3000 Leuven, Belgium; (B.C.); (W.G.)
| |
Collapse
|
6
|
Hutter J, Harteveld AA, Jackson LH, Franklin S, Bos C, van Osch MJP, O'Muircheartaigh J, Ho A, Chappell L, Hajnal JV, Rutherford M, De Vita E. Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med 2019; 83:549-560. [PMID: 31433077 PMCID: PMC6825519 DOI: 10.1002/mrm.27950] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To study placental function-both perfusion and an oxygenation surrogate ( T 2 * )-simultaneously and quantitatively in-vivo. METHODS Fifteen pregnant women were scanned on a 3T MR scanner. For perfusion measurements, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition. Joint motion correction and quantification were performed to evaluate changes in T 2 * and perfusion over GA. RESULTS The optimized integrated PERFOX protocol and post-processing allowed successful visualization and quantification of perfusion and T 2 * in all subjects. Areas of high T 2 * and high perfusion appear to correspond to placental sub-units and show a systematic offset in location along the maternal-fetal axis. The areas of highest perfusion are consistently closer to the maternal basal plate and the areas of highest T 2 * closer to the fetal chorionic plate. Quantitative results show a strong negative correlation of gestational age with T 2 * and weak negative correlation with perfusion. CONCLUSIONS A strength of the joint sequence is that it provides truly simultaneous and co-registered estimates of local T 2 * and perfusion, however, to achieve this, the time per slice is prolonged compared to a perfusion only scan which can potentially limit coverage. The achieved interlocking can be particularly useful when quantifying transient physiological effects such as uterine contractions. PERFOX opens a new avenue to elucidate the relationship between maternal supply and oxygen uptake, both of which are central to placental function and dysfunction.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Anita A. Harteveld
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laurence H. Jackson
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Clemens Bos
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Alison Ho
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Lucy Chappell
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Mary Rutherford
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Enrico De Vita
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Parametric Features of Regional Cerebral Blood Flow in Venous Ischemic Stroke. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lecture is devoted to the peculiarities of changes in tissue and cell perfusion of the brain with a rare pathology – venous ischemic stroke. Venous stroke, being a “relatively unknown cerebrovascular disease”, occurs up to 5 % of all cases of stroke. The terms “venous ischemia” and “venous stroke” have long been used in the literature and the definition of the venous nature of stroke should lead to a change in therapeutic tactics. Neuroimaging should ensure the verification of stroke and cerebral venous sinus thrombosis, which are the main cause of such a stroke. A certain “alertness” to the venous nature of the stroke with the expansion of the volume of radiologic methods of investigation and the performance of angiographic and perfusion CT and MR techniques, diffusion MRI allowed to increase the number of diagnosed and verified venous strokes from 0.4 % of the total number of stroke patients to 2.4 %. A distinctive feature of venous ischemic stroke from the arterial is moderate hyperemia in the central part in cases where necrosis does not develop and perifocal hyperperfusion in the development of necrosis. Moderate plethora, defined by perfusion parameters (up to 30 % CBF, CBV, MTT) of CT, MRI and SPECT techniques, and not oligemia is the primary damaging factor of the pathogenesis of venous stroke in contrast to the arterial and hyperemia patterns should be the reference points in emergency diagnosis venous stroke along with tomoangiographic symptoms of cerebral venous sinustrombosis.
Collapse
|
8
|
Hartkamp NS, Hendrikse J, de Borst GJ, Kappelle LJ, Bokkers RPH. Intracerebral steal phenomenon in symptomatic carotid artery disease. J Neuroradiol 2018; 46:173-178. [PMID: 30389512 DOI: 10.1016/j.neurad.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 05/12/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Intracerebral steal is a paradoxical vasodilatory response that reduces cerebral blood flow (CBF) in hemodynamically compromised brain tissue when blood is rerouted to more healthy areas. The aim of our study was to investigate the presence and extent of steal in patients with steno-occlusive internal carotid artery (ICA) disease, and to assess its relation with collateral blood flow through the circle of Willis (CoW). MATERIALS AND METHODS Thirty-eight patients with symptomatic steno-occlusive ICA disease underwent MRI examination with arterial spin labeling (ASL) perfusion imaging before and after a vasodilatory challenge. Intracerebral steal was defined as a decline in CBF after acetazolamide. Collateral flow via the CoW was assessed with time-of-flight and flow direction MR angiography (MRA) through the CoW was assessed with 2D phase-contrast MRA's. RESULTS Eight of 38 patients (21%) had steal in the hemisphere ipsilateral to the symptomatic ICA (mean tissue volume with steal, 6.9 ± 4.1 mL; mean CVR, -11 ± 30%). Cerebrovascular reactivity (CVR) was lower in the middle cerebral artery flow territory of the affected hemisphere in patients with steal compared those without (P = 0.002). Collateral blood flow was impaired in 4 of the 8 patients with steal. These patients had a larger area of steal (P = 0.002). CONCLUSIONS Intracerebral steal occurs in patients with obstructive ICA disease and can be assesses at brain tissue level with ASL perfusion MRI. Its presence is related to more severely declined CVR in the surrounding brain tissue area and the volume is associated with impaired primary collateral blood flow through the CoW.
Collapse
Affiliation(s)
- Nolan S Hartkamp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
9
|
Hartkamp NS, Petersen ET, Chappell MA, Okell TW, Uyttenboogaart M, Zeebregts CJ, Bokkers RP. Relationship between haemodynamic impairment and collateral blood flow in carotid artery disease. J Cereb Blood Flow Metab 2018; 38:2021-2032. [PMID: 28776469 PMCID: PMC6238174 DOI: 10.1177/0271678x17724027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Collateral blood flow plays a pivotal role in steno-occlusive internal carotid artery (ICA) disease to prevent irreversible ischaemic damage. Our aim was to investigate the effect of carotid artery disease upon cerebral perfusion and cerebrovascular reactivity and whether haemodynamic impairment is influenced at brain tissue level by the existence of primary and/or secondary collateral. Eighty-eight patients with steno-occlusive ICA disease and 29 healthy controls underwent MR examination. The presence of collaterals was determined with time-of-flight, two-dimensional phase contrast MRA and territorial arterial spin labeling (ASL) imaging. Cerebral blood flow and cerebrovascular reactivity were assessed with ASL before and after acetazolamide. Cerebral haemodynamics were normal in asymptomatic ICA stenosis patients, as opposed to patients with ICA occlusion, in whom the haemodynamics in both hemispheres were compromised. Haemodynamic impairment in the affected brain region was always present in symptomatic patients. The degree of collateral blood flow was inversely correlated with haemodynamic impairment. Recruitment of secondary collaterals only occurred in symptomatic ICA occlusion patients. In conclusion, both CBF and cerebrovascular reactivity were found to be reduced in symptomatic patients with steno-occlusive ICA disease. The presence of collateral flow is associated with further haemodynamic impairment. Recruitment of secondary collaterals is associated with severe haemodynamic impairment.
Collapse
Affiliation(s)
- Nolan S Hartkamp
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esben T Petersen
- 2 Centre for Functional and Diagnostic Imaging and Research, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.,3 Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Michael A Chappell
- 4 Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.,5 Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Thomas W Okell
- 5 Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Maarten Uyttenboogaart
- 6 Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,7 Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Clark J Zeebregts
- 8 Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Ph Bokkers
- 6 Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai JJ, Moghekar A, van Osch M, Ge Y, Lu H. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med 2018; 80:1507-1520. [PMID: 29498097 DOI: 10.1002/mrm.27141] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Many brain diseases are associated with an alteration in blood-brain barrier (BBB) and its permeability. Current methods using contrast agent are primarily sensitive to major leakage of BBB to macromolecules, but may not detect subtle changes in BBB permeability. The present study aims to develop a novel non-contrast MRI technique for the assessment of BBB permeability to water. METHODS The central principle is that by measuring arterially labeled blood spins that are drained into cerebral veins, water extraction fraction (E) and permeability-surface-area product (PS) of BBB can be determined. Four studies were performed. We first demonstrated the proof-of-principle using conventional ASL with very long post-labeling delays (PLD). Next, a new sequence, dubbed water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST), and its Look-Locker (LL) version were developed. Finally, we demonstrated that the sensitivity of the technique can be significantly enhanced by acquiring the data under mild hypercapnia. RESULTS By combining a strong background suppression with long PLDs (2500-4500 ms), ASL spins were reliably detected in the superior sagittal sinus (SSS), demonstrating the feasibility of measuring this signal. The WEPCAST sequence eliminated partial voluming effects of tissue perfusion and allowed quantitative estimation of E = 95.5 ± 1.1% and PS = 188.9 ± 13.4 mL/100 g/min, which were in good agreement with literature reports. LL-WEPCAST sequence shortened the scan time from 19 min to 5 min while providing results consistent with multiple single-PLD acquisitions. Mild hypercapnia increased SNR by 78 ± 25% without causing a discomfort in participants. CONCLUSION A new non-contrast technique for the assessment of global BBB permeability was developed, which may have important clinical applications.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deng Mao
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthias van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| |
Collapse
|
11
|
Ivanov D, Gardumi A, Haast RA, Pfeuffer J, Poser BA, Uludağ K. Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. Neuroimage 2017; 156:363-376. [DOI: 10.1016/j.neuroimage.2017.05.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023] Open
|
12
|
Cerebrovascular reactivity in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery disease. J Neuroradiol 2016; 44:143-150. [PMID: 27743788 DOI: 10.1016/j.neurad.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/09/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE To assess the effect of unilateral large vessel disease upon the cerebral hemodynamic autoregulatory status in the basal ganglia of patients with steno-occlusive internal carotid artery (ICA) disease. MATERIALS AND METHODS Twenty-five healthy volunteers and 38 patients with a unilateral symptomatic steno-occlusive ICA lesion and were investigated; 20 with a stenosis >50% and 18 with an occlusion. Cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) were assessed with pseudo-continuous arterial spin labeling (ASL) magnetic resonance (MR) imaging before and after administration of acetazolamide. RESULTS When compared to controls, the CVR in patients with ICA stenosis was significantly lower in the middle cerebral artery (MCA) territory (P<0.05), and in the caudate (P<0.05) and lentiform nucleus (P<0.05) of the hemisphere ipsilateral to the stenosis. The CVR in the caudate nucleus contralateral to the stenosis was significantly lower (P<0.05) as well. In patients with ICA occlusion, the CVR in the hemisphere ipsilateral to the occlusion as well as in the contralateral hemisphere was significantly lower in the MCA territory (P<0.05), the caudate (P<0.05) and lentiform nucleus (P<0.05), and in the thalamus (P<0.05). CONCLUSION Perfusion ASL MR imaging shows impaired cerebral hemodynamic autoregulation of the basal ganglia in patients with steno-occlusive ICA disease both in the hemisphere ipsilateral as well as in the hemisphere contralateral to the stenosis or occlusion.
Collapse
|
13
|
Bause J, Ehses P, Mirkes C, Shajan G, Scheffler K, Pohmann R. Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t. Magn Reson Med 2016; 75:1054-63. [DOI: 10.1002/mrm.25671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jonas Bause
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Graduate Training Center of Neuronal SciencesInternational Max Planck Research SchoolUniversity of TübingenTübingen Germany
| | - Philipp Ehses
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Christian Mirkes
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - G. Shajan
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Rolf Pohmann
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
| |
Collapse
|
14
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|
15
|
Sugimori H, Fujima N, Suzuki Y, Hamaguchi H, Sakata M, Kudo K. Evaluation of cerebral blood flow using multi-phase pseudo continuous arterial spin labeling at 3-tesla. Magn Reson Imaging 2015; 33:1338-1344. [PMID: 26260545 DOI: 10.1016/j.mri.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022]
Abstract
PURPOSE Arterial spin labeling (ASL) methods have been widely used for evaluation of cerebral blood flow (CBF) by magnetic resonance imaging. However, ASL methods require setting of the post labeling delay (PLD) time for obtaining images. As the hemodynamic status cannot be estimated in each patient, the resultant quantitative values of blood flow may not be accurate. The multi-phase pseudo continuous arterial spin labeling (pCASL) method can be used to obtain images at various time-points. The purpose of this study was to create the transit-time maps for correcting the delayed blood flow and evaluate CBF using the transit-time maps obtained by the multi-phase pCASL method. MATERIALS AND METHODS Twelve patients who underwent both 3.0-tesla magnetic resonance imaging (MRI) and single photon emission computed tomography with iodine-123-N-isopropyl-p-iodoamphetamine (123I-IMP) were investigated. This study was approved by the institutional review board of our institution. MRI acquisitions included PLD time-fixed (1525ms) and multi-phase pCASL sequences. The transit-time maps were calculated from multi-phase pCASL images by software. The transit-time maps were applied to PLD-fixed pCASL images pixel by pixel, for calculating the CBF value corrected for peak blood transit time. Regions of interest were drawn on the brain. IMP-CBF, ASL-CBF (default and corrected) and transit time were measured for each segment. RESULTS Twelve patients and 264 segments were investigated. The mean IMP-CBF, ASL-CBF (default, corrected) and transit time were 28.4, 23.0, 29.6, [ml/min/100g] and 1977.5 [ms], respectively. There were no significant differences between IMP-CBF and ASL-CBF (corrected). CONCLUSION CBF values can be corrected by using the transit-time maps obtained using the multi-phase pCASL method.
Collapse
Affiliation(s)
- Hiroyuki Sugimori
- Department of Radiological Technology, Hokkaido University Hospital, North-14, West-5, Kita-ku, Sapporo, Hokkaido, Japan 060-8648.
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, Japan 060-8638.
| | - Yuriko Suzuki
- Philips Electronics Japan, 2-13-37 Kohnan, Minato-Ku, Tokyo, Japan, 108-8507.
| | - Hiroyuki Hamaguchi
- Department of Radiological Technology, Hokkaido University Hospital, North-14, West-5, Kita-ku, Sapporo, Hokkaido, Japan 060-8648.
| | - Motomichi Sakata
- Graduate School of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, Hokkaido, Japan 060-0812.
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, Japan 060-8638.
| |
Collapse
|
16
|
Mutsaerts HJMM, van Dalen JW, Heijtel DFR, Groot PFC, Majoie CBLM, Petersen ET, Richard E, Nederveen AJ. Cerebral Perfusion Measurements in Elderly with Hypertension Using Arterial Spin Labeling. PLoS One 2015; 10:e0133717. [PMID: 26241897 PMCID: PMC4524722 DOI: 10.1371/journal.pone.0133717] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose The current study assesses the feasibility and value of crushed cerebral blood flow (CBFcrushed) and arterial transit time (ATT) estimations for large clinical imaging studies in elderly with hypertension. Material and Methods Two pseudo-continuous arterial spin labeling (ASL) scans with (CBFcrushed) and without flow crushers (CBFnon-crushed) were performed in 186 elderly with hypertension, from which CBF and ATT maps were calculated. Standard flow territory maps were subdivided into proximal, intermediate and distal flow territories, based on the measured ATT. The coefficient of variation (CV) and physiological correlations with age and gender were compared between the three perfusion parameters. Results There was no difference in CV between CBFcrushed and CBFnon-crushed (15–24%, p>0.4) but the CV of ATT (4–9%) was much smaller. The total gray matter correlations with age and gender were most significant with ATT (p = .016 and p<.001 respectively), in between for CBFcrushed (p = .206 and p = .019) and least significant for CBFnon-crushed (p = .236 and p = .100). Conclusion These data show the feasibility and added value of combined measurements of both crushed CBF and ATT for group analyses in elderly with hypertension. The obtained flow territories provide knowledge on vascular anatomy of elderly with hypertension and can be used in future studies to investigate regional vascular effects.
Collapse
Affiliation(s)
- H. J. M. M. Mutsaerts
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - J. W. van Dalen
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - D. F. R. Heijtel
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - P. F. C. Groot
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - C. B. L. M. Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - E. T. Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E. Richard
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A. J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Steketee RME, Mutsaerts HJMM, Bron EE, van Osch MJP, Majoie CBLM, van der Lugt A, Nederveen AJ, Smits M. Quantitative Functional Arterial Spin Labeling (fASL) MRI--Sensitivity and Reproducibility of Regional CBF Changes Using Pseudo-Continuous ASL Product Sequences. PLoS One 2015; 10:e0132929. [PMID: 26172381 PMCID: PMC4501671 DOI: 10.1371/journal.pone.0132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/21/2015] [Indexed: 11/23/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging is increasingly used to quantify task-related brain activation. This study assessed functional ASL (fASL) using pseudo-continuous ASL (pCASL) product sequences from two vendors. By scanning healthy participants twice with each sequence while they performed a motor task, this study assessed functional ASL for 1) its sensitivity to detect task-related cerebral blood flow (CBF) changes, and 2) its reproducibility of resting CBF and absolute CBF changes (delta CBF) in the motor cortex. Whole-brain voxel-wise analyses showed that sensitivity for motor activation was sufficient with each sequence, and comparable between sequences. Reproducibility was assessed with within-subject coefficients of variation (wsCV) and intraclass correlation coefficients (ICC). Reproducibility of resting CBF was reasonably good within (wsCV: 14.1–15.7%; ICC: 0.69–0.77) and between sequences (wsCV: 15.1%; ICC: 0.69). Reproducibility of delta CBF was relatively low, both within (wsCV: 182–297%; ICC: 0.04–0.32) and between sequences (wsCV: 185%; ICC: 0.45), while inter-session variation was low. This may be due to delta CBF’s small mean effect (0.77–1.32 mL/100g gray matter/min). In conclusion, fASL seems sufficiently sensitive to detect task-related changes on a group level, with acceptable inter-sequence differences. Resting CBF may provide a consistent baseline to compare task-related activation to, but absolute regional CBF changes are more variable, and should be interpreted cautiously when acquired with two pCASL product sequences.
Collapse
Affiliation(s)
- Rebecca M. E. Steketee
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Esther E. Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Aad van der Lugt
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Marion Smits
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
18
|
Liu HL, Chang TT, Yan FX, Li CH, Lin YS, Wong AM. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI. NMR IN BIOMEDICINE 2015; 28:642-649. [PMID: 25880892 DOI: 10.1002/nbm.3297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors.
Collapse
Affiliation(s)
- Ho-Ling Liu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ting-Ting Chang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Xian Yan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiology, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Cheng-He Li
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shi Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Alex M Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelong, Linkou Medical Center, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Reproducibility of pharmacological ASL using sequences from different vendors: implications for multicenter drug studies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2015; 28:427-36. [PMID: 25588906 DOI: 10.1007/s10334-014-0480-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/30/2014] [Accepted: 12/24/2014] [Indexed: 01/08/2023]
Abstract
OBJECT The current study assesses the multicenter feasibility of pharmacological arterial spin labeling (ASL) by comparing a caffeine-induced relative cerebral blood flow decrease (%CBF↓) measured with two pseudo-continuous ASL sequences as provided by two major vendors. MATERIALS AND METHODS Twenty-two healthy volunteers were scanned twice with both a 3D spiral (GE) and a 2D EPI (Philips) sequence. The inter-session reproducibility was evaluated by comparisons of the mean and within-subject coefficient of variability (wsCV) of the %CBF↓, both for the total cerebral gray matter and on a voxel level. RESULTS The %CBF↓ was larger when measured with the 3D spiral sequence (23.9 ± 5.9 %) than when measured with the 2D EPI sequence (19.2 ± 5.6 %) on a total gray matter level (p = 0.02), and on a voxel level in the posterior watershed area (p < 0.001). There was no difference between the gray matter wsCV of the 3D spiral (57.3 %) and 2D EPI sequence (66.7 %, p = 0.3), whereas on a voxel level, the wsCV was visibly different between the sequences. CONCLUSION The observed differences between ASL sequences of both vendors can be explained by differences in the employed readout modules. These differences may seriously hamper multicenter pharmacological ASL, which strongly encourages standardization of ASL implementations.
Collapse
|
20
|
Siero JCW, Hartkamp NS, Donahue MJ, Harteveld AA, Compter A, Petersen ET, Hendrikse J. Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease. Neuroimage 2014; 105:276-85. [PMID: 25261002 DOI: 10.1016/j.neuroimage.2014.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022] Open
Abstract
Blood-oxygenation-level-dependent (BOLD) MRI is widely used for inferring neuronal activation and is becoming increasingly popular for assessing cerebrovascular reactivity (CVR) when combined with a vasoactive stimulus. The BOLD signal contains changes in cerebral blood flow (CBF) and thus information regarding neurovascular coupling and CVR. The BOLD signal, however, is also modulated by changes in cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2), as well as changes in the physiological baseline state. Here, we measured BOLD and CBF responses upon neuronal (visual) activation, before and after a vasodilatory challenge (acetazolamide, ACZ) in patients with vertebrobasilar steno-occlusive disease. After ACZ, the neuronal activation induced BOLD response was reduced or even negative (3 out of 8 subjects), whereas the CBF response remained similar. We show that BOLD alone cannot correctly assess the neuronal activation and underlying neurovascular coupling. The generally assumed positive relationship between BOLD and CBF responses may be severely compromised under changes in the physiological baseline state. Accompanying CBF measurements contain crucial information, and simulations suggest an altered flow-metabolism coupling in these patients.
Collapse
Affiliation(s)
- Jeroen C W Siero
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Nolan S Hartkamp
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Manus J Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Physics and Astronomy, Vanderbilt University School of Medicine, Nashville, TN, USA; Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Annette Compter
- Department of Neurology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esben T Petersen
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
21
|
Mutsaerts HJMM, Steketee RME, Heijtel DFR, Kuijer JPA, van Osch MJP, Majoie CBLM, Smits M, Nederveen AJ. Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla. PLoS One 2014; 9:e104108. [PMID: 25090654 PMCID: PMC4121318 DOI: 10.1371/journal.pone.0104108] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. MATERIAL AND METHODS 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. RESULTS Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. CONCLUSION These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors.
Collapse
Affiliation(s)
| | - Rebecca M. E. Steketee
- Department of Radiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Joost P. A. Kuijer
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthias J. P. van Osch
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marion Smits
- Department of Radiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Schewzow K, Fiedler GB, Meyerspeer M, Goluch S, Laistler E, Wolzt M, Moser E, Schmid AI. Dynamic ASL and T2-weighted MRI in exercising calf muscle at 7 T: a feasibility study. Magn Reson Med 2014; 73:1190-5. [PMID: 24752959 DOI: 10.1002/mrm.25242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/06/2014] [Accepted: 03/16/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE The aim of this study was to develop a measurement protocol for noninvasive simultaneous perfusion quantification and T2 *-weighted MRI acquisition in the exercising calf muscle at 7 Tesla. METHODS Using a nonmagnetic ergometer and a dedicated in-house built calf coil array, dynamic pulsed arterial spin labeling (PASL) measurements with a temporal resolution of 12 s were performed before, during, and after plantar flexion exercise in 16 healthy volunteers. RESULTS Postexercise peak perfusion in gastrocnemius muscle (GAS) was 27 ± 16 ml/100g/min, whereas in soleus (SOL) and tibialis anterior (TA) muscles it remained at baseline levels. T2 *-weighted and ASL time courses in GAS showed comparable times to peak of 161 ± 72 s and 167 ± 115 s, respectively. The T2 *-weighted signal in the GAS showed a minimum during exercise (88 ± 6 % of the baseline signal) and a peak during the recovery (122 ± 9%), whereas in all other muscles only a signal decrease was observed (minimum 91 ± 6% in SOL; 87 ± 8% in TA). CONCLUSION We demonstrate the feasibility of dynamic perfusion quantification in skeletal muscle at 7 Tesla using PASL. This may help to better investigate the physiological processes in the skeletal muscle and also in diseases such as diabetes mellitus and peripheral arterial disease.
Collapse
Affiliation(s)
- Kiril Schewzow
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mirasol RV, Bokkers RPH, Hernandez DA, Merino JG, Luby M, Warach S, Latour LL. Assessing reperfusion with whole-brain arterial spin labeling: a noninvasive alternative to gadolinium. Stroke 2014; 45:456-61. [PMID: 24385278 DOI: 10.1161/strokeaha.113.004001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin labeling (ASL) is a perfusion imaging technique that does not require gadolinium. The study aimed to assess the reliability of ASL for evaluating reperfusion in acute ischemic stroke in comparison with dynamic susceptibility contrast (DSC) imaging. METHODS The study included 24 patients with acute ischemic stroke on admission and 24-hour follow-up ASL and DSC scans. Two readers rated images for interpretability and evidence of reperfusion. Cohen unweighted κ was used to assess (1) inter-rater reliability between readers for determining interpretability and the presence of reperfusion, (2) agreement between ASL and DSC for determining reperfusion for individual raters, and (3) agreement between ASL and DSC for determining reperfusion after consensus. RESULTS Inter-rater reliability for both ASL and DSC was moderate to good (κ of 0.67 versus 0.55, respectively). Reader 1 rated 16 patients as having interpretable ASL and DSC when compared with 15 patients for reader 2. The κ between ASL and DSC for determining reperfusion was 0.50 for reader 1 and 0.595 for reader 2. After consensus, 18 ASL and 17 DSC image sets were rated interpretable for reperfusion and 13 had both interpretable ASL and DSC scans, yielding a κ for assessment of reperfusion of 0.8. CONCLUSIONS Inter-rater reliability of ASL and DSC was moderate to good. Agreement between ASL and DSC for determining reperfusion was moderate for each individual rater and increased substantially after consensus. ASL is a noninvasive and practical alternative to DSC for reperfusion assessments in patients with confirmed acute ischemic stroke.
Collapse
Affiliation(s)
- Raymond V Mirasol
- From the Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (R.V.M., D.A.H., J.G.M., M.L., S.W., L.L.L.); Department of Neurobiology, Care Sciences and Society, Division of Neurodegeneration, The Karolinska Institute, Stockholm, Sweden (R.V.M.); Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands (R.P.H.B.); Department of Radiology, Gelre Hospitals, Apeldoorn, The Netherlands (R.P.H.B.); Research Scholars Program, Howard Hughes Medical Institute, Bethesda, MD (R.V.M.); Department of Neurology and Neurotherapeutics, Seton/UT Southwestern Clinical Research Institute of Austin, UT Southwestern Medical Center, TX (S.W.); and Johns Hopkins Community Physicians, Bethesda, MD (J.G.M.)
| | | | | | | | | | | | | |
Collapse
|
24
|
Harris AD, Murphy K, Diaz CM, Saxena N, Hall JE, Liu TT, Wise RG. Cerebral blood flow response to acute hypoxic hypoxia. NMR IN BIOMEDICINE 2013; 26:1844-1852. [PMID: 24123253 PMCID: PMC4114548 DOI: 10.1002/nbm.3026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Hypoxic hypoxia (inspiratory hypoxia) stimulates an increase in cerebral blood flow (CBF) maintaining oxygen delivery to the brain. However, this response, particularly at the tissue level, is not well characterised. This study quantifies the CBF response to acute hypoxic hypoxia in healthy subjects. A 20-min hypoxic (mean P(ETO2) = 52 mmHg) challenge was induced and controlled by dynamic end-tidal forcing whilst CBF was measured using pulsed arterial spin labelling perfusion MRI. The rate constant, temporal delay and magnitude of the CBF response were characterised using an exponential model for whole-brain and regional grey matter. Grey matter CBF increased from 76.1 mL/100 g/min (95% confidence interval (CI) of fitting: 75.5 mL/100 g/min, 76.7 mL/100 g/min) to 87.8 mL/100 g/min (95% CI: 86.7 mL/100 g/min, 89.6 mL/100 g/min) during hypoxia, and the temporal delay and rate constant for the response to hypoxia were 185 s (95% CI: 132 s, 230 s) and 0.0035 s(-1) (95% CI: 0.0019 s(-1), 0.0046 s(-1)), respectively. Recovery from hypoxia was faster with a delay of 20 s (95% CI: -38 s, 38 s) and a rate constant of 0.0069 s(-1) (95% CI: 0.0020 s(-1), 0.0103 s(-1)). R2*, an index of blood oxygenation obtained simultaneously with the CBF measurement, increased from 30.33 s(-1) (CI: 30.31 s(-1), 30.34 s(-1)) to 31.48 s(-1) (CI: 31.47 s(-1), 31.49 s(-1)) with hypoxia. The delay and rate constant for changes in R2 * were 24 s (95% CI: 21 s, 26 s) and 0.0392 s(-1) (95% CI: 0.0333 s(-1), 0.045 s(-1)), respectively, for the hypoxic response, and 12 s (95% CI: 10 s, 13 s) and 0.0921 s(-1) (95% CI: 0.0744 s(-1), 0.1098 s(-1)/) during the return to normoxia, confirming rapid changes in blood oxygenation with the end-tidal forcing system. CBF and R2* reactivity to hypoxia differed between subjects, but only R2* reactivity to hypoxia differed significantly between brain regions.
Collapse
Affiliation(s)
| | - Kevin Murphy
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| | - Claris M Diaz
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| | - Neeraj Saxena
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging and Department of Radiology, University of California San DiegoLa Jolla, CA, USA
| | - Richard G Wise
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| |
Collapse
|
25
|
Gray matter contamination in arterial spin labeling white matter perfusion measurements in patients with dementia. NEUROIMAGE-CLINICAL 2013; 4:139-44. [PMID: 24371796 PMCID: PMC3871287 DOI: 10.1016/j.nicl.2013.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 01/28/2023]
Abstract
Introduction White matter (WM) perfusion measurements with arterial spin labeling can be severely contaminated by gray matter (GM) perfusion signal, especially in the elderly. The current study investigates the spatial extent of GM contamination by comparing perfusion signal measured in the WM with signal measured outside the brain. Material and methods Four minute 3T pseudo-continuous arterial spin labeling scans were performed in 41 elderly subjects with cognitive impairment. Outward and inward geodesic distance maps were created, based on dilations and erosions of GM and WM masks. For all outward and inward geodesic distances, the mean CBF was calculated and compared. Results GM contamination was mainly found in the first 3 subcortical WM voxels and had only minor influence on the deep WM signal (distances 4 to 7 voxels). Perfusion signal in the WM was significantly higher than perfusion signal outside the brain, indicating the presence of WM signal. Conclusion These findings indicate that WM perfusion signal can be measured unaffected by GM contamination in elderly patients with cognitive impairment. GM contamination can be avoided by the erosion of WM masks, removing subcortical WM voxels from the analysis. These results should be taken into account when exploring the use of WM perfusion as micro-vascular biomarker. A single slice distance analysis was performed. Perfusion signal in the white matter was compared with signal outside the brain. The application of erosion was compared with removal of partial volume voxels. White matter perfusion signal can be distinguished from gray matter contamination. The erosion of three voxels is warranted to avoid gray matter contamination.
Collapse
|
26
|
Zuo Z, Wang R, Zhuo Y, Xue R, St Lawrence KS, Wang DJJ. Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T. PLoS One 2013; 8:e66612. [PMID: 23818950 PMCID: PMC3688599 DOI: 10.1371/journal.pone.0066612] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/08/2013] [Indexed: 12/04/2022] Open
Abstract
Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts. Consistent with theoretical predictions, the experimental data showed that Turbo-FLASH based ASL yielded approximately 4 times SNR gain at 7T compared to 3T. High quality perfusion images were obtained with an in-plane spatial resolution of 0.85×1.7 mm2. A further functional MRI study of motor cortex activation precisely located the primary motor cortex to the precentral gyrus, with the same high spatial resolution. Finally, functional connectivity between left and right motor cortices as well as supplemental motor area were demonstrated using resting state perfusion images. Turbo-FLASH based ASL is a promising approach for perfusion imaging at 7T, which could provide novel approaches to high spatiotemporal resolution fMRI and to investigate the functional connectivity of brain networks at ultrahigh field.
Collapse
Affiliation(s)
- Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | |
Collapse
|
27
|
Arkuszewski M, Krejza J, Chen R, Melhem ER. Sickle cell anemia: reference values of cerebral blood flow determined by continuous arterial spin labeling MRI. Neuroradiol J 2013; 26:191-200. [PMID: 23859242 PMCID: PMC5228728 DOI: 10.1177/197140091302600209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 11/16/2022] Open
Abstract
Sickle cell anemia (SCA) is a chronic illness associated with progressive deterioration in patients' quality of life. The major complications of SCA are cerebrovascular accidents (CVA) such as asymptomatic cerebral infarct or overt stroke. The risk of CVA may be related to chronic disturbances in cerebral blood flow (CBF), but the thresholds of "normal" steady-state CBF are not well established. The reference tolerance limits of CBF can be useful to estimate the risk of CVA in asymptomatic children with SCA, who are negative for hyperemia or evidence of arterial narrowing. Continuous arterial spin labeling (CASL) MR perfusion allows for non-invasive quantification of global and regional CBF. To establish such reference tolerance limits we performed CASL MR examinations on a 3-Tesla MR scanner in a carefully selected cohort of 42 children with SCA (mean age, 8.1±3.3 years; range limits, 2.3-14.4 years; 24 females), who were not on chronic transfusion therapy, had no history of overt stroke or transient ischemic attack, were free of signs and symptoms of focal vascular territory ischemic brain injury, did not have intracranial arterial narrowing on MR angiography and were at low risk for stroke as determined by transcranial Doppler ultrasonography.
Collapse
Affiliation(s)
- M Arkuszewski
- Department of Radiology, Division of Neuroradiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
28
|
Gregori J, Schuff N, Kern R, Günther M. T2-based arterial spin labeling measurements of blood to tissue water transfer in human brain. J Magn Reson Imaging 2013; 37:332-42. [PMID: 23019041 PMCID: PMC3554863 DOI: 10.1002/jmri.23822] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate blood to tissue water transfer in human brain, in vivo and spatially resolved using a T2-based arterial spin labeling (ASL) method with 3D readout. MATERIALS AND METHODS A T2-ASL method is introduced to measure the water transfer processes between arterial blood and brain tissue based on a 3D-GRASE (gradient and spin echo) pulsed ASL sequence with multiecho readout. An analytical mathematical model is derived based on the General Kinetic Model, including blood and tissue compartment, T1 and T2 relaxation, and a blood-to-tissue transfer term. Data were collected from healthy volunteers on a 3 T system. The mean transfer time parameter T(bl → ex) (blood to extravascular compartment transfer time) was derived voxelwise by nonlinear least-squares fitting. RESULTS Whole-brain maps of T(bl → ex) show stable results in cortical regions, yielding different values depending on the brain region. The mean value across subjects and regions of interest (ROIs) in gray matter was 440 ± 30 msec. CONCLUSION A novel method to derive whole-brain maps of blood to tissue water transfer dynamics is demonstrated. It is promising for the investigation of underlying physiological mechanisms and development of diagnostic applications in cerebrovascular diseases.
Collapse
Affiliation(s)
- Johannes Gregori
- Institute for Medical Image Computing MEVIS, Fraunhofer MEVIS, Bremen, Germany.
| | | | | | | |
Collapse
|
29
|
Li X, Metzger GJ. Feasibility of measuring prostate perfusion with arterial spin labeling. NMR IN BIOMEDICINE 2013; 26:51-7. [PMID: 22674425 PMCID: PMC3455122 DOI: 10.1002/nbm.2818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/05/2012] [Accepted: 04/18/2012] [Indexed: 05/09/2023]
Abstract
Prostate perfusion has the potential to become an important pathophysiological marker for the monitoring of disease progression or the assessment of the therapeutic response of prostate cancer. The feasibility of arterial spin labeling, an MRI approach for the measurement of perfusion without an exogenous contrast agent, is demonstrated in the prostate for the first time. Although various arterial spin labeling methods have been demonstrated previously in highly perfused organs, such as the brain and kidneys, the prospect of obtaining such measurements in the prostate is challenging because of the relatively low blood flow, long transit times, susceptibility-induced image distortion and local motion. However, despite these challenges, this study demonstrates that, with a whole-body transmit coil and external receiver array, global prostate perfusion can be measured with arterial spin labeling at 3 T. In five healthy subjects with a mean age of 44 years, the mean total prostate blood flow was measured to be 25.8 ± 7.1 mL/100 cm(3) /min, with an estimated bolus duration and arterial transit time of 884 ± 209 ms and 721 ± 131 ms, respectively.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
30
|
Prabhakaran V, Nair VA, Austin BP, La C, Gallagher TA, Wu Y, McLaren DG, Xu G, Turski P, Rowley H. Current status and future perspectives of magnetic resonance high-field imaging: a summary. Neuroimaging Clin N Am 2012; 22:373-97, xii. [PMID: 22548938 DOI: 10.1016/j.nic.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are several magnetic resonance (MR) imaging techniques that benefit from high-field MR imaging. This article describes a range of novel techniques that are currently being used clinically or will be used in the future for clinical purposes as they gain popularity. These techniques include functional MR imaging, diffusion tensor imaging, cortical thickness assessment, arterial spin labeling perfusion, white matter hyperintensity lesion assessment, and advanced MR angiography.
Collapse
Affiliation(s)
- Vivek Prabhakaran
- Division of Neuroradiology, Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arterial spin labeling: its time is now. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:75-7. [PMID: 22427138 DOI: 10.1007/s10334-012-0309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Hernandez DA, Bokkers RP, Mirasol RV, Luby M, Henning EC, Merino JG, Warach S, Latour LL. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012; 43:753-8. [PMID: 22343640 PMCID: PMC3299538 DOI: 10.1161/strokeaha.111.635979] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to test whether arterial spin labeling (ASL) can detect significant differences in relative cerebral blood flow (rCBF) in the core, mismatch, and reverse-mismatch regions, and whether rCBF values measured by ASL in those areas differ from values obtained using dynamic susceptibility contrast (DSC) MRI. METHODS Acute stroke patients were imaged with diffusion-weighted imaging (DWI) and perfusion-weighted imaging (ASL and DSC) MRI. An expert reader segmented the ischemic lesion on DWI and the DSC time-to-peak (TTP) maps. Three regions were defined: core (DWI+, TTP+), mismatch (DWI-, TTP+), and reverse-mismatch (DWI+, TTP-). For both ASL and DSC, rCBF maps were created with commercially available software, and the ratio was calculated as the mean signal intensity measured on the side of the lesion to that of the homologous region in the contralateral hemisphere. Values obtained from core, mismatch, and reverse-mismatch were used for paired comparison. RESULTS Twenty-eight patients were included in the study. The mean age was 65.6 (16.9) years, with a median baseline National Institutes of Health Stroke Scale score of 10 (interquartile range, 4-17). Median time from last known normal to MRI was 5.7 hours (interquartile range, 2.9-22.6). Mean rCBF ratios were significantly higher in the mismatch 0.53 (0.23) versus the core 0.39 (0.33) and reverse-mismatch 0.68 (0.49) versus the core 0.38 (0.35). Differences in rCBF measured with DSC and ASL were not significant. CONCLUSIONS ASL allows for the measurement of rCBF in the core and mismatch regions. Values in the mismatch were significantly higher than in the core, suggesting there is potential salvageable tissue.
Collapse
Affiliation(s)
- Daymara A. Hernandez
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Reinoud P.H. Bokkers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond V. Mirasol
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
- Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, Bethesda, Maryland, U.S.A
| | - Marie Luby
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Erica C. Henning
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - José G. Merino
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
- Johns Hopkins Community Physicians, Bethesda, Maryland, U.S.A
| | - Steven Warach
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Lawrence L. Latour
- Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
33
|
Abstract
Perfusion MRI is a tool to assess the spatial distribution of microvascular blood flow. Arterial spin labeling (ASL) is shown here to be advantageous for quantification of cerebral microvascular blood flow (CBF) in rodents. This technique is today ready for assessment of a variety of murine models of human pathology including those associated with diffuse microvascular dysfunction. This chapter provides an introduction to the principles of CBF measurements by MRI along with a short overview over applications in which these measurements were found useful. The basics of commonly employed specific arterial spin-labeling techniques are described and theory is outlined in order to give the reader the ability to set up adequate post-processing tools. Three typical MR protocols for pulsed ASL on two different MRI systems are described in detail along with all necessary sequence parameters and technical requirements. The importance of the different parameters entering theory is discussed. Particular steps for animal preparation and maintenance during the experiment are given, since CBF regulation is sensitive to a number of experimental physiological parameters and influenced mainly by anesthesia and body temperature.
Collapse
|
34
|
Yan L, Li C, Kilroy E, Wehrli FW, Wang DJJ. Quantification of arterial cerebral blood volume using multiphase-balanced SSFP-based ASL. Magn Reson Med 2011; 68:130-9. [PMID: 22127983 DOI: 10.1002/mrm.23218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/14/2011] [Accepted: 08/23/2011] [Indexed: 11/09/2022]
Abstract
A new technique is introduced in this study for in vivo measurement of arterial cerebral blood volume by combining arterial spin labeling with a segmented multiphase balanced steady-state free precession (bSSFP) readout sequence. This technique takes advantage of the phenomenon that the longitudinal magnetization of flowing blood is not or only marginally disturbed (besides T(1) relaxation) by the bSSFP ± α pulse train. When the blood water exchanges into tissue, it becomes quickly saturated by the bSSFP pulse train due to 0 velocity and reduced T(1), T(2) relaxation times. Therefore, labeled blood water behaves like an intravascular contrast agent in multiphase bSSFP scans, and can be used to quantify arterial cerebral blood volume in a similar way as dynamic susceptibility contrast MRI. Both Bloch equation simulation and in vivo experiments were carried out to demonstrate the feasibility for quantifying cerebral blood volume in arteries, arterioles, and capillaries using two variants of the proposed method. Functional MRI of visual cortex stimulation was further performed using multiphase bSSFP-based arterial spin labeling and compared with vascular-space occupancy contrast. The proposed multiphase bSSFP-based arterial spin labeling technique may allow separation of cerebral blood volume of different vascular compartments for functional MRI studies and clinical evaluation of the cerebral vasculature.
Collapse
Affiliation(s)
- Lirong Yan
- Department of Neurology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
35
|
Gevers S, Nederveen AJ, Fijnvandraat K, van den Berg SM, van Ooij P, Heijtel DF, Heijboer H, Nederkoorn PJ, Engelen M, van Osch MJ, Majoie CB. Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. J Magn Reson Imaging 2011; 35:779-87. [PMID: 22095695 DOI: 10.1002/jmri.23505] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/21/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the applicability of arterial spin labeling (ASL) cerebral blood flow (CBF) measurements in children with sickle cell disease (SCD). MATERIALS AND METHODS We included 12 patients and five controls. Conventional magnetic resonance imaging (MRI) (T2, fluid attenuated inversion recovery [FLAIR], and MR angiography) was performed to diagnose silent infarcts, vasculopathy, or leukoencephalopathy. Pseudo-continuous ASL was performed to measure CBF using two postlabeling delays to identify transit-time effects. Perfusion estimates were corrected for hematocrit and blood velocity in the labeling plane and compared to phase-contrast MR. CBF asymmetries between the flow maps of the left and right internal carotid arteries were tested for significance using paired t-tests. Significant asymmetries were expressed in terms of an asymmetry ratio (AR = absolute difference/mean). An AR >10% was considered clinically relevant. RESULTS Mean CBF was higher in patients than in controls. Agreement between CBF and flow improved after applying hematocrit and velocity corrections. At a 2100 msec postlabeling delay one patient had a clinically relevant asymmetry. No association was observed between CBF asymmetries and silent infarcts. CONCLUSION Care must be taken in the interpretation of ASL-CBF measurements in SCD patients. A long postlabeling delay with blood velocity correction anticipates overestimation of CBF asymmetries.
Collapse
Affiliation(s)
- Sanna Gevers
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
He X, Raichle ME, Yablonskiy DA. Transmembrane dynamics of water exchange in human brain. Magn Reson Med 2011; 67:562-71. [PMID: 22135102 DOI: 10.1002/mrm.23019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/01/2011] [Accepted: 05/04/2011] [Indexed: 12/21/2022]
Abstract
Tracking arterial spin labeled (ASL) water in the human brain with magnetic resonance imaging can provide important information on the dynamics of the trans-capillary and trans-membrane water exchange. This information however, is not only important from a basic biological standpoint, but also is essential for deciphering positron emission tomography and MRI perfusion experiments based on the movement of labeled water. While substantial information exists on water exchange through cellular membranes in vitro, the in vivo information remains limited and controversial. In this MRI study, we use a combination of pulsed ASL and recently developed quantitative blood-oxygen-level-dependent technique to address this question. Our approach is based on the measurements of the intrinsic MR transverse relaxation (T2*) properties of the ASL-labeled water. We discovered that T2* of the ASL-labeled water in the extravascular space is 87 ms ± 10 ms while T2* of the corresponding tissue water is much shorter, 50 ms ± 4 ms. This suggests that the ASL-labeled water does not reach equilibrium with the extravascular tissue and is mostly localized to the extraneuronal space. We estimated that the water transport time through the neuronal membranes is on the order of several tens of seconds; a finding consistent with older PET tracer kinetic studies using (15)O-water.
Collapse
Affiliation(s)
- Xiang He
- Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri, USA.
| | | | | |
Collapse
|
37
|
St Lawrence KS, Owen D, Wang DJJ. A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med 2011; 67:1275-84. [PMID: 21858870 DOI: 10.1002/mrm.23104] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 01/01/2023]
Abstract
Changes in the exchange rate of water across the blood-brain barrier, denoted k(w), may indicate blood-brain barrier dysfunction before the leakage of large-molecule contrast agents is observable. A previously proposed approach for measuring k(w) is to use diffusion-weighted arterial spin labeling to measure the vascular and tissue fractions of labeled water, because the vascular-to-tissue ratio is related to k(w). However, the accuracy of diffusion-weighted arterial spin labeling is affected by arterial blood contributions and the arterial transit time (τ(a)). To address these issues, a two-stage method is proposed that uses combinations of diffusion-weighted gradient strengths and post-labeling delays to measure both τ(a) and k(w). The feasibility of this method was assessed by acquiring diffusion-weighted arterial spin labeling data from seven healthy volunteers. Repeat measurements and Monte Carlo simulations were conducted to determine the precision and accuracy of the k(w) estimates. Average grey and white matter k(w) values were 110 ± 18 and 126 ± 18 min(-1), respectively, which compare favorably to blood-brain barrier permeability measurements obtained with positron emission tomography. The intrasubject coefficient of variation was 26% ± 23% in grey matter and 21% ± 17% in white matter, indicating that reproducible k(w) measurements can be obtained.
Collapse
|
38
|
Gevers S, van Osch MJ, Bokkers RPH, Kies DA, Teeuwisse WM, Majoie CB, Hendrikse J, Nederveen AJ. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab 2011; 31:1706-15. [PMID: 21304555 PMCID: PMC3170937 DOI: 10.1038/jcbfm.2011.10] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/08/2022]
Abstract
Intra- and multicenter reproducibility of currently used arterial spin labeling (ASL) methods were assessed at three imaging centers in the Netherlands, equipped with Philips 3TMR scanners. Six healthy participants were scanned twice at each site. The imaging protocol consisted of continuous ASL (CASL), pseudo-continuous ASL (p-CASL) with and without background suppression, pulsed ASL (PASL) with single and multiple inversion times (TIs), and selective ASL for segmentation. Reproducibility was expressed in terms of the coefficient of repeatability and the repeatability index. Voxelwise analysis of variance was performed, yielding brain maps that reflected regional variability. Intra- and multicenter reproducibility were comparable for all methods, except for single TI PASL, with better intracenter reproducibility (F-test of equality of two variances, P<0.05). Pseudo-continuous ASL and multi TI PASL varied least between sites. Variability maps of all methods showed most variability near brain-feeding arteries within sessions and in gray matter between sessions. On the basis of the results of this study, one could consider the use of reference values in clinical routine, with whole-brain p-CASL perfusion varying <20% over repeated measurements within the same individuals considered to be normal. Knowledge on regional variability allows for the use of perfusion-weighted images in the assessment of local cerebral pathology.
Collapse
Affiliation(s)
- Sanna Gevers
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Foucher JR, Roquet D, Marrer C, Pham BT, Gounot D. Correcting for the echo-time effect after measuring the cerebral blood flow by arterial spin labeling. J Magn Reson Imaging 2011; 34:785-90. [PMID: 21769973 DOI: 10.1002/jmri.22678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/23/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To take into account the echo time (TE) influence on arterial spin labeling (ASL) signal when converting it in regional cerebral blood flow (rCBF). Gray matter ASL signal decrease with increasing TE as a consequence of the difference in the apparent transverse relaxation rates between labeled water in capillaries and nonlabeled water in the tissue (δR 2*). We aimed to measure ASL/rCBF changes in different parts of the brain and correct them. MATERIALS AND METHODS Fifteen participants underwent ASL measurements at TEs of 9.7-30 ms. Decreases in ASL values were localized by statistical parametric mapping. The corrections assessed were a subject-per-subject adjustment, an average δR 2* value adjustment, and a two-compartment model adjustment. RESULTS rCBF decreases associated with increasing TEs were found for gray matter and were corrected using an average δR 2* value of 20 s(-1) . Conversely, for white matter, rCBF values increased with increasing TEs (δR 2* = -23 s(-1)). CONCLUSION Our correction was as good as using a two-compartment model. However, it must be done separately for the gray and white matter rCBF values because the capillary R 2* values are, respectively, larger and smaller than those of surrounding tissues.
Collapse
Affiliation(s)
- Jack R Foucher
- UdS, Université de Strasbourg, Strasbourg, France; INSERM U666-Physiopathologie et Psychopathologie Cognitive de la Schizophrénie, Strasbourg, France.
| | | | | | | | | |
Collapse
|
40
|
Lu H, Xu F, Grgac K, Liu P, Qin Q, van Zijl P. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2011; 67:42-9. [PMID: 21590721 DOI: 10.1002/mrm.22970] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/01/2011] [Accepted: 03/25/2011] [Indexed: 11/10/2022]
Abstract
Recently, a T(2) -Relaxation-Under-Spin-Tagging (TRUST) MRI technique was developed to quantitatively estimate blood oxygen saturation fraction (Y) via the measurement of pure blood T(2) . This technique has shown promise for normalization of fMRI signals, for the assessment of oxygen metabolism, and in studies of cognitive aging and multiple sclerosis. However, a human validation study has not been conducted. In addition, the calibration curve used to convert blood T(2) to Y has not accounted for the effects of hematocrit (Hct). In this study, we first conducted experiments on blood samples under physiologic conditions, and the Carr-Purcell-Meiboom-Gill T(2) was determined for a range of Y and Hct values. The data were fitted to a two-compartment exchange model to allow the characterization of a three-dimensional plot that can serve to calibrate the in vivo data. Next, in a validation study in humans, we showed that arterial Y estimated using TRUST MRI was 0.837 ± 0.036 (N=7) during the inhalation of 14% O2, which was in excellent agreement with the gold-standard Y values of 0.840 ± 0.036 based on Pulse-Oximetry. These data suggest that the availability of this calibration plot should enhance the applicability of T(2) -Relaxation-Under-Spin-Tagging MRI for noninvasive assessment of cerebral blood oxygenation.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Sensitivity calibration with a uniform magnetization image to improve arterial spin labeling perfusion quantification. Magn Reson Med 2011; 66:1590-600. [PMID: 21523824 DOI: 10.1002/mrm.22954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/18/2011] [Accepted: 03/15/2011] [Indexed: 12/20/2022]
Abstract
Quantification of perfusion with arterial spin labeling MRI requires a calibration of the imaging sensitivity to water throughout the imaged volume. Since this sensitivity is affected by coil loading and other interactions between the subject and the scanner, the sensitivity must be calibrated in the subject at the time of scan. Conventional arterial spin labeling perfusion quantification assumes a uniform proton density and acquires a proton density reference image to serve as the calibration. This assumption, in the form of an assumed constant brain-blood partition coefficient, incorrectly adds inverse proton density weighting to the perfusion image. Here, a sensitivity calibration is proposed by generating a uniform magnetization image whose intensity is highly independent of brain tissue type. It is shown that such a uniform magnetization image can be achieved, and brain tissue perfusion values quantified with the sensitivity calibration agree with those quantified with a proton density image when segmentation of brain tissues is performed and appropriate partition coefficients are assumed. Quantification of brain tissue water density is also demonstrated using this sensitivity calibration. This approach can improve and simplify quantification of arterial spin labeling perfusion and may have broader applications to measurement of edema and sensitivity calibration for parallel imaging.
Collapse
Affiliation(s)
- Weiying Dai
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
42
|
Liu P, Uh J, Lu H. Determination of spin compartment in arterial spin labeling MRI. Magn Reson Med 2011; 65:120-7. [PMID: 20740655 DOI: 10.1002/mrm.22601] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major difference between arterial-spin-labeling MRI and gold-standard radiotracer blood flow methods is that the compartment localization of the labeled spins in the arterial-spin-labeling image is often ambiguous, which may affect the quantification of cerebral blood flow. In this study, we aim to probe whether the spins are located in the vascular system or tissue by using T2 of the arterial-spin-labeling signal as a marker. We combined two recently developed techniques, pseudo-continuous arterial spin labeling and T2-Relaxation-Under-Spin-Tagging, to determine the T2 of the labeled spins at multiple postlabeling delay times. Our data suggest that the labeled spins first showed the T2 of arterial blood followed by gradually approaching and stabilizing at the tissue T2. The T2 values did not decrease further toward the venous T2. By fitting the experimental data to a two-compartment model, we estimated gray matter cerebral blood flow, arterial transit time, and tissue transit time to be 74.0 ± 10.7 mL/100g/min (mean ± SD, N = 10), 938 ± 156 msec, and 1901 ± 181 msec, respectively. The arterial blood volume was calculated to be 1.18 ± 0.21 mL/100 g. A postlabeling delay time of 2 s is sufficient to allow the spins to completely enter the tissue space for gray matter but not for white matter.
Collapse
Affiliation(s)
- Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
43
|
Jung Y, Wong EC, Liu TT. Multiphase pseudocontinuous arterial spin labeling (MP-PCASL) for robust quantification of cerebral blood flow. Magn Reson Med 2011; 64:799-810. [PMID: 20578056 DOI: 10.1002/mrm.22465] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudocontinuous arterial spin labeling (PCASL) has been demonstrated to provide the sensitivity of the continuous arterial spin labeling method while overcoming many of the limitations of that method. Because the specification of the phases in the radiofrequency pulse train in PCASL defines the tag and control conditions of the flowing arterial blood, its tagging efficiency is sensitive to factors, such as off-resonance fields, that induce phase mismatches between the radiofrequency pulses and the flowing spins. As a result, the quantitative estimation of cerebral blood flow with PCASL can exhibit a significant amount of error when these factors are not taken into account. In this paper, the sources of the tagging efficiency loss are characterized and a novel PCASL method that utilizes multiple phase offsets is proposed to reduce the tagging efficiency loss in PCASL. Simulations are performed to evaluate the feasibility and the performance of the proposed method. Quantitative estimates of cerebral blood flow obtained with multiple phase offset PCASL are compared to estimates obtained with conventional PCASL and pulsed arterial spin labeling. Our results show that multiple phase offset PCASL provides robust cerebral blood flow quantification while retaining much of the sensitivity advantage of PCASL.
Collapse
Affiliation(s)
- Youngkyoo Jung
- Center for Functional MRI and Department of Radiology, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
44
|
Zheng B, Lee PTH, Golay X. High-sensitivity cerebral perfusion mapping in mice by kbGRASE-FAIR at 9.4 T. NMR IN BIOMEDICINE 2010; 23:1061-1070. [PMID: 20665907 DOI: 10.1002/nbm.1533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The combination of flow-sensitive alternating inversion recovery (FAIR) and single-shot k-space-banded gradient- and spin-echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal-to-noise ratio (SNR) analysis showed that kbGRASE-FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single-shot echo planar imaging (EPI)-FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE-FAIR showed a more stable response to 5% CO(2) than did those with EPI-FAIR. The results establish kbGRASE-FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T.
Collapse
Affiliation(s)
- Bingwen Zheng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Biopolis, Singapore.
| | | | | |
Collapse
|
45
|
Alsop DC, Dai W, Grossman M, Detre JA. Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 2010; 20:871-80. [PMID: 20413865 DOI: 10.3233/jad-2010-091699] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arterial spin labeling (ASL) enables the noninvasive, quantitative imaging of cerebral blood flow using standard magnetic resonance imaging (MRI) equipment. Because it requires no contrast injection, ASL can add resting functional information to MRI studies measuring atrophy and signs of ischemic injury. Key features of ASL technology that may affect studies in Alzheimer's disease are described. The existing literature describing ASL blood flow imaging applied to Alzheimer's disease and related dementia is reviewed, and the potential role of ASL in treatment and prevention studies of early Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
46
|
Chappell MA, MacIntosh BJ, Donahue MJ, Günther M, Jezzard P, Woolrich MW. Separation of macrovascular signal in multi-inversion time arterial spin labelling MRI. Magn Reson Med 2010; 63:1357-65. [PMID: 20432306 DOI: 10.1002/mrm.22320] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arterial spin labeling (ASL) provides a noninvasive method to measure brain perfusion and is becoming an increasingly viable alternative to more invasive MR methods due to improvements in acquisition, such as the use of a three-dimensional GRASE readout. A potential source of error in ASL measurements is signal arising from intravascular blood that is destined for more distal tissue. This is typically suppressed using diffusion gradients in many ASL sequences. However, several problems exist with this approach, such as the choice of cutoff velocity and gradient direction and incompatibility with certain readout modules. An alternative approach is to explicitly model the intravascular signal. This study exploits this approach by using multi-inversion time ASL data with a recently developed model-fitting method. The method employed permits the intravascular contribution to be discarded in voxels where there is no support in the data for its inclusion, thereby addressing the issue of overfitting. It is shown by comparing data with and without flow suppression, and by comparing the intravascular contribution in GRASE ASL data to MR angiographic images, that the model-fitting approach can provide a viable alternative to flow suppression in ASL where suppression is either not feasible or not desirable.
Collapse
Affiliation(s)
- Michael A Chappell
- Centre for Functional MRI of the Brain, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Bokkers RPH, van Osch MJP, van der Worp HB, de Borst GJ, Mali WPTM, Hendrikse J. Symptomatic Carotid Artery Stenosis: Impairment of Cerebral Autoregulation Measured at the Brain Tissue Level with Arterial Spin-labeling MR Imaging. Radiology 2010; 256:201-8. [DOI: 10.1148/radiol.10091262] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Qiu M, Paul Maguire R, Arora J, Planeta-Wilson B, Weinzimmer D, Wang J, Wang Y, Kim H, Rajeevan N, Huang Y, Carson RE, Constable RT. Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects. Magn Reson Med 2010; 63:374-84. [PMID: 19953506 DOI: 10.1002/mrm.22218] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Arterial transit time (ATT), a key parameter required to calculate absolute cerebral blood flow in arterial spin labeling (ASL), is subject to much uncertainty. In this study, ASL ATTs were estimated on a per-voxel basis using data measured by both ASL and positron emission tomography in the same subjects. The mean ATT increased by 260 +/- 20 (standard error of the mean) ms when the imaging slab shifted downwards by 54 mm, and increased from 630 +/- 30 to 1220 +/- 30 ms for the first slice, with an increase of 610 +/- 20 ms over a four-slice slab when the gap between the imaging and labeling slab increased from 20 to 74 mm. When the per-slice ATTs were employed in ASL cerebral blood flow quantification and the in-slice ATT variations ignored, regional cerebral blood flow could be significantly different from the positron emission tomography measures. ATT also decreased with focal activation by the same amount for both visual and motor tasks (approximately 80 ms). These results provide a quantitative relationship between ATT and the ASL imaging geometry and yield an assessment of the assumptions commonly used in ASL imaging. These findings should be considered in the interpretation of, and comparisons between, different ASL-based cerebral blood flow studies. The results also provide spatially specific ATT data that may aid in optimizing the ASL imaging parameters.
Collapse
Affiliation(s)
- Maolin Qiu
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-2048, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu WC, St Lawrence KS, Licht DJ, Wang DJJ. Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imaging 2010; 21:65-73. [PMID: 21613872 DOI: 10.1097/rmr.0b013e31821e570a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arterial spin labeling (ASL) perfusion magnetic resonance imaging has gained wide acceptance for its value in clinical and neuroscience applications during recent years. Its capability for noninvasive and absolute perfusion quantification is a key characteristic that makes ASL attractive for many clinical applications. In the present review, we discuss the main parameters or factors that affect the reliability and accuracy of ASL perfusion measurements. Our secondary goal was to outline potential solutions that may improve the reliability and accuracy of ASL in clinical settings. It was found that, through theoretical analyses, flow quantification is most sensitive to tagging efficiency and estimation of the equilibrium magnetization of blood signal (M(0b)). Variations of blood T1 have a greater effect on perfusion quantification than variations of tissue T1. Arterial transit time becomes an influential factor when it is longer than the postlabeling delay time. The T2's of blood and tissue impose minimal effects on perfusion calculation at field strengths equal to or lower than 3.0 T. Subsequently, we proposed various approaches for in vivo estimation or calibration of the above parameters, such as the use of phase-contrast magnetic resonance imaging for calibration of the labeling efficiency as well as the use of inversion recovery TrueFISP (true fast imaging with steady-state precession) sequence for blood T1 mapping. We also list representative clinical cases in which implicit assumptions for ASL perfusion quantification may be violated, such as the venous outflow effect in children with sickle cell disease. Finally, an optimal imaging protocol including in vivo measurements of several critical parameters was recommended for clinical ASL studies.
Collapse
Affiliation(s)
- Wen-Chau Wu
- Graduate Institute of Oncology and Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
50
|
|