1
|
Huang X, Dong H, Tao Q, Yu M, Li Y, Rong L, Krause HJ, Offenhäusser A, Xie X. Sensor Configuration and Algorithms for Power-Line Interference Suppression in Low Field Nuclear Magnetic Resonance. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3566. [PMID: 31443310 PMCID: PMC6721142 DOI: 10.3390/s19163566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Low field (LF) nuclear magnetic resonance (NMR) shows potential advantages to study pure heteronuclear J-coupling and observe the fine structure of matter. Power-line harmonics interferences and fixed-frequency noise peaks might introduce discrete noise peaks into the LF-NMR spectrum in an open environment or in a conductively shielded room, which might disturb J-coupling spectra of matter recorded at LF. In this paper, we describe a multi-channel sensor configuration of superconducting quantum interference devices, and measure the multiple peaks of the 2,2,2-trifluoroethanol J-coupling spectrum. For the case of low signal to noise ratio (SNR) < 1, we suggest two noise suppression algorithms using discrete wavelet analysis (DWA), combined with either least squares method (LSM) or gradient descent (GD). The de-noising methods are based on spatial correlation of the interferences among the superconducting sensors, and are experimentally demonstrated. The DWA-LSM algorithm shows a significant effect in the noise reduction and recovers SNR > 1 for most of the signal peaks. The DWA-GD algorithm improves the SNR further, but takes more computational time. Depending on whether the accuracy or the speed of the de-noising process is more important in LF-NMR applications, the choice of algorithm should be made.
Collapse
Affiliation(s)
- Xiaolei Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Institute of Complex System (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China.
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China.
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany.
| | - Quan Tao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
| | - Mengmeng Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Rong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
| | - Hans-Joachim Krause
- Institute of Complex System (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany. h.-
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany. h.-
| | - Andreas Offenhäusser
- Institute of Complex System (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China
- Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, D-52425 Jülich, Germany
| |
Collapse
|
2
|
Geethanath S, Vaughan JT. Accessible magnetic resonance imaging: A review. J Magn Reson Imaging 2019; 49:e65-e77. [DOI: 10.1002/jmri.26638] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sairam Geethanath
- Columbia Magnetic Resonance Research CenterColumbia University in the City of New York New York USA
| | - John Thomas Vaughan
- Columbia Magnetic Resonance Research CenterColumbia University in the City of New York New York USA
| |
Collapse
|
3
|
Huang X, Dong H, Qiu Y, Li B, Tao Q, Zhang Y, Krause HJ, Offenhäusser A, Xie X. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:52-59. [PMID: 29183004 DOI: 10.1016/j.jmr.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.
Collapse
Affiliation(s)
- Xiaolei Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany.
| | - Yang Qiu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany; China Jiliang University, Hangzhou 310018, China
| | - Bo Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany; China Jiliang University, Hangzhou 310018, China
| | - Quan Tao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Institute of Complex Systems (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany
| | - Yi Zhang
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany
| | - Hans-Joachim Krause
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany. h.-
| | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8), Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, China; CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Shanghai 200050, China; Joint Research Institute on Functional Materials and Electronics, Collaboration between SIMIT and FZJ, Germany
| |
Collapse
|
4
|
Zheng Y, Cates GD, Tobias WA, Mugler JP, Miller GW. Very-low-field MRI of laser polarized xenon-129. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 249:108-117. [PMID: 25462954 DOI: 10.1016/j.jmr.2014.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2∗ species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2∗ available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Gordon D Cates
- Department of Physics, University of Virginia, Charlottesville, VA 22904, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - William A Tobias
- Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - G Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Cassidy MC, Chan HR, Ross BD, Bhattacharya PK, Marcus CM. In vivo magnetic resonance imaging of hyperpolarized silicon particles. NATURE NANOTECHNOLOGY 2013; 8:363-368. [PMID: 23644571 DOI: 10.1038/nnano.2013.65] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Silicon-based micro- and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in vivo, as well as their flexible surface chemistry, which allows drug loading, functionalization and targeting. Here, we report direct in vivo imaging of hyperpolarized (29)Si nuclei in silicon particles by magnetic resonance imaging. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization, extremely long depolarization times, insensitivity to the in vivo environment or particle tumbling, and surfaces favourable for functionalization. Potential applications to gastrointestinal, intravascular and tumour perfusion imaging at subpicomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available and biocompatible silicon particles.
Collapse
Affiliation(s)
- M C Cassidy
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
6
|
Xu X, Norquay G, Parnell SR, Deppe MH, Ajraoui S, Hashoian R, Marshall H, Griffiths PD, Parra-Robles J, Wild JM. Hyperpolarized129Xe gas lung MRI-SNR andT2*comparisons at 1.5 T and 3 T. Magn Reson Med 2012; 68:1900-4. [DOI: 10.1002/mrm.24190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 12/24/2022]
|
7
|
Kovtunov KV, Zhivonitko VV, Skovpin IV, Barskiy DA, Koptyug IV. Parahydrogen-induced polarization in heterogeneous catalytic processes. Top Curr Chem (Cham) 2012; 338:123-80. [PMID: 23097028 DOI: 10.1007/128_2012_371] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parahydrogen-induced polarization of nuclear spins provides enhancements of NMR signals for various nuclei of up to four to five orders of magnitude in magnetic fields of modern NMR spectrometers and even higher enhancements in low and ultra-low magnetic fields. It is based on the use of parahydrogen in catalytic hydrogenation reactions which, upon pairwise addition of the two H atoms of parahydrogen, can strongly enhance the NMR signals of reaction intermediates and products in solution. A recent advance in this field is the demonstration that PHIP can be observed not only in homogeneous hydrogenations but also in heterogeneous catalytic reactions. The use of heterogeneous catalysts for generating PHIP provides a number of significant advantages over the homogeneous processes, including the possibility to produce hyperpolarized gases, better control over the hydrogenation process, and the ease of separation of hyperpolarized fluids from the catalyst. The latter advantage is of paramount importance in light of the recent tendency toward utilization of hyperpolarized substances in in vivo spectroscopic and imaging applications of NMR. In addition, PHIP demonstrates the potential to become a useful tool for studying mechanisms of heterogeneous catalytic processes and for in situ studies of operating catalytic reactors. Here, the known examples of PHIP observations in heterogeneous reactions over immobilized transition metal complexes, supported metals, and some other types of heterogeneous catalysts are discussed and the applications of the technique for hypersensitive NMR imaging studies are presented.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St, Novosibirsk, 630090, Russian Federation
| | | | | | | | | |
Collapse
|
8
|
Dominguez-Viqueira W, Ouriadov A, O'Halloran R, Fain SB, Santyr GE. Signal-to-noise ratio for hyperpolarized ³He MR imaging of human lungs: a 1.5 T and 3 T comparison. Magn Reson Med 2011; 66:1400-4. [PMID: 21523821 DOI: 10.1002/mrm.22920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 11/08/2022]
Abstract
The signal-to-noise ratio in hyperpolarized noble gas MR imaging is expected to be independent of field strength at frequencies typical of clinical systems (e.g., 1.5 T), where body noise dominates over coil noise. Furthermore, at higher fields (e.g., 3 T), the SNR of lung images may decline due to decreases in T(2) originating from increases in susceptibility-induced field gradients at the air-tissue interface. In this work, the SNR of hyperpolarized (3) He lung imaging at two commonly used clinical field strengths (1.5 T and 3 T) were compared in the same volunteers. Thermally polarized and hyperpolarized (3) He phantoms were used to account for differences in MR imaging system and (3) He polarizer performance, respectively, at the two field strengths. After correcting for T(2) values measured at 1.5 T (16 ± 2 ms) and 3 T (7 ± 1 ms), no significant difference in image SNR between the two field strengths was observed, consistent with theory.
Collapse
|
9
|
Abstract
Pulmonary diseases have a high health-related and economic significance. (3)He-MRI is an alternative imaging method which can detect ventilatory disturbances with a high sensitivity. The application of different pulse sequences allows static and dynamic assessment of ventilation and bronchial gas flow, non-invasive measurement of intrapulmonary oxygen partial pressure and quantification of pulmonary parenchyma destruction and overinflation. Generally, the method is applicable for obstructive and restrictive ventilatory disturbances but initial approaches also exist for vascular pulmonary diseases. Specific clinical applications remain to be determined but (3)He-MRI is an excellent instrument for the assessment of physiologic and pathophysiologic interrelations in the distribution of ventilation.
Collapse
|
10
|
Deppe MH, Parra-Robles J, Ajraoui S, Parnell SR, Clemence M, Schulte RF, Wild JM. Susceptibility effects in hyperpolarized3He lung MRI at 1.5T and 3T. J Magn Reson Imaging 2009; 30:418-23. [DOI: 10.1002/jmri.21852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Lisitza N, Muradian I, Frederick E, Patz S, Hatabu H, Chekmenev EY. Toward 13C hyperpolarized biomarkers produced by thermal mixing with hyperpolarized 129Xe. J Chem Phys 2009; 131:044508. [PMID: 19655895 PMCID: PMC2730707 DOI: 10.1063/1.3181062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/23/2009] [Indexed: 11/15/2022] Open
Abstract
The (13)C NMR signal of acetic acid 1-(13)C-AcH is enhanced by polarization transfer from hyperpolarized (129)Xe using a thermal mixing procedure. 1-(13)C-AcH acid and hyperpolarized (129)Xe are mixed as gases to disperse (129)Xe in the acetic acid. The mixture is frozen with liquid N(2) at 0.5 T. The magnetic field is then momentarily dropped to allow for exchange of spin polarization between (13)C and (129)Xe. After polarization exchange the magnetic field is raised to its original value and the mixture is thawed, resulting in a solution of polarization enhanced 1-(13)C-AcH. A (13)C nuclear spin polarization enhancement of 10 is observed compared to its thermal polarization at 4.7 T. This polarization enhancement is approximately three orders of magnitude lower than that predicted by theory. The discrepancy is attributed to the formation of either an inhomogeneous solid matrix and/or spin dynamics during polarization transfer. Despite the low polarization enhancement, this is the first report of polarization transfer from (129)Xe to (13)C nuclear spins achieved by thermal mixing for a proton-containing molecule of biomedical importance. If future work can increase the enhancement, this method will be useful in hyperpolarizing a wide range of (13)C enriched compounds important in biomedical and biophysical research.
Collapse
Affiliation(s)
- Natalia Lisitza
- Enhanced Magnetic Resonance Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Cleveland ZI, Pavlovskaya GE, Elkins ND, Stupic KF, Repine JE, Meersmann T. Hyperpolarized 83Kr MRI of lungs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 195:232-7. [PMID: 18948043 DOI: 10.1016/j.jmr.2008.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 09/05/2008] [Accepted: 09/10/2008] [Indexed: 05/22/2023]
Abstract
Hyperpolarized (hp) (83)Kr (spin I=9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp (83)Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% (83)Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the (83)Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The (83)Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp (83)Kr T(1) differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp (83)Kr at 9.4T field strength is found to be 180 times below the theoretical upper limit.
Collapse
Affiliation(s)
- Zackary I Cleveland
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
13
|
Avram L, Özarslan E, Assaf Y, Bar-Shir A, Cohen Y, Basser PJ. Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR IN BIOMEDICINE 2008; 21:888-98. [PMID: 18574856 PMCID: PMC7477620 DOI: 10.1002/nbm.1277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Characterizing diffusion of gases and liquids within pores is important in understanding numerous transport processes and affects a wide range of practical applications. Previous measurements of the pulsed gradient stimulated echo (PGSTE) signal attenuation, E(q), of water within nerves and impermeable cylindrical microcapillary tubes showed it to be exquisitely sensitive to the orientation of the applied wave vector, q, with respect to the tube axis in the high-q regime. Here, we provide a simple three-dimensional model to explain this angular dependence by decomposing the average propagator, which describes the net displacement of water molecules, into components parallel and perpendicular to the tube wall, in which axial diffusion is free and radial diffusion is restricted. The model faithfully predicts the experimental data, not only the observed diffraction peaks in E(q) when the diffusion gradients are approximately normal to the tube wall, but their sudden disappearance when the gradient orientation possesses a small axial component. The model also successfully predicts the dependence of E(q) on gradient pulse duration and on gradient strength as well as tube inner diameter. To account for the deviation from the narrow pulse approximation in the PGSTE sequence, we use Callaghan's matrix operator framework, which this study validates experimentally for the first time. We also show how to combine average propagators derived for classical one-dimensional and two-dimensional models of restricted diffusion (e.g. between plates, within cylinders) to construct composite three-dimensional models of diffusion in complex media containing pores (e.g. rectangular prisms and/or capped cylinders) having a distribution of orientations, sizes, and aspect ratios. This three-dimensional modeling framework should aid in describing diffusion in numerous biological systems and in a myriad of materials sciences applications.
Collapse
Affiliation(s)
- Liat Avram
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Evren Özarslan
- Section on Tissue Biophysics and Biomimetics, NICHD, NIH, Bethesda, MD, USA
| | - Yaniv Assaf
- Department of Neurobiochemistry, Tel Aviv University, Tel-Aviv, Israel
- Functional Brain Imaging Unit, Sourasky Medical Center, Tel-Aviv, Israel
| | - Amnon Bar-Shir
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Peter J. Basser
- Section on Tissue Biophysics and Biomimetics, NICHD, NIH, Bethesda, MD, USA
- Correspondence to: P. J. Basser, NIH, 13 South Drive, MSC 5772, Building 13, Room 3W16, Bethesda, MD 20892-5772, USA.
| |
Collapse
|
14
|
|
15
|
Tsai LL, Mair RW, Rosen MS, Patz S, Walsworth RL. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 193:274-85. [PMID: 18550402 PMCID: PMC2572034 DOI: 10.1016/j.jmr.2008.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 05/20/2023]
Abstract
We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B(0) coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.
Collapse
Affiliation(s)
- L. L. Tsai
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139
- Harvard Medical School, Boston, MA 02115
| | - R. W. Mair
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
| | - M. S. Rosen
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - S. Patz
- Harvard Medical School, Boston, MA 02115
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115
| | - R. L. Walsworth
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
16
|
Thien F, Friese M, Cowin G, Maillet D, Wang D, Galloway G, Brereton I, Robinson PJ, Heil W, Thompson B. Feasibility of functional magnetic resonance lung imaging in Australia with long distance transport of hyperpolarized helium from Germany. Respirology 2008; 13:599-602. [PMID: 18494950 DOI: 10.1111/j.1440-1843.2008.01262.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE MRI of the lung using hyperpolarized helium as an inhaled contrast agent has important research applications and clinical potential. Owing to the limited availability of hyperpolarized helium, this type of imaging has not been performed in the human lung outside of North America or Europe. The objective of this study was to test the feasibility of imaging human lungs in Australia using hyperpolarized helium gas imported from Germany. METHODS A Bruker 2-Tesla whole-body magnetic resonance scanner located in Brisbane, Australia was adapted with a helium-3 radiofrequency transceiver coil. Helium-3 was hyperpolarized to 72% in Mainz, Germany and airfreighted to Brisbane. The time taken for the journey was 32 h and scanning was performed 36-40 h after departure from Mainz, with an estimated polarization level of 44%. Procedures were developed to transfer 300 mL of the hyperpolarized helium to Tedlar bags filled with 700 mL of nitrogen. Healthy volunteers inhaled the 1 L helium/nitrogen mixture from FRC, and imaging was performed with a 10 s breathhold. RESULTS Imaging showed very detailed and even ventilation of all regions of the lung with a good signal-to-noise ratio. No adverse effects of inhaling the gas mixture were noted. CONCLUSIONS This report of MRI of the human lung using hyperpolarized helium demonstrates the feasibility of long distance gas transport from Germany to Australia. This will help to facilitate research and clinical application of this innovative functional lung imaging technique.
Collapse
Affiliation(s)
- Francis Thien
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsai LL, Mair RW, Li CH, Rosen MS, Patz S, Walsworth RL. Posture-dependent human 3He lung imaging in an open-access MRI system: initial results. Acad Radiol 2008; 15:728-39. [PMID: 18486009 PMCID: PMC2474800 DOI: 10.1016/j.acra.2007.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/24/2007] [Accepted: 10/17/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized (3)He magnetic resonance imaging (MRI) of the human lung, and most other common radiologic imaging modalities including positron emission tomography and computed tomography, restrict subjects to lying horizontally, minimizing most gravitational effects. MATERIALS AND METHODS In this article, we review the motivation for posture-dependent studies of human lung function and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized (3)He gas and an open-access MRI instrument. The open geometry of this MRI system features a "walk-in" capability that permits subjects to be imaged in vertical and horizontal positions and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. RESULTS Initial results include two-dimensional lung images acquired with approximately 4 x 8 mm in-plane resolution and three-dimensional images with approximately 2-cm slice thickness. CONCLUSIONS Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical.
Collapse
Affiliation(s)
- Leo L Tsai
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 59, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled multi-detector row CT allow for quantification of presence and distribution of parenchymal and airway pathology; xenon gas can be employed to assess regional ventilation of the lungs, and rapid bolus injections of iodinated contrast agent can provide a quantitative measure of regional parenchymal perfusion. Advances in MRI of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized gas imaging, which allow functional assessment, including ventilation/perfusion, microscopic air space measurements, and gas flow and transport dynamics.
Collapse
Affiliation(s)
- Edwin J R van Beek
- Department of Radiology, Carver College of Medicine, University of Iowa, C-751 GH, 200 Hawkins Drive, Iowa City, IA 52242-1077, USA.
| | | |
Collapse
|
19
|
Abstract
The use of very low noise magnetometers based on Superconducting QUantum Interference Devices (SQUIDs) enables nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in microtesla magnetic fields. An untuned superconducting flux transformer coupled to a SQUID achieves a magnetic field noise of 10(-15) T Hz(-1/2). The frequency-independent response of this magnetometer combined with prepolarization of the nuclear spins yields an NMR signal that is independent of the Larmor frequency omega0. An MRI system operating in a field of 132 microT, corresponding to a proton frequency of 5.6 kHz, achieves an in-plane resolution of 0.7 x 0.7 mm2 in phantoms. Measurements of the longitudinal relaxation time T1 in different concentrations of agarose gel over five decades of frequency reveal much greater T1-differentiation at fields below a few millitesla. Microtesla MRI has the potential to image tumors with substantially greater T1-weighted contrast than is achievable in high fields in the absence of a contrast agent.
Collapse
Affiliation(s)
- John Clarke
- Department of Physics, University of California, Berkeley, California 94720-7300, USA.
| | | | | |
Collapse
|
20
|
Fain SB, Korosec FR, Holmes JH, O'Halloran R, Sorkness RL, Grist TM. Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging 2007; 25:910-23. [PMID: 17410561 DOI: 10.1002/jmri.20876] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The noninvasive assessment of lung function using imaging is increasingly of interest for the study of lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Hyperpolarized gas MRI (HP MRI) has demonstrated the ability to detect changes in ventilation, perfusion, and lung microstructure that appear to be associated with both normal lung development and disease progression. The physical characteristics of HP gases and their application to MRI are presented with an emphasis on current applications. Clinical investigations using HP MRI to study asthma, COPD, cystic fibrosis, pediatric chronic lung disease, and lung transplant are reviewed. Recent advances in polarization, pulse sequence development for imaging with Xe-129, and prototype low magnetic field systems dedicated to lung imaging are highlighted as areas of future development for this rapidly evolving technology.
Collapse
Affiliation(s)
- Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Myers W, Slichter D, Hatridge M, Busch S, Mössle M, McDermott R, Trabesinger A, Clarke J. Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 microT to 1.5 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 186:182-92. [PMID: 17337220 DOI: 10.1016/j.jmr.2007.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/03/2007] [Accepted: 02/06/2007] [Indexed: 05/14/2023]
Abstract
We examine the calculated signal-to-noise ratio (SNR) achievable with different MRI detection modalities in precession fields ranging from 10 microT to 1.5 T. In particular, we compare traditional Faraday detectors with both tuned and untuned detectors based on superconducting quantum interference devices (SQUIDs). We derive general expressions for the magnetic field noise due to the samples and the detectors, and then calculate the SNR achievable for a specific geometry with each modality with and without prepolarization. We show that each of the three modalities is superior in one of the three field ranges. SQUID-based detection is superior to conventional Faraday detection for MRI in precession fields below 250 mT for a 65 mm diameter surface coil placed a distance of 25 mm from the voxel of interest embedded in a cylinder of tissue 50 mm tall and of radius 50 mm. This crossover field, however, is sensitive to the geometry.
Collapse
Affiliation(s)
- Whittier Myers
- Department of Physics, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Bouchard LS, Kovtunov KV, Burt SR, Anwar MS, Koptyug IV, Sagdeev RZ, Pines A. Para-Hydrogen-Enhanced Hyperpolarized Gas-Phase Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2007; 46:4064-8. [PMID: 17455180 DOI: 10.1002/anie.200700830] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis-S Bouchard
- Department of Chemistry, University of California, Berkeley and Division of Materials Science, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wild JM, Teh K, Woodhouse N, Paley MNJ, Fichele S, de Zanche N, Kasuboski L. Steady-state free precession with hyperpolarized 3He: experiments and theory. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:13-24. [PMID: 16890464 DOI: 10.1016/j.jmr.2006.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 07/12/2006] [Accepted: 07/12/2006] [Indexed: 05/11/2023]
Abstract
The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle (alpha), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high alpha due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher alpha through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of alpha=20 degrees, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR (alpha=7.2 degrees) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor (Q=250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sinalpha/2 weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices close to the diaphragm where B0 inhomogeneity is highest. Despite these artifacts, a higher SNR was observed with SSFP in vivo when compared to the SPGR sequence. The trends predicted by theory of increasing SSFP SNR with increasing flip angle were observed in the range alpha=10-20 degrees without compromise to image quality through blurring caused by excessive k-space filtering.
Collapse
Affiliation(s)
- Jim M Wild
- Unit of Academic Radiology, University of Sheffield, C floor, Royal Hallamshire Hospital, Glossop Road, S10 2JF, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Meriles CA, Sakellariou D, Trabesinger AH. Theory of MRI in the presence of zero to low magnetic fields and tensor imaging field gradients. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 182:106-14. [PMID: 16828321 DOI: 10.1016/j.jmr.2006.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 05/10/2023]
Abstract
Today, all commonly practiced magnetic resonance imaging (MRI) reconstruction methods assume that the magnetic field created by the gradient coils is everywhere truncated by a dominant static uniform magnetic field. However, with the advent of SQUID detected MRI at microtesla fields, the opposite limit attracts attention, i.e., image formation in the unperturbed tensor field of the gradient coils. Here, we show by numerical simulations that, in principle, it is possible to reconstruct the image of an object in the absence of a uniform static field, working with the same gradient field setup as used in conventional MRI. Our calculations show that this approach could increase the image resolution limit attainable at low fields with a minimal incorporation of additional hardware and pulse sequences.
Collapse
Affiliation(s)
- C A Meriles
- Department of Physics, City College of New York-CUNY, New York, NY 10031, USA.
| | | | | |
Collapse
|
26
|
Ruset IC, Tsai LL, Mair RW, Patz S, Hrovat MI, Rosen MS, Muradian I, Ng J, Topulos GP, Butler JP, Walsworth RL, Hersman FW. A System for Open-Access He Human Lung Imaging at Very Low Field. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2006; 29:210-221. [PMID: 20354575 PMCID: PMC2846659 DOI: 10.1002/cmr.b.20075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized (3)He gas. The system employs an open four-coil electromagnet with an operational B(0) field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain (1)H and (3)He phantom images and supine and upright (3)He images of human lungs. We include discussion on challenges unique to imaging at 50 -200 kHz, including noise filtering and compensation for narrow-bandwidth coils.
Collapse
Affiliation(s)
- I C Ruset
- Department of Physics, University of New Hampshire, Physics Department, 9 Library Way, DeMeritt Hall, Durham, New Hampshire 03824
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Myers WR, Mössle M, Clarke J. Correction of concomitant gradient artifacts in experimental microtesla MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 177:274-84. [PMID: 16169266 DOI: 10.1016/j.jmr.2005.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 05/04/2023]
Abstract
Magnetic resonance imaging (MRI) suffers from artifacts caused by concomitant gradients when the product of the magnetic field gradient and the dimension of the sample becomes comparable to the static magnetic field. To investigate and correct for these artifacts at very low magnetic fields, we have acquired MR images of a 165-mm phantom in a 66-microT field using gradients up to 350 microT/m. We prepolarize the protons in a field of about 100 mT, apply a spin-echo pulse sequence, and detect the precessing spins using a superconducting gradiometer coupled to a superconducting quantum interference device (SQUID). Distortion and blurring are readily apparent at the edges of the images; by comparing the experimental images to computer simulations, we show that concomitant gradients cause these artifacts. We develop a non-perturbative, post-acquisition phase correction algorithm that eliminates the effects of concomitant gradients in both the simulated and the experimental images. This algorithm assumes that the switching time of the phase-encoding gradient is long compared to the spin precession period. In a second technique, we demonstrate that raising the precession field during phase encoding can also eliminate blurring caused by concomitant phase-encoding gradients; this technique enables one to correct concomitant gradient artifacts even when the detector has a restricted bandwidth that sets an upper limit on the precession frequency. In particular, the combination of phase correction and precession field cycling should allow one to add MRI capabilities to existing 300-channel SQUID systems used to detect neuronal currents in the brain because frequency encoding could be performed within the 1-2 kHz bandwidth of the readout system.
Collapse
Affiliation(s)
- Whittier R Myers
- Department of Physics, University of California, Berkeley, CA 94720-7300, USA.
| | | | | |
Collapse
|