1
|
Hsieh CY, Lai YC, Lu KY, Lin G. Advancements, Challenges, and Future Prospects in Clinical Hyperpolarized Magnetic Resonance Imaging: A Comprehensive Review. Biomed J 2024:100802. [PMID: 39442802 DOI: 10.1016/j.bj.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/21/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized (HP) magnetic resonance imaging (MRI) is a groundbreaking imaging platform advancing from research to clinical practice, offering new possibilities for real-time, non-invasive metabolic imaging. This review explores the latest advancements, challenges, and future directions of HP MRI, emphasizing its transformative impact on both translational research and clinical applications. By employing techniques such as dissolution Dynamic Nuclear Polarization (dDNP), Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and Spin-Exchange Optical Pumping (SEOP), HP MRI achieves enhanced nuclear spin polarization, enabling in vivo visualization of metabolic pathways with exceptional sensitivity. Current challenges, such as limited imaging windows, complex pre-scan protocols, and data processing difficulties, are addressed through innovative solutions like advanced pulse sequences, bolus tracking, and kinetic modeling. We highlight the evolution of HP MRI technology, focusing on its potential to revolutionize disease diagnosis and monitoring by revealing metabolic processes beyond the reach of conventional MRI and positron emission tomography (PET). Key advancements include the development of novel tracers like [2-13C]pyruvate and [1-13C]-alpha-ketoglutarate and improved data analysis techniques, broadening the scope of clinical metabolic imaging. Future prospects emphasize integrating artificial intelligence, standardizing imaging protocols, and developing new hyperpolarized agents to enhance reproducibility and expand clinical capabilities particularly in oncology, cardiology, and neurology. Ultimately, we envisioned HP MRI as a standardized modality for dynamic metabolic imaging in clinical practice.
Collapse
Affiliation(s)
- Ching-Yi Hsieh
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Gigin Lin
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Takakusagi Y, Kobayashi R, Saito K, Kishimoto S, Krishna MC, Murugesan R, Matsumoto KI. EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research. Metabolites 2023; 13:metabo13010069. [PMID: 36676994 PMCID: PMC9862119 DOI: 10.3390/metabo13010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| | - Ryoma Kobayashi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Palayanoor (PO), Chengalpattu 603308, India
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| |
Collapse
|
3
|
Vaidya MV, Zhang B, Hong D, Brown R, Batsios G, Viswanath P, Paska J, Wulf G, Grant AK, Ronen SM, Larson PEZ. A 13C/ 31P surface coil to visualize metabolism and energetics in the rodent brain at 3 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107286. [PMID: 36075133 PMCID: PMC9721620 DOI: 10.1016/j.jmr.2022.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - DongHyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jan Paska
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gerburg Wulf
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Macdonald EB, Begovatz P, Barton GP, Erickson-Bhatt S, Inman DR, Cox BL, Eliceiri KW, Strigel RM, Ponik SM, Fain SB. Hyperpolarized 13C Magnetic Resonance Spectroscopic Imaging of Pyruvate Metabolism in Murine Breast Cancer Models of Different Metastatic Potential. Metabolites 2021; 11:metabo11050274. [PMID: 33925445 PMCID: PMC8145849 DOI: 10.3390/metabo11050274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
This study uses dynamic hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) to estimate differences in glycolytic metabolism between highly metastatic (4T1, n = 7) and metastatically dormant (4T07, n = 7) murine breast cancer models. The apparent conversion rate of pyruvate-to-lactate (kPL) and lactate-to-pyruvate area-under-the-curve ratio (AUCL/P) were estimated from the metabolite images and compared with biochemical metabolic measures and immunohistochemistry (IHC). A non-significant trend of increasing kPL (p = 0.17) and AUCL/P (p = 0.11) from 4T07 to 4T1 tumors was observed. No significant differences in tumor IHC lactate dehydrogenase-A (LDHA), monocarboxylate transporter-1 (MCT1), cluster of differentiation 31 (CD31), and hypoxia inducible factor-α (HIF-1α), tumor lactate-dehydrogenase (LDH) activity, or blood lactate or glucose levels were found between the two tumor lines. However, AUCL/P was significantly correlated with tumor LDH activity (ρspearman = 0.621, p = 0.027) and blood glucose levels (ρspearman = −0.474, p = 0.042). kPL displayed a similar, non-significant trend for LDH activity (ρspearman = 0.480, p = 0.114) and blood glucose levels (ρspearman = −0.414, p = 0.088). Neither kPL nor AUCL/P were significantly correlated with blood lactate levels or tumor LDHA or MCT1. The significant positive correlation between AUCL/P and tumor LDH activity indicates the potential of AUCL/P as a biomarker of glycolytic metabolism in breast cancer models. However, the lack of a significant difference between in vivo tumor metabolism for the two models suggest similar pyruvate-to-lactate conversion despite differing metastatic potential.
Collapse
Affiliation(s)
- Erin B. Macdonald
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
| | - Paul Begovatz
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
| | - Gregory P. Barton
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
| | - Sarah Erickson-Bhatt
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA;
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (D.R.I.); (S.M.P.)
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (D.R.I.); (S.M.P.)
| | - Benjamin L. Cox
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA;
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W. Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA;
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Roberta M. Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
- Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53792, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (D.R.I.); (S.M.P.)
- Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA; (E.B.M.); (P.B.); (G.P.B.); (B.L.C.); (K.W.E.); (R.M.S.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-263-0090
| |
Collapse
|
6
|
Abstract
Magnetic resonance imaging (MRI) has been the cornerstone of imaging of brain tumors in the past 4 decades. Conventional MRI remains the workhorse for neuro-oncologic imaging, not only for basic information such as location, extent, and navigation but also able to provide information regarding proliferation and infiltration, angiogenesis, hemorrhage, and more. More sophisticated MRI sequences have extended the ability to assess and quantify these features; for example, permeability and perfusion acquisitions can assess blood-brain barrier disruption and angiogenesis, diffusion techniques can assess cellularity and infiltration, and spectroscopy can address metabolism. Techniques such as fMRI and diffusion fiber tracking can be helpful in diagnostic planning for resection and radiation therapy, and more sophisticated iterations of these techniques can extend our understanding of neurocognitive effects of these tumors and associated treatment responses and effects. More recently, MRI has been used to go beyond such morphological, physiological, and functional characteristics to assess the tumor microenvironment. The current review highlights multiple recent and emerging approaches in MRI to characterize the tumor microenvironment.
Collapse
|
7
|
Cheng T, Gaunt AP, Marco-Rius I, Gehrung M, Chen AP, van der Klink JJ, Comment A. A multisample 7 T dynamic nuclear polarization polarizer for preclinical hyperpolarized MR. NMR IN BIOMEDICINE 2020; 33:e4264. [PMID: 31999867 PMCID: PMC7165016 DOI: 10.1002/nbm.4264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 05/29/2023]
Abstract
Dynamic nuclear polarization (DNP) provides the opportunity to boost liquid state magnetic resonance (MR) signals from selected nuclear spins by several orders of magnitude. A cryostat running at a temperature of ~ 1 K and a superconducting magnet set to between 3 and 10 T are required to efficiently hyperpolarize nuclear spins. Several DNP polarizers have been implemented for the purpose of hyperpolarized MR and recent systems have been designed to avoid the need for user input of liquid cryogens. We herein present a zero boil-off DNP polarizer that operates at 1.35 ± 0.01 K and 7 T, and which can polarize two samples in parallel. The samples are cooled by a static helium bath thermally connected to a 1 K closed-cycle 4 He refrigerator. Using a modified version of the commercial fluid path developed for the SPINlab polarizer, we demonstrate that, within a 12-minute interval, the system can produce two separate hyperpolarized 13 C solutions. The 13 C liquid-state polarization of [1-13 C]pyruvate measured 26 seconds after dissolution was 36%, which can be extrapolated to a 55% solid state polarization. The system is well adapted for in vitro and in vivo preclinical hyperpolarized MR experiments and it can be modified to polarize up to four samples in parallel.
Collapse
Affiliation(s)
- Tian Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Adam P Gaunt
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Irene Marco-Rius
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Marcel Gehrung
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Albert P Chen
- General Electric Healthcare, Toronto, Ontario, Canada
| | | | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- General Electric Healthcare, Chalfont St Giles, UK
| |
Collapse
|
8
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Song JE, Shin J, Lee H, Choi YS, Song HT, Kim DH. Dynamic hyperpolarized 13 C MR spectroscopic imaging using SPICE in mouse kidney at 9.4 T. NMR IN BIOMEDICINE 2020; 33:e4230. [PMID: 31856426 DOI: 10.1002/nbm.4230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 05/16/2023]
Abstract
This study aims to investigate the feasibility of dynamic hyperpolarized 13 C MR spectroscopic imaging (MRSI) using the SPectroscopic Imaging by exploiting spatiospectral CorrElation (SPICE) technique and an estimation of the spatially resolved conversion constant rate (kpl ). An acquisition scheme comprising a single training dataset and several imaging datasets was proposed considering hyperpolarized 13 C circumstances. The feasibility and advantage of the scheme were investigated in two parts: (a) consistency of spectral basis over time and (b) accuracy of the estimated kpl . The simulations and in vivo experiments support accurate kpl estimation with consistent spectral bases. The proposed method was implemented in an enzyme phantom and via in vivo experiments. In the enzyme phantom experiments, spatially resolved homogeneous kpl maps were observed. In the in vivo experiments, normal diet (ND) mice and high-fat diet (HFD) mice had kpl (s-1 ) values of medullar (ND: 0.0119 ± 0.0022, HFD: 0.0195 ± 0.0005) and cortical (ND: 0.0148 ±0.0023, HFD: 0.0224 ±0.0054) regions which were higher than vascular (ND: 0.0087 ±0.0013, HFD: 0.0132 ±0.0050) regions. In particular, the kpl value in the medullar region exhibited a significant difference between the two diet groups. In summary, the feasibility of using modified SPICE for dynamic hyperpolarized 13 C MRSI was demonstrated via simulations and in vivo experiments. The consistency of spectral bases over time and the accuracy of the estimated kpl values validate the proposed acquisition scheme, which comprises only a single training dataset. The proposed method improved the spatial resolution of dynamic hyperpolarized 13 C MRSI, which could be used for kpl estimation using high signal-to-noise ratio spectral bases.
Collapse
Affiliation(s)
- Jae Eun Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Jaewook Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Hansol Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
10
|
Mammoli D, Gordon J, Autry A, Larson PEZ, Li Y, Chen HY, Chung B, Shin P, Van Criekinge M, Carvajal L, Slater JB, Bok R, Crane J, Xu D, Chang S, Vigneron DB. Kinetic Modeling of Hyperpolarized Carbon-13 Pyruvate Metabolism in the Human Brain. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:320-327. [PMID: 31283497 PMCID: PMC6939147 DOI: 10.1109/tmi.2019.2926437] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Kinetic modeling of the in vivo pyruvate-to-lactate conversion is crucial to investigating aberrant cancer metabolism that demonstrates Warburg effect modifications. Non-invasive detection of alterations to metabolic flux might offer prognostic value and improve the monitoring of response to treatment. In this clinical research project, hyperpolarized [1-13C] pyruvate was intravenously injected in a total of 10 brain tumor patients to measure its rate of conversion to lactate ( kPL ) and bicarbonate ( kPB ) via echo-planar imaging. Our aim was to investigate new methods to provide kPL and kPB maps with whole-brain coverage. The approach was data-driven and addressed two main issues: selecting the optimal model for fitting our data and determining an appropriate goodness-of-fit metric. The statistical analysis suggested that an input-less model had the best agreement with the data. It was also found that selecting voxels based on post-fitting error criteria provided improved precision and wider spatial coverage compared to using signal-to-noise cutoffs alone.
Collapse
|
11
|
Macdonald EB, Barton GP, Cox BL, Johnson KM, Strigel RM, Fain SB. Improved reconstruction stability for chemical shift encoded hyperpolarized 13 C magnetic resonance spectroscopic imaging using k-t spiral acquisitions. Magn Reson Med 2019; 84:25-38. [PMID: 31814173 DOI: 10.1002/mrm.28122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE A multiecho, field of view (FOV)-oversampled k-t spiral acquisition and direct iterative decomposition of water and fat with echo asymmetry and least-squares estimation reconstruction is demonstrated to improve the stability of hyperpolarized 13 C magnetic resonance spectroscopic imaging (MRSI) in the presence of signal ambiguities attributed to low-SNR (signal-to-noise-ratio) species, local uncertainties in metabolite peaks, and echo-to-echo signal inconsistencies. THEORY k-t spiral acquisitions redistribute readout points to be more densely spaced radially in k-space by acquiring an FOV and matrix that are oversampled by η. These more densely spaced spiral turns constitute effective intraspiral echoes and can supplement conventional interspiral echoes to improve spectral separation and reduce spectral cross-talk to better resolve 13 C-labeled species for spectroscopic imaging. METHODS Digital simulations and imaging phantom experiments were performed for a range of interspiral echo spacings and η using multiecho, k-t spiral acquisitions. Image spectral cross-talk artifacts were evaluated both qualitatively and quantitatively as the percent error in measured metabolite ratios. In vivo murine experiments evaluated the feasibility of multiecho, k-t spiral [1-13 C]pyruvate MRSI to reduce spectral cross-talk for 3 scenarios of different expected reconstruction stability. RESULTS Digital simulations and imaging phantom experiments both demonstrated reduced or comparable image spectral cross-talk and percent errors in measured metabolite ratios with increasing η and better choices of echo spacings. In vivo images displayed markedly reduced spectral cross-talk in lactate images acquired with η = 7 versus η = 1. CONCLUSION The precision of hyperpolarized 13 C metabolic imaging and quantification in the presence of low-SNR species, local uncertainties in metabolite resonances, and echo-to-echo signal inconsistencies can be improved with the use of FOV-oversampled k-t spiral acquisitions.
Collapse
Affiliation(s)
- Erin B Macdonald
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gregory P Barton
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin L Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
12
|
von Morze C, Merritt ME. Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology. NMR IN BIOMEDICINE 2019; 32:e3937. [PMID: 29870085 PMCID: PMC6281789 DOI: 10.1002/nbm.3937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 05/07/2023]
Abstract
Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Zacharias NM, Baran N, Shanmugavelandy SS, Lee J, Lujan JV, Dutta P, Millward SW, Cai T, Wood CG, Piwnica-Worms D, Konopleva M, Bhattacharya PK. Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:1937-1946. [PMID: 31387889 DOI: 10.1158/1535-7163.mct-18-0985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/17/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic disease characterized by glutamine-dependent metabolism. A novel glutaminase (GLS) inhibitor, CB-839, is currently under evaluation for treatment of hematopoietic malignancies and solid tumors. Our purpose was to measure cellular changes in AML associated with CB-839 treatment and to test the ability of hyperpolarized pyruvate for interrogating these changes to OCI-AML3 cells. Our results show that treatment with CB-839 interfered with the citric acid cycle, reduced the NADH/NAD+ ratio and ATP levels, reduced cell proliferation and viability, and reduced the basal and maximal respiratory capacities [oxygen consumption rate (OCR)]. We observed a reduction of the conversion of hyperpolarized pyruvate to lactate in cell lines and in a mouse AML model after CB-839 treatment. Our in vitro and in vivo results support the hypothesis that, in AML, glutamine is utilized to generate reducing equivalents (NADH, FADH2) through the citric acid cycle and that reduction in redox state by GLS inhibition decreases the rate of pyruvate to lactate conversion catalyzed by lactate dehydrogenase. We propose hyperpolarized pyruvate/lactate measurement as a method for direct monitoring of metabolic changes occurring in AML patients receiving CB-839. With further optimization, this method may provide a noninvasive imaging tool to assess the early efficacy of therapeutic intervention with GLS inhibitors.
Collapse
Affiliation(s)
- Niki M Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram S Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juliana Velez Lujan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven W Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
14
|
Zacharias N, Lee J, Ramachandran S, Shanmugavelandy S, McHenry J, Dutta P, Millward S, Gammon S, Efstathiou E, Troncoso P, Frigo DE, Piwnica-Worms D, Logothetis CJ, Maity SN, Titus MA, Bhattacharya P. Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo. Mol Imaging Biol 2019; 21:86-94. [PMID: 29748904 DOI: 10.1007/s11307-018-1199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Androgen receptor (AR) signaling affects prostate cancer (PCa) growth, metabolism, and progression. Often, PCa progresses from androgen-sensitive to castration-resistant prostate cancer (CRPC) following androgen-deprivation therapy. Clinicopathologic and genomic characterizations of CRPC tumors lead to subdividing CRPC into two subtypes: (1) AR-dependent CRPC containing dysregulation of AR signaling alterations in AR such as amplification, point mutations, and/or generation of splice variants in the AR gene; and (2) an aggressive variant PCa (AVPC) subtype that is phenotypically similar to small cell prostate cancer and is defined by chemotherapy sensitivity, gain of neuroendocrine or pro-neural marker expression, loss of AR expression, and combined alterations of PTEN, TP53, and RB1 tumor suppressors. Previously, we reported patient-derived xenograft (PDX) animal models that contain characteristics of these CRPC subtypes. In this study, we have employed the PDX models to test metabolic alterations in the CRPC subtypes. PROCEDURES Mass spectrometry and nuclear magnetic resonance analysis along with in vivo hyperpolarized 1-[13C]pyruvate spectroscopy experiments were performed on prostate PDX animal models. RESULTS Using hyperpolarized 1-[13C]pyruvate conversion to 1-[13C]lactate in vivo as well as lactate measurements ex vivo, we have found increased lactate production in AR-dependent CRPC PDX models even under low-hormone levels (castrated mouse) compared to AR-negative AVPC PDX models. CONCLUSIONS Our analysis underscores the potential of hyperpolarized metabolic imaging in determining the underlying biology and in vivo phenotyping of CRPC.
Collapse
Affiliation(s)
- Niki Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sriram Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - James McHenry
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Seth Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Clinical Therapeutics, University of Athens, Athens, Greece
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA.
| |
Collapse
|
15
|
Bancroft Brown J, Sriram R, VanCriekinge M, Delos Santos R, Sun J, Delos Santos J, Tabatabai ZL, Shinohara K, Nguyen H, Peehl DM, Kurhanewicz J. NMR quantification of lactate production and efflux and glutamate fractional enrichment in living human prostate biopsies cultured with [1,6- 13 C 2 ]glucose. Magn Reson Med 2019; 82:566-576. [PMID: 30924180 DOI: 10.1002/mrm.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Image-guided prostate biopsies are routinely acquired in the diagnosis and treatment monitoring of prostate cancer, yielding useful tissue for identifying metabolic biomarkers and therapeutic targets. We developed an optimized biopsy tissue culture protocol in combination with [1,6-13 C2 ]glucose labeling and quantitative high-resolution NMR to measure glycolysis and tricarboxcylic acid (TCA) cycle activity in freshly acquired living human prostate biopsies. METHODS We acquired 34 MRI-ultrasound fusion-guided prostate biopsies in vials on ice from 22 previously untreated patients. Within 15 min, biopsies were transferred to rotary tissue culture in 37°C prostate medium containing [1,6-13 C2 ]glucose. Following 24 h of culture, tissue lactate and glutamate pool sizes and fractional enrichments were quantified using quantitative 1 H high resolution magic angle spinning Carr-Purcell-Meiboom-Gill (CPMG) spectroscopy at 1°C with and without 13 C decoupling. Lactate effluxed from the biopsy tissue was quantified in the culture medium using quantitative solution-state high-resolution NMR. RESULTS Lactate concentration in low-grade cancer (1.15 ± 0.78 nmol/mg) and benign (0.74 ± 0.15 nmol/mg) biopsies agreed with prior published measurements of snap-frozen biopsies. There was substantial fractional enrichment of [3-13 C]lactate (≈70%) and [4-13 C]glutamate (≈24%) in both low-grade cancer and benign biopsies. Although a significant difference in tissue [3-13 C]lactate fractional enrichment was not observed, lactate efflux was significantly higher (P < 0.05) in low-grade cancer biopsies (0.55 ± 0.14 nmol/min/mg) versus benign biopsies (0.31 ± 0.04 nmol/min/mg). CONCLUSION A protocol was developed for quantification of lactate production-efflux and TCA cycle activity in single living human prostate biopsies, allowing metabolic labeling on a wide spectrum of human tissues (e.g., metastatic, post-non-surgical therapy) from patients not receiving surgery.
Collapse
Affiliation(s)
- Jeremy Bancroft Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jinny Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Z Laura Tabatabai
- Department of Anatomic Pathology, University of California, San Francisco, California
| | - Katsuto Shinohara
- Department of Urology, University of California, San Francisco, California
| | - Hao Nguyen
- Department of Urology, University of California, San Francisco, California
| | - Donna M Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
16
|
Miller JJ, Grist JT, Serres S, Larkin JR, Lau AZ, Ray K, Fisher KR, Hansen E, Tougaard RS, Nielsen PM, Lindhardt J, Laustsen C, Gallagher FA, Tyler DJ, Sibson N. 13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI. Sci Rep 2018; 8:15082. [PMID: 30305655 PMCID: PMC6180068 DOI: 10.1038/s41598-018-33363-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-13C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-13C]pyruvate and ethyl-[1-13C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-13C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-13C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.
Collapse
Affiliation(s)
- Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kevin Ray
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Esben Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | - Nicola Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Kumar V, Bora GS, Kumar R, Jagannathan NR. Multiparametric (mp) MRI of prostate cancer. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:23-40. [PMID: 29548365 DOI: 10.1016/j.pnmrs.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. A large number of men are detected with PCa; however, the clinical behavior ranges from low-grade indolent tumors that never develop into a clinically significant disease to aggressive, invasive tumors that may rapidly progress to metastatic disease. The challenges in clinical management of PCa are at levels of screening, diagnosis, treatment, and follow-up after treatment. Magnetic resonance imaging (MRI) methods have shown a potential role in detection, localization, staging, assessment of aggressiveness, targeting biopsies, etc. in PCa patients. Multiparametric MRI (mpMRI) is emerging as a better option compared to the individual imaging methods used in the evaluation of PCa. There are attempts to improve the reproducibility and reliability of mpMRI by using an objective scoring system proposed in the prostate imaging reporting and data system (PIRADS) for standardized reporting. Prebiopsy mpMRI may be used to detect PCa in men with elevated prostate-specific antigen or abnormal digital rectal examination and to enable targeted biopsies. mpMRI can also be used to decide on clinical management of patients, for example active surveillance, and may help in detecting only the pathology that requires detection. It can potentially not only guide patient selection for initial and repeat biopsy but also reduce false-negative biopsies. This review presents a description of the MR methods most commonly applied for investigations of prostate. The anatomical, functional and metabolic parameters obtained from these MR methods are discussed with regard to their physical basis and their contribution to mpMRI investigations of PCa.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Girdhar S Bora
- Department of Urology, Post-Graduate Institute of Medical Sciences, Chandigarh 160012, India
| | - Rajeev Kumar
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Naranamangalam R Jagannathan
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
18
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
19
|
Chen HY, Larson PEZ, Gordon JW, Bok RA, Ferrone M, van Criekinge M, Carvajal L, Cao P, Pauly JM, Kerr AB, Park I, Slater JB, Nelson SJ, Munster PN, Aggarwal R, Kurhanewicz J, Vigneron DB. Technique development of 3D dynamic CS-EPSI for hyperpolarized 13 C pyruvate MR molecular imaging of human prostate cancer. Magn Reson Med 2018; 80:2062-2072. [PMID: 29575178 DOI: 10.1002/mrm.27179] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1-13 C]pyruvate to [1-13 C]lactate with whole gland coverage at high spatial and temporal resolution. METHODS A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1-13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. RESULTS Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1-13 C]pyruvate to [1-13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. CONCLUSION The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure kPL , the kinetic rate constant of [1-13 C]pyruvate to [1-13 C]lactate conversion.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California, San Francisco, California
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John M Pauly
- Electrical Engineering, Stanford University, Stanford, California
| | - Adam B Kerr
- Electrical Engineering, Stanford University, Stanford, California
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Chonnam, Korea
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Pamela N Munster
- Department of Medicine, University of California, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
20
|
Lau AZ, Lau JYC, Chen AP, Cunningham CH. Simultaneous multislice acquisition without trajectory modification for hyperpolarized 13 C experiments. Magn Reson Med 2018; 80:1588-1594. [PMID: 29427366 PMCID: PMC6120460 DOI: 10.1002/mrm.27136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Purpose To investigate the feasibility of performing large FOV hyperpolarized 13C metabolic imaging using simultaneous multislice excitation. Methods A spectral‐spatial multislice excitation pulse was constructed by cosine modulation and incorporated into a 13C spiral imaging sequence. Phantom and in vivo pig experiments were performed to test the feasibility of simultaneous multislice data acquisition and image reconstruction. In vivo cardiac‐gated images of hyperpolarized pyruvate, bicarbonate, and lactate were obtained at 1 × 1 × 1 cm3 resolution over a 48 × 48 × 24 cm3 FOV with 2‐fold acceleration in the slice direction. Sensitivity encoding was used for image reconstruction with both autocalibrated and numerically calculated coil sensitivities. Results Simultaneous multislice images obtained with 2‐fold acceleration were comparable to reference unaccelerated images. Retained SNR figures greater than 80% were achieved over the part of the image containing the heart. Conclusion This method is anticipated to enable large FOV imaging studies using hyperpolarized 13C substrates, with an aim toward whole‐body exams that have to date been out of reach.
Collapse
Affiliation(s)
- Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer. Sci Rep 2017; 7:16159. [PMID: 29170516 PMCID: PMC5701017 DOI: 10.1038/s41598-017-16327-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
The new oncologic paradigm of precision medicine is focused on identifying metabolic, proteomic, transcriptomic and genomic variabilities in tumors that can be exploited to tailor treatments and improve patient outcomes. Metabolic changes are a hallmark of cancer, and inhibition of metabolic pathways is now a major strategy in medicinal chemistry for targeting cancers. However, non-invasive biomarkers to categorize metabolic subtypes are in short supply. The purpose of this study was to characterize the intracellular and extracellular metabolic profiles of four prostate cancer cell lines with varying degrees of aggressiveness. We observed metabolic differences between the aggressive prostate cancer cell line PC3 and the even more aggressive, metastatic subline PC3M assessed by hyperpolarized in vivo pyruvate studies, nuclear magnetic resonance spectroscopy, and carbon-13 feeding studies. On further examination of the differences between these two cell lines, we found increased glutamine utilization in the metastatic PC3M subline that led directly to sensitivity to glutaminase inhibitor CB-839. Our study supports the theory that metastatic progression increases glutamine utilization and the inhibition of glutaminolysis could have clinical implications.
Collapse
|
22
|
Cancer recurrence monitoring using hyperpolarized [1- 13C]pyruvate metabolic imaging in murine breast cancer model. Magn Reson Imaging 2017; 43:105-109. [PMID: 28716678 DOI: 10.1016/j.mri.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
The purpose of this work was to study the anatomic and metabolic changes that occur with tumor progression, regression and recurrence in a switchable MYC-driven murine breast cancer model. Serial 1H MRI and hyperpolarized [1-13C]pyruvate metabolic imaging were used to investigate the changes in tumor volume and glycolytic metabolism over time during the multistage tumorigenesis. We show that acute de-induction of MYC expression in established tumors results in rapid tumor regression and significantly reduced glycolytic metabolism as measured by pyruvate-to-lactate conversion. Moreover, cancer recurrences occurring at the tumor sites independently of MYC expression were observed to accompany markedly increased lactate production.
Collapse
|
23
|
Joe E, Lee H, Lee J, Yang S, Choi YS, Wang E, Song HT, Kim DH. An indirect method for in vivo T 2 mapping of [1- 13 C] pyruvate using hyperpolarized 13 C CSI. NMR IN BIOMEDICINE 2017; 30:e3690. [PMID: 28111820 DOI: 10.1002/nbm.3690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
An indirect method for in vivo T2 mapping of 13 C-labeled metabolites using T2 and T2 * information of water protons obtained a priori is proposed. The T2 values of 13 C metabolites are inferred using the relationship to T2 ' of coexisting 1 H and the T2 * of 13 C metabolites, which is measured using routine hyperpolarized 13 C CSI data. The concept is verified with phantom studies. Simulations were performed to evaluate the extent of T2 estimation accuracy due to errors in the other measurements. Also, bias in the 13 C T2 * estimation from the 13 C CSI data was studied. In vivo experiments were performed from the brains of normal rats and a rat with C6 glioma. Simulation results indicate that the proposed method provides accurate and unbiased 13 C T2 values within typical experimental settings. The in vivo studies found that the estimated T2 of [1-13 C] pyruvate using the indirect method was longer in tumor than in normal tissues and gave values similar to previous reports. This method can estimate localized T2 relaxation times from multiple voxels using conventional hyperpolarized 13 C CSI and can potentially be used with time resolved fast CSI.
Collapse
Affiliation(s)
- Eunhae Joe
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Hansol Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Joonsung Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea
| | - Seungwook Yang
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Young-Suk Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Eunkyung Wang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Ho-Taek Song
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
24
|
Geraghty BJ, Lau JYC, Chen AP, Cunningham CH. Dual-Echo EPI sequence for integrated distortion correction in 3D time-resolved hyperpolarized 13 C MRI. Magn Reson Med 2017; 79:643-653. [PMID: 28394085 DOI: 10.1002/mrm.26698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/15/2017] [Accepted: 03/11/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE To provide built-in off-resonance correction in time-resolved, volumetric hyperpolarized 13 C metabolic imaging by implementing a novel dual-echo 3D echo-planar imaging (EPI) sequence and reconstruction. METHODS A spectral-spatial pulse for single-resonance excitation followed by a dual-echo 3D EPI readout was implemented to provide 64 × 8 × 6 cm3 coverage at 5 × 5 × 5 mm3 nominal resolution. Multiple sources of EPI distortions were encoded using a multi-echo 1 H EPI reference scan. Phase maps computed from the reference scans were combined with a bulk 13 C frequency offset encoded in the dual-echo [1-13 C]pyruvate images to correct geometric distortion and improve spatial registration. The proposed scheme was validated in a phantom study, and in vivo [1-13 C]pyruvate and [1-13 C]lactate rat images were acquired with intentional transmit frequency deviations to assess the dual-echo 3D EPI sequence. RESULTS The phantom study demonstrated improved spatial registration in off-resonance corrected images. Close agreement was observed between metabolic kidney signal and the underlying anatomy in rat imaging experiments. Relative to a single-echo acquisition, the coherent addition of the two corrected echoes provided the expected increase in signal-to-noise ratio by approximately 2. CONCLUSION A novel dual-echo 3D EPI acquisition sequence for integrated off-resonance correction in hyperpolarized 13 C imaging was developed and demonstrated. The proposed sequence offers clear advantages over flyback EPI for time-resolved metabolic mapping. Magn Reson Med 79:643-653, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Benjamin J Geraghty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|
26
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Miloushev VZ, Di Gialleonardo V, Salamanca-Cardona L, Correa F, Granlund KL, Keshari KR. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 275:120-126. [PMID: 28061381 PMCID: PMC5554620 DOI: 10.1016/j.jmr.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Collapse
Affiliation(s)
- Vesselin Z Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Valentina Di Gialleonardo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lucia Salamanca-Cardona
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Fabian Correa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
28
|
Metabolic biomarkers for non-alcoholic fatty liver disease induced by high-fat diet: In vivo magnetic resonance spectroscopy of hyperpolarized [1-13C] pyruvate. Biochem Biophys Res Commun 2017; 482:112-119. [DOI: 10.1016/j.bbrc.2016.08.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022]
|
29
|
Hansen ESS, Kim S, Miller JJ, Geferath M, Morrell G, Laustsen C. Fast Padé Transform Accelerated CSI for Hyperpolarized MRS. Tomography 2016; 2:117-124. [PMID: 28018967 PMCID: PMC5179227 DOI: 10.18383/j.tom.2016.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study is to show the utility of FPT in reducing of the scan time required for hyperpolarized 13C chemical shift imaging (CSI) without sacrificing the ability to resolve a full spectrum. Simulations, phantom, and in vivo hyperpolarized [1-13C] pyruvate CSI data were processed with FPT and compared with conventional analysis methods. FPT shows improved stability and spectral resolution on truncated data compared with the fast Fourier transform and shows results that are comparable to those of the model-based fitting methods, enabling a reduction in the needed acquisition time in 13C CSI experiments. Using FPT can reduce the readout length in the spectral dimension by 2-6 times in 13C CSI compared with conventional Fourier analysis without sacrificing the spectral resolution. This increased speed is crucial for 13C CSI because T1 relaxation considerably limits the available scan time. In addition, FPT can also yield direct quantification of metabolite concentration without the additional peak analysis required in conventional Fourier analysis.
Collapse
Affiliation(s)
- Esben Szocska Søvsø Hansen
- MR Research Centre, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford; Danish Diabetes Academy, Odense, Denmark
| | - Sun Kim
- Department of Neurology & Neurological Sciences, Stanford Hospital & Clinics, Palo Alto, California
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford; Department of Physics, University of Oxford, Oxford
| | - Marcus Geferath
- School of Mathematical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Glen Morrell
- University of Utah School of Medicine, Salt Lake City, Utah; Utah Center for Advanced Imaging Research, Salt Lake City, Utah
| | - Christoffer Laustsen
- MR Research Centre, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Le Page LM, Ball DR, Ball V, Dodd MS, Miller JJ, Heather LC, Tyler DJ. Simultaneous in vivo assessment of cardiac and hepatic metabolism in the diabetic rat using hyperpolarized MRS. NMR IN BIOMEDICINE 2016; 29:1759-1767. [PMID: 27779334 PMCID: PMC5132204 DOI: 10.1002/nbm.3656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 05/07/2023]
Abstract
Understanding and assessing diabetic metabolism is vital for monitoring disease progression and improving treatment of patients. In vivo assessments, using MRI and MRS, provide non-invasive and accurate measurements, and the development of hyperpolarized 13 C spectroscopy in particular has been demonstrated to provide valuable metabolic data in real time. Until now, studies have focussed on individual organs. However, diabetes is a systemic disease affecting multiple tissues in the body. Therefore, we have developed a technique to simultaneously measure metabolism in both the heart and liver during a single acquisition. A hyperpolarized 13 C MRS protocol was developed to allow acquisition of metabolic data from the heart and liver during a single scan. This protocol was subsequently used to assess metabolism in the heart and liver of seven control male Wistar rats and seven diabetic rats (diabetes was induced by three weeks of high-fat feeding and a 30 mg/kg injection of streptozotocin). Using our new acquisition, we observed decreased cardiac and hepatic pyruvate dehydrogenase flux in our diabetic rat model. These diabetic rats also had increased blood glucose levels, decreased insulin, and increased hepatic triglycerides. Decreased production of hepatic [1-13 C]alanine was observed in the diabetic group, but this change was not present in the hearts of the same diabetic animals. We have demonstrated the ability to measure cardiac and hepatic metabolism simultaneously, with sufficient sensitivity to detect metabolic alterations in both organs. Further, we have non-invasively observed the different reactions of the heart and liver to the metabolic challenge of diabetes.
Collapse
Affiliation(s)
- Lydia M. Le Page
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCAUSA
| | - Daniel R. Ball
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael S. Dodd
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Jack J. Miller
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Lisa C. Heather
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Cardiac Metabolism Research Group, Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
31
|
Walker CM, Chen Y, Lai SY, Bankson JA. A novel perfused Bloch-McConnell simulator for analyzing the accuracy of dynamic hyperpolarized MRS. Med Phys 2016; 43:854-64. [PMID: 26843246 DOI: 10.1118/1.4939877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Magnetic resonance spectroscopy of hyperpolarized agents allows real-time detection of metabolism in vivo. However, the nonrenewable nature of these signals necessitates data acquisitions that differ significantly from conventional magnetic resonance imaging. Signal evolution is permanently altered by the data acquisition scheme, potentially leading to sequence parameter-dependent bias in quantification. The authors have developed a novel simulation environment to characterize the effects of sequence parameters on magnetic resonance spectroscopy-based chemical exchange measurements using hyperpolarized pyruvate. METHODS Conventional Bloch-McConnell equations were coupled with a pharmacokinetic model for perfusion to allow realistic simulation of in vivo dynamic hyperpolarized signal evolution. In this study, simulations were conducted to explore effects of excitation angle and repetition time on the observed signal and subsequent parametric analysis. Both high and low apparent exchange rates were modeled under assumption of both perfused and closed systems. Bias due to sampling strategy bias was subsequently tested in vivo. RESULTS Simulation of dynamic magnetic resonance spectroscopy studies using hyperpolarized pyruvate demonstrated that for closed systems, accurate measurement of the apparent exchange rate was possible over a wide range of sequence parameters. This was true for both high and low apparent exchange rates, although a low exchange rate was associated with larger errors when excitation angles were high. When effects of perfusion were included to account for pyruvate delivery, a more restricted range of settings led to accurate quantification of exchange rates. Perfusion alleviated some of the errors seen at high excitation angles for low exchange rates. Residuals from parametric analysis did not generally correlate with fit accuracy, implying that the quality of the analysis model was not a major driver of error. Animal studies acquired with sequence parameters that are predicted to impart bias showed a significant under estimation of exchange rates (P < 0.035) compared to parameter combinations that are not expected to bias measurements. CONCLUSIONS The authors' results suggest that great care must be taken when measuring dynamic processes by magnetic resonance spectroscopy of hyperpolarized substrates. When comparing apparent exchange rates, choice of sequence parameters will affect the results. Bias introduced by parameters of more advanced acquisition and reconstruction schemes will likely increase compared to the relatively simple dynamic spectroscopy methods tested herein. The modified Bloch-McConnell equations the authors describe will be crucial tools for characterizing and optimizing the performance of these more advanced techniques.
Collapse
Affiliation(s)
- Christopher M Walker
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
32
|
Najac C, Chaumeil MM, Kohanbash G, Guglielmetti C, Gordon JW, Okada H, Ronen SM. Detection of inflammatory cell function using (13)C magnetic resonance spectroscopy of hyperpolarized [6-(13)C]-arginine. Sci Rep 2016; 6:31397. [PMID: 27507680 PMCID: PMC4979036 DOI: 10.1038/srep31397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized (13)C probe, [6-(13)C]-arginine, to image arginase activity. We show that [6-(13)C]-arginine can be hyperpolarized, and hyperpolarized [(13)C]-urea production from [6-(13)C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [(13)C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-(13)C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages.
Collapse
Affiliation(s)
- Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Wang JX, Merritt ME, Sherry D, Malloy CR. A general chemical shift decomposition method for hyperpolarized (13) C metabolite magnetic resonance imaging. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:665-73. [PMID: 27060361 PMCID: PMC5022286 DOI: 10.1002/mrc.4435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/08/2016] [Accepted: 02/29/2016] [Indexed: 05/26/2023]
Abstract
Metabolic imaging with hyperpolarized carbon-13 allows sequential steps of metabolism to be detected in vivo. Potential applications in cancer, brain, muscular, myocardial, and hepatic metabolism suggest that clinical applications could be readily developed. A primary concern in imaging hyperpolarized nuclei is the irreversible decay of the enhanced magnetization back to thermal equilibrium. Multiple methods for rapid imaging of hyperpolarized substrates and their products have been proposed with a multi-point Dixon method distinguishing itself as a robust protocol for imaging [1-(13) C]pyruvate. We describe here a generalized chemical shift decomposition method that incorporates a single-shot spiral imaging sequence plus a spectroscopic sequence to retain as much spin polarization as possible while allowing detection of metabolites that have a wide range of chemical shift values. The new method is demonstrated for hyperpolarized [1-(13) C]pyruvate, [1-(13) C]acetoacetate, and [2-(13) C]dihydroxyacetone. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jian-xiong Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Serrao EM, Rodrigues TB, Gallagher FA, Kettunen MI, Kennedy BWC, Vowler SL, Burling KA, Brindle KM. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors. NMR IN BIOMEDICINE 2016; 29:1048-55. [PMID: 27309986 PMCID: PMC4973679 DOI: 10.1002/nbm.3568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/12/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Eva M Serrao
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tiago B Rodrigues
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mikko I Kettunen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Brett W C Kennedy
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sarah L Vowler
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Keith A Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Kim GW, Ahn KY, Kim YH, Jeong GW. Time-course metabolic changes in high-fat diet-induced obesity rats: A pilot study using hyperpolarized (13)C dynamic MRS. Magn Reson Imaging 2016; 34:1199-205. [PMID: 27374624 DOI: 10.1016/j.mri.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the time-course metabolic changes based on hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in high-fat diet (HFD)-induced obesity rats and the correlation between metabolic and serum enzyme levels. Sprague-Dawley rats were fed either HFD (60% fat) or normal diet (10% fat) for 6weeks. A HyperSense DNP was used to hyperpolarize [1-(13)C] pyruvic acid and the hyperpolarized (13)C MRS was examined every 2weeks in the course of 6weeks using a 3T GE MR750 scanner. The body weight of HFD-induced obese rats was significantly increased compared to normal rats at the 6th week after the onset of feeding (p=0.05). Simultaneously, the HFD-induced obese rats showed significantly increased levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and low-density lipoprotein (LDL)-cholesterol compared to normal rats (p≤0.05). In the dynamic (13)C MR spectra acquired at the 6th week, the obese rats showed significantly increased ratios of [1-(13)C] lactate/[1-(13)C] pyruvate and [1-(13)C] alanine/[1-(13)C] pyruvate (p=0.05). The (13)C spectral outcomes are positively correlated with the enzyme levels of ALT and LDH in the HFD-induced obesity. The [1-(13)C] lactate and [1-(13)C] alanine are potentially considered as noninvasive biomarkers for the HFD-induced obesity.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyu-Youn Ahn
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Gwang-Woo Jeong
- Research Institute for Medical Imaging, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Radiology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
36
|
Daniels CJ, McLean MA, Schulte RF, Robb FJ, Gill AB, McGlashan N, Graves MJ, Schwaiger M, Lomas DJ, Brindle KM, Gallagher FA. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate. NMR IN BIOMEDICINE 2016; 29:387-99. [PMID: 27414749 PMCID: PMC4833181 DOI: 10.1002/nbm.3468] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 05/07/2023]
Abstract
Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Charlie J Daniels
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | | | | - Andrew B Gill
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nicholas McGlashan
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Markus Schwaiger
- Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - David J Lomas
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
37
|
Serrao EM, Brindle KM. Potential Clinical Roles for Metabolic Imaging with Hyperpolarized [1-(13)C]Pyruvate. Front Oncol 2016; 6:59. [PMID: 27014634 PMCID: PMC4786548 DOI: 10.3389/fonc.2016.00059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/28/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eva M. Serrao
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kevin M. Brindle
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Abstract
Prostate cancer is the commonest solid-organ cancer diagnosed in males and represents an important source of morbidity and mortality worldwide. Imaging plays a crucial role in diagnosing prostate cancer and informs the ongoing management of the disease at all stages. Several novel molecular imaging technologies have been developed recently that have the potential to revolutionise disease diagnosis and the surveillance of patients living with prostate cancer. These innovations include hyperpolarised MRI, choline PET/CT and PSMA PET/CT. The major utility of choline and PSMA PET/CT currently lies in their sensitivity for detecting early recurrence after radical treatment for prostate cancer and identifying discrete lesions that may be amenable to salvage therapy. Molecular imaging is likely to play a future role in characterising genetic and biochemical signatures in individual tumours, which may be of particular significance as cancer therapies move into an era of precision medicine.
Collapse
Affiliation(s)
- Aaron Leiblich
- Department of Urology, Churchill Hospital, University of Oxford NHS Trust, Old Road, Headington, Oxford, UK.
| | - Daniel Stevens
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK.
| | - Prasanna Sooriakumaran
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
39
|
Kim GW, Oh CH, Kim JC, Yoon W, Jeong YY, Kim YH, Kim JK, Park JG, Kang HK, Jeong GW. Noninvasive biomarkers for acute hepatotoxicity induced by 1,3-dichloro-2-propanol: hyperpolarized 13C dynamic MR spectroscopy. Magn Reson Imaging 2016; 34:159-65. [DOI: 10.1016/j.mri.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 01/04/2023]
|
40
|
Geraghty BJ, Lau JYC, Chen AP, Cunningham CH. Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized 13 C studies. Magn Reson Med 2016; 77:538-546. [PMID: 26806525 DOI: 10.1002/mrm.26125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE To enable large field-of-view, time-resolved volumetric coverage in hyperpolarized 13 C metabolic imaging by implementing a novel data acquisition and image reconstruction method based on the compressed sensing framework. METHODS A spectral-spatial pulse for single-resonance excitation followed by a symmetric echo-planar imaging (EPI) readout was implemented for encoding a 72 × 18 cm2 field of view at 5 × 5 mm2 resolution. Random undersampling was achieved with blipped z-gradients during the ramp portion of the echo-planar imaging readout. The sequence and reconstruction were tested with phantom studies and consecutive in vivo hyperpolarized 13 C scans in rats. Retrospectively and prospectively undersampled data were compared on the basis of structural similarity in the reconstructed images and the quantification of the lactate-to-pyruvate ratio in rat kidneys. RESULTS No artifacts or loss of resolution are evident in the compressed sensing reconstructed images acquired with the proposed sequence. Structural similarity analysis indicate that compressed sensing reconstructions can accurately recover spatial features in the metabolic images evaluated. CONCLUSION A novel z-blip acquisition sequence for compressed sensing accelerated hyperpolarized 13 C 3D echo-planar imaging was developed and demonstrated. The close agreement in lactate-to-pyruvate ratios from both retrospectively and prospectively undersampled data from rats shows that metabolic information is preserved with acceleration factors up to 3-fold with the developed method. Magn Reson Med 77:538-546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Benjamin J Geraghty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Metabolite-selective hyperpolarized (13)C imaging using extended chemical shift displacement at 9.4T. Magn Reson Imaging 2015; 34:535-40. [PMID: 26707851 DOI: 10.1016/j.mri.2015.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE To develop a technique for frequency-selective hyperpolarized (13)C metabolic imaging in ultra-high field strength which exploits the broad spatial chemical shift displacement in providing spectral and spatial selectivity. METHODS The spatial chemical shift displacement caused by the slice-selection gradient was utilized in acquiring metabolite-selective images. Interleaved images of different metabolites were acquired by reversing the polarity of the slice-selection gradient at every repetition time, while using a low-bandwidth radio-frequency excitation pulse to alternatingly shift the displaced excitation bands outside the imaging subject. Demonstration of this technique is presented using (1)H phantom and in vivo mouse renal hyperpolarized (13)C imaging experiments with conventional chemical shift imaging and fast low-angle shot sequences. RESULTS From phantom and in vivo mouse studies, the spectral selectivity of the proposed method is readily demonstrated using results of chemical shift spectroscopic imaging, which displayed clearly delineated images of different metabolites. Imaging results using the proposed method without spectral encoding also showed effective separation while also providing high spatial resolution. CONCLUSION This method provides a way to acquire spectrally selective hyperpolarized (13)C metabolic images in a simple implementation, and with potential ability to support combination with more elaborate readout methods for faster imaging.
Collapse
|
42
|
Shin PJ, Larson PE, Uecker M, Reed GD, Kerr AB, Tropp J, Ohliger MA, Nelson SJ, Pauly JM, Lustig M, Vigneron DB. Chemical shift separation with controlled aliasing for hyperpolarized (13) C metabolic imaging. Magn Reson Med 2015; 74:978-89. [PMID: 25298086 PMCID: PMC4390401 DOI: 10.1002/mrm.25473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE A chemical shift separation technique for hyperpolarized (13) C metabolic imaging with high spatial and temporal resolution was developed. Specifically, a fast three-dimensional pulse sequence and a reconstruction method were implemented to acquire signals from multiple (13) C species simultaneously with subsequent separation into individual images. THEORY AND METHODS A stack of flyback echo-planar imaging readouts and a set of multiband excitation radiofrequency pulses were designed to spatially modulate aliasing patterns of the acquired metabolite images, which translated the chemical shift separation problem into parallel imaging reconstruction problem. An eight-channel coil array was used for data acquisition and a parallel imaging method based on nonlinear inversion was developed to separate the aliased images. RESULTS Simultaneous acquisitions of pyruvate and lactate in a phantom study and in vivo rat experiments were performed. The results demonstrated successful separation of the metabolite distributions into individual images having high spatial resolution. CONCLUSION This method demonstrated the ability to provide accelerated metabolite imaging in hyperpolarized (13) C MR using multichannel coils, tailored readout, and specialized RF pulses.
Collapse
Affiliation(s)
- Peter J. Shin
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | - Martin Uecker
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California, USA
| | - Galen D. Reed
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | - Adam B. Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - James Tropp
- General Electric Healthcare, Fremont, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | - Sarah J. Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| | - John M. Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Michael Lustig
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
- The UC Berkeley - UCSF Graduate Program in Bioengineering, California, USA
| |
Collapse
|
43
|
Koelsch BL, Reed GD, Keshari KR, Chaumeil MM, Bok R, Ronen SM, Vigneron DB, Kurhanewicz J, Larson PEZ. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites. Magn Reson Med 2015; 74:622-633. [PMID: 25213126 PMCID: PMC4362805 DOI: 10.1002/mrm.25422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 08/01/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. METHODS We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. RESULTS We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. CONCLUSION ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential.
Collapse
Affiliation(s)
- Bertram L. Koelsch
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Galen D. Reed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Kayvan R. Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| |
Collapse
|
44
|
Chen AP, Cunningham CH. Single voxel localization for dynamic hyperpolarized (13)C MR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:81-85. [PMID: 26232365 DOI: 10.1016/j.jmr.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
The PRESS technique has been widely used to achieve voxel localization for in vivo(1)H MRS acquisitions. However, for dynamic hyperpolarized (13)C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-(13)C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.
Collapse
Affiliation(s)
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Sriram R, Van Criekinge M, Hansen A, Wang ZJ, Vigneron DB, Wilson DM, Keshari KR, Kurhanewicz J. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor. NMR IN BIOMEDICINE 2015; 28:1141-1149. [PMID: 26202449 PMCID: PMC4537810 DOI: 10.1002/nbm.3354] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 05/19/2023]
Abstract
We have developed a 3D cell/tissue culture bioreactor compatible with hyperpolarized (HP) (13)C MR and interrogated HP [1-(13)C]lactate production and efflux in human renal cell carcinoma (RCC) cells. This platform is capable of resolving intracellular and extracellular HP lactate pools, allowing the kinetic measurement of lactate production and efflux in the context of cancer aggressiveness and response to therapy. HP (13)C MR studies were performed on three immortalized human renal cell lines: HK2, a normal renal proximal tubule cell line from which a majority of RCCs arise, UMRC6, a cell line derived from a localized RCC, and UOK262, an aggressive and metastatic RCC. The intra- (Lacin ) and extracellular (Lacex ) HP lactate signals were robustly resolved in dynamic (13)C spectra of the cell lines due to a very small but reproducible chemical shift difference (0.031 ± 0.0005 ppm). Following HP [1-(13)C]pyruvate delivery, the ratio of HP Lacin /Lacex was significantly lower for UOK262 cells compared with both UMRC6 and HK2 cells due to a significant (p < 0.05) increase in the Lacex pool size. Lacin /Lacex correlated with the MCT4 mRNA expression of the cell lines, and inhibition of MCT4 transport using DIDS resulted in a significant reduction in the HP Lacex pool size. The extension of these studies to living patient-derived RCC tissue slices using HP [1,2-(13)C2]pyruvate demonstrated a similarly split lactate doublet with a high Lacex pool fraction; in contrast, only a single NMR resonance is noted for HP [5-(13)C]glutamate, consistent with intracellular localization. These studies support the importance of lactate efflux as a biomarker of cancer aggressiveness and metastatic potential, and the utility of the MR compatible 3D cell/tissue culture bioreactor to study not only cellular metabolism but also transport. Additionally, this platform offers a sophisticated way to follow therapeutic interventions and screen novel therapies that target lactate export.
Collapse
Affiliation(s)
- Renuka Sriram
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Correspondence and Reprint Request: Renuka Sriram, University of California, San Francisco, Byers Hall, Room 201B, 1700 4th Street, MC 2520, San Francisco, CA 94158, Tel: (415) 514-4874, Fax: (415) 514-4714,
| | - Mark Van Criekinge
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Ailin Hansen
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen J. Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B. Vigneron
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - David M. Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Kayvan R. Keshari
- Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
46
|
He Y, Feng J, Zhang Z, Wang C, Wang D, Chen F, Liu M, Liu C. A peripheral component interconnect express-based scalable and highly integrated pulsed spectrometer for solution state dynamic nuclear polarization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:083101. [PMID: 26329168 DOI: 10.1063/1.4927453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.
Collapse
Affiliation(s)
- Yugui He
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwen Feng
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhi Zhang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chao Wang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong Wang
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Chen
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chaoyang Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
48
|
Abstract
Molecular imaging plays an important role in the era of personalized medicine, especially with recent advances in magnetic resonance (MR) probes. While the first generation of these probes focused on maximizing contrast enhancement, a second generation of probes has been developed to improve the accumulation within specific tissues or pathologies, and the newest generation of agents is also designed to report on changes in physiological status and has been termed "smart" agents. This represents a paradigm switch from the previously commercialized gadolinium and iron oxide probes to probes with new capabilities, and leads to new challenges as scanner hardware needs to be adapted for detecting these probes. In this chapter, we highlight the unique features for all five different categories of MR probes, including the emerging chemical exchange saturation transfer, (19)F, and hyperpolarized probes, and describe the key physical properties and features motivating their design. As part of this comparison, the strengths and weaknesses of each category are discussed.
Collapse
Affiliation(s)
- Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Kannie W Y Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Durst M, Koellisch U, Frank A, Rancan G, Gringeri CV, Karas V, Wiesinger F, Menzel MI, Schwaiger M, Haase A, Schulte RF. Comparison of acquisition schemes for hyperpolarised ¹³C imaging. NMR IN BIOMEDICINE 2015; 28:715-25. [PMID: 25908233 DOI: 10.1002/nbm.3301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 05/10/2023]
Abstract
The aim of this study was to characterise and compare widely used acquisition strategies for hyperpolarised (13)C imaging. Free induction decay chemical shift imaging (FIDCSI), echo-planar spectroscopic imaging (EPSI), IDEAL spiral chemical shift imaging (ISPCSI) and spiral chemical shift imaging (SPCSI) sequences were designed for two different regimes of spatial resolution. Their characteristics were studied in simulations and in tumour-bearing rats after injection of hyperpolarised [1-(13)C]pyruvate on a clinical 3-T scanner. Two or three different sequences were used on the same rat in random order for direct comparison. The experimentally obtained lactate signal-to-noise ratio (SNR) in the tumour matched the simulations. Differences between the sequences were mainly found in the encoding efficiency, gradient demand and artefact behaviour. Although ISPCSI and SPCSI offer high encoding efficiencies, these non-Cartesian trajectories are more prone than EPSI and FIDCSI to artefacts from various sources. If the encoding efficiency is sufficient for the desired application, EPSI has been proven to be a robust choice. Otherwise, faster spiral acquisition schemes are recommended. The conclusions found in this work can be applied directly to clinical applications.
Collapse
Affiliation(s)
- Markus Durst
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | - Ulrich Koellisch
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | - Annette Frank
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giaime Rancan
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Concetta V Gringeri
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel Haase
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | | |
Collapse
|
50
|
|