1
|
Bracamonte J, Truong U, Wilson J, Soares J. Correction of phase offset errors and quantification of background noise, signal-to-noise ratio, and encoded-displacement uncertainty on DENSE MRI for kinematics of the descending thoracic and abdominal aorta. Magn Reson Imaging 2024; 106:91-103. [PMID: 38092083 PMCID: PMC10842810 DOI: 10.1016/j.mri.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Displacement encoding with stimulated echoes (DENSE) MRI is a phase contrast technique that allows the encoding of tissue displacement into the phase of the magnetic resonance signal. Recent developments in this technique allow the imaging of relatively thin structures such as the aortic wall. Quantifying background noise associated to DENSE MRI is required to assess the uncertainty of derived displacement measurements and for the design and implementation of adequate noise-reduction techniques. Although noise and error management of cardiac DENSE MRI has been previously studied, developments for aortic applications are scarce. Herein, we evaluate the noise and uncertainty of DENSE MRI scans at three different locations along the descending aorta: the distal aortic arch (DAA), the descending thoracic aorta (DTA), and infrarenal abdominal aorta (IAA). Additionally, we analyze three datasets from in vitro validation experiments with polyvinyl alcohol phantoms. We implement and evaluate the effectiveness of an offset-error correction algorithm and noise filtering techniques on DENSE MRI for aortic motion applications. Our results show that the phase signal of pixels composing the static background was normally distributed, centered on average at 0.003 ± 0.02 rad and - 0.02 ± 0.024 rad for each phase directions, suggesting that background noise is random, isotropic, and DENSE MRI has little offset errors. However, background signal noise significantly increased with elapsed time of the cardiac cycle; and was spatially heterogeneous consistently increased towards the anterior space. Background noise showed no significant differences between the 3 aortic locations and the in vitro experiments. However, SNR depended on the displacement of the region of interest, in consequence it was found significantly larger at DAA (16.7 ± 8.5, p = 0.003) and DTA (15.4 ± 7.6, p = 0.008) than at the IAA (8.0 ± 4.1), but not significantly different than the SNR of in vitro experiments (8.0 ± 3.7), and had an overall average of 13 ± 7. The applied methods significantly reduced the offset error and effect of noise on the estimation of encoded displacements. Finally, this analysis suggests that the implemented DENSE MRI protocol is adequate to assess the motion of healthy human aortas. However, the relative effect of noise increased considerably on the analysis of an ageing or diseased aortas with impaired mobility, calling for further analyses on pathologically stiffened aortas.
Collapse
Affiliation(s)
- Johane Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Uyen Truong
- Department of Pediatrics, Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - John Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, VA, USA
| | - Joao Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Arratia López P, Mella H, Uribe S, Hurtado DE, Sahli Costabal F. WarpPINN: Cine-MR image registration with physics-informed neural networks. Med Image Anal 2023; 89:102925. [PMID: 37598608 DOI: 10.1016/j.media.2023.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
The diagnosis of heart failure usually includes a global functional assessment, such as ejection fraction measured by magnetic resonance imaging. However, these metrics have low discriminate power to distinguish different cardiomyopathies, which may not affect the global function of the heart. Quantifying local deformations in the form of cardiac strain can provide helpful information, but it remains a challenge. In this work, we introduce WarpPINN, a physics-informed neural network to perform image registration to obtain local metrics of heart deformation. We apply this method to cine magnetic resonance images to estimate the motion during the cardiac cycle. We inform our neural network of the near-incompressibility of cardiac tissue by penalizing the Jacobian of the deformation field. The loss function has two components: an intensity-based similarity term between the reference and the warped template images, and a regularizer that represents the hyperelastic behavior of the tissue. The architecture of the neural network allows us to easily compute the strain via automatic differentiation to assess cardiac activity. We use Fourier feature mappings to overcome the spectral bias of neural networks, allowing us to capture discontinuities in the strain field. The algorithm is tested on synthetic examples and on a cine SSFP MRI benchmark of 15 healthy volunteers, where it is trained to learn the deformation mapping of each case. We outperform current methodologies in landmark tracking and provide physiological strain estimations in the radial and circumferential directions. WarpPINN provides precise measurements of local cardiac deformations that can be used for a better diagnosis of heart failure and can be used for general image registration tasks. Source code is available at https://github.com/fsahli/WarpPINN.
Collapse
Affiliation(s)
| | - Hernán Mella
- School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sergio Uribe
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Chile; Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Sahli Costabal
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. APPLIED SCIENCES-BASEL 2022; 12:3954. [PMID: 36911244 PMCID: PMC10004130 DOI: 10.3390/app12083954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inverse modeling approaches in cardiovascular medicine are a collection of methodologies that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads, and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into clinical practice has the potential to improve diagnosis and treatment planning with low associated risks and costs. These methods have become available for medical applications mainly due to the continuing development of image-based kinematic techniques, the maturity of the associated theories describing cardiovascular function, and recent progress in computer science, modeling, and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored solutions to the available clinical data, pathology of interest, and available computational resources. Herein, we review biomechanical modeling and simulation principles, methods of solving inverse problems, and techniques for image-based kinematic analysis. In the final section, the major advances in inverse modeling of human cardiovascular mechanics since its early development in the early 2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the incorporation of tissue mechanics, hemodynamics, and fluid-structure interaction methods paired with patient-specific data acquired with medical imaging in inverse modeling approaches.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John S. Wilson
- Department of Biomedical Engineering and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Uyen T. Truong
- Department of Pediatrics, School of Medicine, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
4
|
Gimelli A, Pugliese NR, Buechel RR, Bertasi M, Coceani M, Marzullo P. Changes in left ventricle myocardial volume during stress test using cadmium-zinc-telluride cardiac imaging: Implications in coronary artery disease. J Nucl Cardiol 2021; 28:1623-1633. [PMID: 31650497 DOI: 10.1007/s12350-019-01930-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cadmium-zinc-telluride (CZT) SPECT allows the estimation of left ventricle myocardial volume (LVMV). We tested the clinical relevance of rest-stress LVMV changes (Δ LVMV) in detecting coronary artery disease (CAD, coronary stenosis > 70%), using CZT-SPECT. METHODS We prospectively enrolled 512 consecutive patients with known or suspected CAD (mean age: 70.3 ± 9.2 years, 72% male) for stress-rest myocardial perfusion imaging (MPI, single-day stress-rest protocol). We quantified summed stress scores (SSS), summed rest scores, and summed difference scores, together with LVMV and ejection fraction (EF) after stress and at rest. All patients underwent coronary angiography within 30 days. RESULTS Two hundred seventy-two patients had CAD at coronary angiography. ΔLVMV ≤ 5 mL, corresponding to 6% of change from rest LVMV, was the best predictor of CAD (AUC = 0.831, 79% sensitivity, 82% specificity), irrespective of the stress protocol (dipyridamole or exercise stress) and independently of MPI-SSS, LV EF, and clinical history (P = 0.004). Integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were significant for the addition of ΔLVMV ≤ 5 mL (IDI = 6.1%, P < 0.0001; NRI = 29.7%, P = 0.02) to MPI-SSS, whereas the other parameters were not. CONCLUSIONS The evaluation of ΔLVMV using CZT-SPECT can improve the diagnostic accuracy in predicting the presence of CAD when added to conventional MPI.
Collapse
Affiliation(s)
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Fondazione CNR/Regione Toscana "Gabriele Monasterio", via Moruzzi n.1, 56124, Pisa, Italy.
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Paolo Marzullo
- Fondazione Toscana G. Monasterio, Pisa, Italy
- CNR, Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
5
|
Kumar V, Manduca A, Rao C, Ryu AJ, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. An under-recognized phenomenon: Myocardial volume change during the cardiac cycle. Echocardiography 2021; 38:1235-1244. [PMID: 34085722 DOI: 10.1111/echo.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Myocardial volume is assumed to be constant over the cardiac cycle in the echocardiographic models used by professional guidelines, despite evidence that suggests otherwise. The aim of this paper is to use literature-derived myocardial strain values from healthy patients to determine if myocardial volume changes during the cardiac cycle. METHODS A systematic review for studies with longitudinal, radial, and circumferential strain from echocardiography in healthy volunteers ultimately yielded 16 studies, corresponding to 2917 patients. Myocardial volume in systole (MVs) and diastole (MVd) was used to calculate MVs/MVd for each study by applying this published strain data to three models: the standard ellipsoid geometric model, a thin-apex geometric model, and a strain-volume ratio. RESULTS MVs/MVd<1 in 14 of the 16 studies, when computed using these three models. A sensitivity analysis of the two geometric models was performed by varying the dimensions of the ellipsoid and calculating MVs/MVd. This demonstrated little variability in MVs/MVd, suggesting that strain values were the primary determinant of MVs/MVd rather than the geometric model used. Another sensitivity analysis using the 97.5th percentile of each orthogonal strain demonstrated that even with extreme values, in the largest two studies of healthy populations, the calculated MVs/MVd was <1. CONCLUSIONS Healthy human myocardium appears to decrease in volume during systole. This is seen in MRI studies and is clinically relevant, but this study demonstrates that this characteristic was also present but unrecognized in the existing echocardiography literature.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Chaitanya Rao
- Electrical Engineer, self-employed, Melbourne, Australia
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | | | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Perotti LE, Verzhbinsky IA, Moulin K, Cork TE, Loecher M, Balzani D, Ennis DB. Estimating cardiomyofiber strain in vivo by solving a computational model. Med Image Anal 2021; 68:101932. [PMID: 33383331 PMCID: PMC7956226 DOI: 10.1016/j.media.2020.101932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Since heart contraction results from the electrically activated contraction of millions of cardiomyocytes, a measure of cardiomyocyte shortening mechanistically underlies cardiac contraction. In this work we aim to measure preferential aggregate cardiomyocyte ("myofiber") strains based on Magnetic Resonance Imaging (MRI) data acquired to measure both voxel-wise displacements through systole and myofiber orientation. In order to reduce the effect of experimental noise on the computed myofiber strains, we recast the strains calculation as the solution of a boundary value problem (BVP). This approach does not require a calibrated material model, and consequently is independent of specific myocardial material properties. The solution to this auxiliary BVP is the displacement field corresponding to assigned values of myofiber strains. The actual myofiber strains are then determined by minimizing the difference between computed and measured displacements. The approach is validated using an analytical phantom, for which the ground-truth solution is known. The method is applied to compute myofiber strains using in vivo displacement and myofiber MRI data acquired in a mid-ventricular left ventricle section in N=8 swine subjects. The proposed method shows a more physiological distribution of myofiber strains compared to standard approaches that directly differentiate the displacement field.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
| | - Ilya A Verzhbinsky
- Department of Radiology, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Kumar V, Ryu AJ, Manduca A, Rao C, Gibbons RJ, Gersh BJ, Chandrasekaran K, Asirvatham SJ, Araoz PA, Oh JK, Egbe AC, Behfar A, Borlaug BA, Anavekar NS. Cardiac MRI demonstrates compressibility in healthy myocardium but not in myocardium with reduced ejection fraction. Int J Cardiol 2020; 322:278-283. [PMID: 32871188 DOI: 10.1016/j.ijcard.2020.08.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The professional guidelines assume that the myocardial volume in systole (MVs) is equal to that in diastole (MVd), despite some limited evidence that points to the contrary. The aim of this manuscript is to determine whether this is true in healthy myocardium using gold standard cardiac MRI, as well as transthoracic echocardiography (TTE). The secondary aim is to determine whether there are similar MV changes in patients with heart failure with reduced ejection fraction (HFrEF). METHOD A prospectively derived cohort at Mayo Clinic of 115 adult subjects (mean age 42.8 years, 58% female) with no cardiac risk factors was identified. Cardiac MRI was obtained on all 115 patients, 51 of whom also consented to a TTE. MRI from a retrospectively derived cohort of 50 HFrEF patients was also collected. MVs and MVd was calculated using standard approaches with inclusion of the papillary muscles. RESULTS In the healthy population, MRI demonstrated MVs/MVd = 0.87 (SD 0.04) and TTE demonstrated MVs/MVd = 0.79 (SD 0.07), suggesting compressibility (p < 0.0001). In the 51 healthy patients who received both imaging modalities, MVs/MVd was 8.0% higher in MRI than TTE (p < 0.0001), but both modalities had MVs/MVd < 1 (p < 0.0001). A Bland-Altman plot demonstrated that as the mean MVs/MVd increases, the difference in MVs/MVd MRI-TTE declines (r = -0.53, p < 0.0001). However, in HFrEF populations, MVs/MVd = 1.01 (0.03), suggesting myocardial incompressibility. CONCLUSION Contrary to currently accepted standards, healthy myocardium is compressible but HFrEF myocardium is incompressible. The ratio MVs/MVd merits further study in an expanded normal cohort and in disease states.
Collapse
Affiliation(s)
- Vinayak Kumar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Alexander J Ryu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Chaitanya Rao
- Electrical Engineering, self-employed, United States of America
| | - Raymond J Gibbons
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Bernard J Gersh
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | | | - Samuel J Asirvatham
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Jae K Oh
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Alexander C Egbe
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Barry A Borlaug
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Nandan S Anavekar
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
| |
Collapse
|
8
|
Verzhbinsky IA, Perotti LE, Moulin K, Cork TE, Loecher M, Ennis DB. Estimating Aggregate Cardiomyocyte Strain Using In Vivo Diffusion and Displacement Encoded MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:656-667. [PMID: 31398112 PMCID: PMC7325525 DOI: 10.1109/tmi.2019.2933813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Changes in left ventricular (LV) aggregate cardiomyocyte orientation and deformation underlie cardiac function and dysfunction. As such, in vivo aggregate cardiomyocyte "myofiber" strain ( [Formula: see text]) has mechanistic significance, but currently there exists no established technique to measure in vivo [Formula: see text]. The objective of this work is to describe and validate a pipeline to compute in vivo [Formula: see text] from magnetic resonance imaging (MRI) data. Our pipeline integrates LV motion from multi-slice Displacement ENcoding with Stimulated Echoes (DENSE) MRI with in vivo LV microstructure from cardiac Diffusion Tensor Imaging (cDTI) data. The proposed pipeline is validated using an analytical deforming heart-like phantom. The phantom is used to evaluate 3D cardiac strains computed from a widely available, open-source DENSE Image Analysis Tool. Phantom evaluation showed that a DENSE MRI signal-to-noise ratio (SNR) ≥20 is required to compute [Formula: see text] with near-zero median strain bias and within a strain tolerance of 0.06. Circumferential and longitudinal strains are also accurately measured under the same SNR requirements, however, radial strain exhibits a median epicardial bias of -0.10 even in noise-free DENSE data. The validated framework is applied to experimental DENSE MRI and cDTI data acquired in eight ( N=8 ) healthy swine. The experimental study demonstrated that [Formula: see text] has decreased transmural variability compared to radial and circumferential strains. The spatial uniformity and mechanistic significance of in vivo [Formula: see text] make it a compelling candidate for characterization and early detection of cardiac dysfunction.
Collapse
|
9
|
Ponnaluri AVS, Verzhbinsky IA, Eldredge JD, Garfinkel A, Ennis DB, Perotti LE. Model of Left Ventricular Contraction: Validation Criteria and Boundary Conditions. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2019; 11504:294-303. [PMID: 31231721 DOI: 10.1007/978-3-030-21949-9_32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational models of cardiac contraction can provide critical insight into cardiac function and dysfunction. A necessary step before employing these computational models is their validation. Here we propose a series of validation criteria based on left ventricular (LV) global (ejection fraction and twist) and local (strains in a cylindrical coordinate system, aggregate cardiomyocyte shortening, and low myocardial compressibility) MRI measures to characterize LV motion and deformation during contraction. These validation criteria are used to evaluate an LV finite element model built from subject-specific anatomy and aggregate cardiomyocyte orientations reconstructed from diffusion tensor MRI. We emphasize the key role of the simulation boundary conditions in approaching the physiologically correct motion and strains during contraction. We conclude by comparing the global and local validation criteria measures obtained using two different boundary conditions: the first constraining the LV base and the second taking into account the presence of the pericardium, which leads to greatly improved motion and deformation.
Collapse
Affiliation(s)
- Aditya V S Ponnaluri
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Jeff D Eldredge
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Xing F, Woo J, Gomez AD, Pham DL, Bayly PV, Stone M, Prince JL. Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2116-2128. [PMID: 28692967 PMCID: PMC5628138 DOI: 10.1109/tmi.2017.2723021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tagged magnetic resonance imaging has been used for decades to observe and quantify motion and strain of deforming tissue. It is challenging to obtain 3-D motion estimates due to a tradeoff between image slice density and acquisition time. Typically, interpolation methods are used either to combine 2-D motion extracted from sparse slice acquisitions into 3-D motion or to construct a dense volume from sparse acquisitions before image registration methods are applied. This paper proposes a new phase-based 3-D motion estimation technique that first computes harmonic phase volumes from interpolated tagged slices and then matches them using an image registration framework. The approach uses several concepts from diffeomorphic image registration with a key novelty that defines a symmetric similarity metric on harmonic phase volumes from multiple orientations. The material property of harmonic phase solves the aperture problem of optical flow and intensity-based methods and is robust to tag fading. A harmonic magnitude volume is used in enforcing incompressibility in the tissue regions. The estimated motion fields are dense, incompressible, diffeomorphic, and inverse-consistent at a 3-D voxel level. The method was evaluated using simulated phantoms, human brain data in mild head accelerations, human tongue data during speech, and an open cardiac data set. The method shows comparable accuracy to three existing methods while demonstrating low computation time and robustness to tag fading and noise.
Collapse
|
11
|
Commentary on: CMR study of systolic myocardial volume gain in the dilated, hypertrophied, and normal heart. Clin Radiol 2017; 72:293-294. [DOI: 10.1016/j.crad.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
|
12
|
Ponnaluri AVS, Perotti LE, Ennis DB, Klug WS. A viscoactive constitutive modeling framework with variational updates for the myocardium. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2017; 314:85-101. [PMID: 28579649 PMCID: PMC5450674 DOI: 10.1016/j.cma.2016.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a constitutive modeling framework for contractile cardiac mechanics by formulating a single variational principle from which incremental stress-strain relations and kinetic rate equations for active contraction and relaxation can all be derived. The variational framework seamlessly incorporates the hyperelastic behavior of the relaxed and contracted tissue along with the rate - and length - dependent generation of contractile force. We describe a three-element, Hill-type model that unifies the active tension and active deformation approaches. As in the latter approach, we multiplicatively decompose the total deformation gradient into active and elastic parts, with the active deformation parametrizing the contractile Hill element. We adopt as internal variables the fiber, cross-fiber, and sheet normal stretch ratios. The kinetics of these internal variables are modeled via definition of a kinetic potential function derived from experimental force-velocity relations. Additionally, we account for dissipation during tissue deformation by adding a Newtonian viscous potential. To model the force activation, the kinetic equations are coupled with the calcium transient obtained from a cardiomyocyte electrophysiology model. We first analyze our model at the material point level using stress and strain versus time curves for different viscosity values. Subsequently, we couple our constitutive framework with the finite element method (FEM) and study the deformation of three-dimensional tissue slabs with varying cardiac myocyte orientation. Finally, we simulate the contraction and relaxation of an ellipsoidal left ventricular model and record common kinematic measures, such as ejection fraction, and myocardial tissue volume changes.
Collapse
Affiliation(s)
- A V S Ponnaluri
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - L E Perotti
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - D B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - W S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Mazurkiewicz Ł, Orłowska-Baranowska E, Petryka J, Śpiewak M, Gawor M, Miłosz-Wieczorek B, Werys K, Małek ŁA, Marczak M, Grzybowski J. Systolic myocardial volume gain in dilated, hypertrophied and normal heart. CMR study. Clin Radiol 2017; 72:286-292. [PMID: 28069158 DOI: 10.1016/j.crad.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/18/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022]
Abstract
AIM To investigate changes in myocardial tissue volume during the cardiac cycle to verify the hypothesis of non-compressibility of the myocardium in healthy individuals (HI) as well as in patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and aortic stenosis (AS). MATERIALS AND METHODS The study group included 30 HI, and patients with HCM (n=110), DCM (n=89), and AS (n=78). Left ventricular (LV) function, end-diastolic, and end-systolic volumes were calculated based on cardiac magnetic resonance imaging (CMR) for all participants. RESULTS End-systolic myocardial volumes were higher than end-diastolic in both controls (91.2±26.6 versus 85.1±24.3 ml, p<0.001) and in all patient groups: HCM (214.3±81.6 versus 176±64.2 ml, p<0.01), DCM (128.4±43.1 versus 115.4±42.9 ml, p<0.001) and AS (155.1±37.1 versus 129.4±34.6 ml, p<0.001). HCM and AS patients had significantly higher systolic volume gain than HI (21.5±8.3 versus 10.6±6.3%, p<0.01 and 18.3±5.7 versus 10.6±6.3% p=0.013, respectively). Conversely, DCM patients had lesser increases in myocardial systolic volume than HCM patients (11.2±4.8% versus 21.5±8.3, p=0.01) and AS patients (11.2±4.8% versus 18.3±5.7, p=0.02). No differences were found in systolic volume gain between AS and HCM patients (p=ns) or between DCM patients and HI (p=ns). CONCLUSION End-systolic myocardial volume was significantly higher than end-diastolic volume in all subsets of patients. The systolic volume gain was greater in individuals with hypertrophy than in those without.
Collapse
Affiliation(s)
- Ł Mazurkiewicz
- Department of Cardiomyopathies, CMR Unit, Institute of Cardiology, Warsaw, Poland.
| | | | - J Petryka
- Department of Coronary and Structural Heart Diseases, CMR Unit, Institute of Cardiology, Warsaw, Poland
| | - M Śpiewak
- CMR Unit, Institute of Cardiology, Warsaw, Poland
| | - M Gawor
- Department of Cardiomyopathies, Institute of Cardiology, Warsaw, Poland
| | | | - K Werys
- CMR Unit, Institute of Cardiology, Warsaw, Poland
| | - Ł A Małek
- Institute of Cardiology, Warsaw, Poland
| | - M Marczak
- CMR Unit, Institute of Cardiology, Warsaw, Poland
| | - J Grzybowski
- Department of Cardiomyopathies, Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
14
|
Axel L, Wedeen VJ, Ennis DB. Probing dynamic myocardial microstructure with cardiac magnetic resonance diffusion tensor imaging. J Cardiovasc Magn Reson 2014; 16:89. [PMID: 25388937 PMCID: PMC4229597 DOI: 10.1186/s12968-014-0089-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022] Open
Abstract
This article is an invited editorial comment on the paper entitled "In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy" by Ferreira et al., and published as Journal of Cardiovascular Magnetic Resonance 2014; 16:87.
Collapse
Affiliation(s)
- Leon Axel
- />Departments of Radiology and Medicine, NYU School of Medicine, New York, NY USA
| | - Van J Wedeen
- />Department of Radiology, Massachusetts General Hospital, Harvard University School of Medicine, Boston, MA USA
| | - Daniel B Ennis
- />Department of Radiological Sciences, University of California, Los Angeles, CA USA
| |
Collapse
|
15
|
Mao SS, Li D, Vembar M, Gao Y, Luo Y, Lam F, Syed YS, Liu C, Woo K, Flores F, Budoff MJ. Model-based automatic segmentation algorithm accurately assesses the whole cardiac volumetric parameters in patients with cardiac CT angiography: a validation study for evaluating the accuracy of the workstation software and establishing the reference values. Acad Radiol 2014; 21:639-47. [PMID: 24703477 DOI: 10.1016/j.acra.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/15/2013] [Accepted: 01/15/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES The cardiac chamber volumes and functions can be assessed manually and automatically using the current computed tomography (CT) workstation system. We aimed to evaluate the accuracy and precision and to establish the reference values for both segmentation methods using cardiac CT angiography (CTA). MATERIALS AND METHODS A total of 134 subjects (mean age 55.3 years, 72 women) without heart disease were enrolled in the study. The cardiac four-chamber volumes, left ventricular (LV) mass, and biventricular functions were measured with manual, semiautomatic, and model-based fully automatic approaches. The accuracies of the semiautomated and fully automated approaches were validated by comparing them with manual segmentation as a reference. The precision error was determined and compared for both manual and automatic measurements. RESULTS No significant difference was found between the manual and semiautomatic assessments for the assessment of all functional parameters (P > .05). Using the manual method as a reference, the automatic approach provided a similar value in LV ejection fraction and left atrial volumes in both genders and right ventricular (RV) stroke volume in women (P > .05), with some underestimation of RV volume (P < .001) and overestimation of all remaining parameters (P < .05) in both genders. In addition, a significantly higher precision with a considerable association in intermeasurement (reproducibility) was observed using the automated approach. CONCLUSIONS The model-based fully automatic segmentation algorithm can help with the assessment of the cardiac four-chamber volume and function. This may help in establishing reference values of functional parameters in patients who undergo cardiac CTA.
Collapse
|
16
|
Troalen T, Capron T, Bernard M, Kober F. In vivo characterization of rodent cyclic myocardial perfusion variation at rest and during adenosine-induced stress using cine-ASL cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:18. [PMID: 24548535 PMCID: PMC3937054 DOI: 10.1186/1532-429x-16-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/10/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Assessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. To date, totally non-invasive in vivo methods with this capability are still lacking. As an original technique, a cine arterial spin labeling (ASL) cardiovascular magnetic resonance approach is demonstrated to be able to produce dynamic MBF maps across the cardiac cycle in rats. METHOD High-resolution MBF maps in left ventricular myocardium were computed from steady-state perfusion-dependent gradient-echo cine images produced by the cine-ASL sequence. Cyclic changes of MBF over the entire cardiac cycle in seven normal rats were analyzed quantitatively every 6 ms at rest and during adenosine-induced stress. RESULTS The study showed a significant MBF increase from end-systole (ES) to end-diastole (ED) in both physiological states. Mean MBF over the cardiac cycle within the group was 5.5 ± 0.6 mL g(-1) min(-1) at rest (MBFMin = 4.7 ± 0.8 at ES and MBFMax = 6.5 ± 0.6 mL g(-1) min(-1) at ED, P = 0.0007). Mean MBF during adenosine-induced stress was 12.8 ± 0.7mL g(-1) min(-1) (MBFMin = 11.7±1.0 at ES and MBFMax = 14.2 ± 0.7 mL g(-1) min(-1) at ED, P = 0.0007). MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014). The dynamic analysis also showed a time shift of peak MBF within the cardiac cycle during stress. CONCLUSION The cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed ASL approach. Dynamic MBF maps were obtained with high spatial and temporal resolution (6 ms) demonstrating the feasibility of non-invasively mapping cyclic myocardial perfusion variation at rest and during adenosine stress. In a pathological context, detailed assessment of coronary responses to infused vasodilators may give valuable complementary information on microvascular functional defects in disease models.
Collapse
Affiliation(s)
- Thomas Troalen
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Thibaut Capron
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Monique Bernard
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Frank Kober
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| |
Collapse
|
17
|
Liu X, Abd-Elmoniem KZ, Stone M, Murano EZ, Zhuo J, Gullapalli RP, Prince JL. Incompressible deformation estimation algorithm (IDEA) from tagged MR images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:326-40. [PMID: 21937342 PMCID: PMC3683312 DOI: 10.1109/tmi.2011.2168825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.
Collapse
Affiliation(s)
- Xiaofeng Liu
- General Electric Global Research Center, Niskayuna, NY, 12309 ()
| | - Khaled Z. Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Maureen Stone
- Departments of Neural and Pain Sciences, and Orthodontics, University of Maryland Dental School, Baltimore, MD, 21201
| | - Emi Z. Murano
- Departments of Otolaryngology, Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218 ()
| |
Collapse
|
18
|
Itoh A, Stephens EH, Ennis DB, Carlhall CJ, Bothe W, Nguyen TC, Swanson JC, Miller DC, Ingels NB. Contribution of myocardium overlying the anterolateral papillary muscle to left ventricular deformation. Am J Physiol Heart Circ Physiol 2011; 302:H180-7. [PMID: 22037187 DOI: 10.1152/ajpheart.00687.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies of transmural left ventricular (LV) strains suggested that the myocardium overlying the papillary muscle displays decreased deformation relative to the anterior LV free wall or significant regional heterogeneity. These comparisons, however, were made using different hearts. We sought to extend these studies by examining three equatorial LV regions in the same heart during the same heartbeat. Therefore, deformation was analyzed from transmural beadsets placed in the equatorial LV myocardium overlying the anterolateral papillary muscle (PAP), as well as adjacent equatorial LV regions located more anteriorly (ANT) and laterally (LAT). We found that the magnitudes of LAT normal longitudinal and radial strains, as well as major principal strains, were less than ANT, while those of PAP were intermediate. Subepicardial and midwall myofiber angles of LAT, PAP, and ANT were not significantly different, but PAP subendocardial myofiber angles were significantly higher (more longitudinal as opposed to circumferential orientation). Subepicardial and midwall myofiber strains of ANT, PAP, and LAT were not significantly different, but PAP subendocardial myofiber strains were less. Transmural gradients in circumferential and radial normal strains, and major principal strains, were observed in each region. The two main findings of this study were as follows: 1) PAP strains are largely consistent with adjacent LV equatorial free wall regions, and 2) there is a gradient of strains across the anterolateral equatorial left ventricle despite similarities in myofiber angles and strains. These findings point to graduated equatorial LV heterogeneity and suggest that regional differences in myofiber coupling may constitute the basis for such heterogeneity.
Collapse
Affiliation(s)
- Akinobu Itoh
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
20
|
Nasiraei Moghaddam A, Saber NR, Wen H, Finn JP, Ennis DB, Gharib M. Analytical method to measure three-dimensional strain patterns in the left ventricle from single slice displacement data. J Cardiovasc Magn Reson 2010; 12:33. [PMID: 20515489 PMCID: PMC2903580 DOI: 10.1186/1532-429x-12-33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/01/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Displacement encoded Cardiovascular MR (CMR) can provide high spatial resolution measurements of three-dimensional (3D) Lagrangian displacement. Spatial gradients of the Lagrangian displacement field are used to measure regional myocardial strain. In general, adjacent parallel slices are needed in order to calculate the spatial gradient in the through-slice direction. This necessitates the acquisition of additional data and prolongs the scan time. The goal of this study is to define an analytic solution that supports the reconstruction of the out-of-plane components of the Lagrangian strain tensor in addition to the in-plane components from a single-slice displacement CMR dataset with high spatio-temporal resolution. The technique assumes incompressibility of the myocardium as a physical constraint. RESULTS The feasibility of the method is demonstrated in a healthy human subject and the results are compared to those of other studies. The proposed method was validated with simulated data and strain estimates from experimentally measured DENSE data, which were compared to the strain calculation from a conventional two-slice acquisition. CONCLUSION This analytical method reduces the need to acquire data from adjacent slices when calculating regional Lagrangian strains and can effectively reduce the long scan time by a factor of two.
Collapse
Affiliation(s)
- Abbas Nasiraei Moghaddam
- Department of Radiological Sciences, Diagnostic Cardiovascular Imaging Section, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioengineering Option, California Institute of Technology, Pasadena, CA, USA
| | - Nikoo R Saber
- Bioengineering Option, California Institute of Technology, Pasadena, CA, USA
| | - Han Wen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Paul Finn
- Department of Radiological Sciences, Diagnostic Cardiovascular Imaging Section, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel B Ennis
- Department of Radiological Sciences, Diagnostic Cardiovascular Imaging Section, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Morteza Gharib
- Bioengineering Option, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
21
|
Cowan BR, Young AA, Anderson C, Doughty RN, Krittayaphong R, Lonn E, Marwick TH, Reid CM, Sanderson JE, Schmieder RE, Teo K, Wadham AK, Worthley SG, Yu CM, Yusuf S, Jennings GL. The cardiac MRI substudy to ongoing telmisartan alone and in combination with ramipril global endpoint trial/telmisartan randomized assessment study in ACE-intolerant subjects with cardiovascular disease: analysis protocol and baseline characteristics. Clin Res Cardiol 2009; 98:421-33. [DOI: 10.1007/s00392-009-0014-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/17/2009] [Indexed: 01/20/2023]
|
22
|
Rodríguez I, Pérez-Rial S, González-Jimenez J, Pérez-Sánchez J, Herranz F, Beckmann N, Ruíz-Cabello J. Magnetic resonance methods and applications in pharmaceutical research. J Pharm Sci 2008; 97:3637-65. [PMID: 18228597 DOI: 10.1002/jps.21281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review presents an overview of some recent magnetic resonance (MR) techniques for pharmaceutical research. MR is noninvasive, and does not expose subjects to ionizing radiation. Some methods that have been used in pharmaceutical research MR include magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) methods, among them, diffusion-weighted MRI, perfusion-weighted MRI, functional MRI, molecular imaging and contrast-enhance MRI. Some applications of MR in pharmaceutical research include MR in metabonomics, in vivo MRS, studies in cerebral ischemia and infarction, degenerative joint diseases, oncology, cardiovascular disorders, respiratory diseases and skin diseases. Some of these techniques, such as cardiac and joint imaging, or brain fMRI are standard, and are providing relevant data routinely. Skin MR and hyperpolarized gas lung MRI are still experimental. In conclusion, considering the importance of finding and characterizing biomarkers for improved drug evaluation, it can be expected that the use of MR techniques in pharmaceutical research is going to increase in the near future.
Collapse
Affiliation(s)
- I Rodríguez
- Grupo de Resonancia Magnética, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Garson CD, Li B, Acton ST, Hossack JA. Guiding automated left ventricular chamber segmentation in cardiac imaging using the concept of conserved myocardial volume. Comput Med Imaging Graph 2008; 32:321-30. [PMID: 18400469 DOI: 10.1016/j.compmedimag.2008.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 02/16/2008] [Accepted: 02/19/2008] [Indexed: 11/27/2022]
Abstract
The active surface technique using gradient vector flow allows semi-automated segmentation of ventricular borders. The accuracy of the algorithm depends on the optimal selection of several key parameters. We investigated the use of conservation of myocardial volume for quantitative assessment of each of these parameters using synthetic and in vivo data. We predicted that for a given set of model parameters, strong conservation of volume would correlate with accurate segmentation. The metric was most useful when applied to the gradient vector field weighting and temporal step-size parameters, but less effective in guiding an optimal choice of the active surface tension and rigidity parameters.
Collapse
|
24
|
Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW. Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 2008; 295:H610-8. [PMID: 18515651 DOI: 10.1152/ajpheart.00107.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although previous studies report a reduction in myocardial volume during systole, myocardial volume changes during the cardiac cycle have not been quantitatively analyzed with high spatiotemporal resolution. We studied the time course of myocardial volume in the anterior mid-left ventricular (LV) wall of normal canine heart in vivo (n = 14) during atrial or LV pacing using transmurally implanted markers and biplane cineradiography (8 ms/frame). During atrial pacing, there was a significant transmural gradient in maximum volume decrease (4.1, 6.8, and 10.3% at subepi, midwall, and subendo layer, respectively, P = 0.002). The rate of myocardial volume increase during diastole was 4.7 +/- 5.8, 6.8 +/- 6.1, and 10.8 +/- 7.7 ml.min(-1).g(-1), respectively, which is substantially larger than the average myocardial blood flow in the literature measured by the microsphere method (0.7-1.3 ml.min(-1).g(-1)). In the early activated region during LV pacing, myocardial volume began to decrease before the LV pressure upstroke. We conclude that the volume change is greater than would be estimated from the known average transmural blood flow. This implies the existence of blood-filled spaces within the myocardium, which could communicate with the ventricular lumen. Our data in the early activated region also suggest that myocardial volume change is caused not by the intramyocardial tissue pressure but by direct impingement of the contracting myocytes on the microvasculature.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- Department of Medicine and Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|