1
|
White CJ, Gausepohl AM, Wilkins HN, Eberhard CD, Orsburn BC, Williams DW. Spatial Heterogeneity of Brain Lipids in SIV-Infected Macaques Treated with Antiretroviral Therapy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:185-196. [PMID: 38288997 DOI: 10.1021/jasms.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Human immunodeficiency virus (HIV) infection continues to promote neurocognitive impairment, mood disorders, and brain atrophy, even in the modern era of viral suppression. Brain lipids are vulnerable to HIV-associated energetic strain and may contribute to HIV-associated neurologic dysfunction due to alterations in lipid breakdown and structural lipid composition. HIV neuropathology is region dependent, yet there has not been comprehensive characterization of the spatial heterogeneity of brain lipids during infection that possibly impacts neurologic function. To address this gap, we evaluated the spatial lipid distribution using matrix laser desorption/ionization imaging mass spectrometry (MALDI-IMS) across four brain regions (parietal cortex, midbrain, thalamus, and temporal cortex), as well as the kidney for a peripheral tissue control, in a simian immunodeficiency virus (SIV)-infected rhesus macaque treated with a course of antiretroviral therapies (ARTs). We assessed lipids indicative of fat breakdown [acylcarnitines (CARs)] and critical structural lipids [phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs)] across fatty acid chain lengths and degrees of unsaturation. CARs with very long-chain, polyunsaturated fatty acids (PUFAs) were more abundant across all brain regions than shorter chain, saturated, or monounsaturated species. We observed distinct brain lipid distribution patterns for the CARs and PCs. However, no clear expression patterns emerged for PEs. Surprisingly, the kidney was nearly devoid of ions corresponding to PUFAs common in brain. PEs and PCs with PUFAs had little intensity and less density than other species, and only one CAR species was observed in kidney at high intensity. Overall, our study demonstrates the stark variation in structural phospholipids and lipid-energetic intermediates present in the virally suppressed SIV-macaque brain. These findings may be useful for identifying regional vulnerabilities to damage due to brain lipid changes in people with HIV.
Collapse
Affiliation(s)
- Cory J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Andrew M Gausepohl
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hannah N Wilkins
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, United States
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Jia Y, Chen Y, Geng K, Cheng Y, Li Y, Qiu J, Huang H, Wang R, Zhang Y, Wu R. Glutamate Chemical Exchange Saturation Transfer (GluCEST) Magnetic Resonance Imaging in Pre-clinical and Clinical Applications for Encephalitis. Front Neurosci 2020; 14:750. [PMID: 32848546 PMCID: PMC7399024 DOI: 10.3389/fnins.2020.00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Encephalitis is a common central nervous system inflammatory disease that seriously endangers human health owing to the lack of effective diagnostic methods, which leads to a high rate of misdiagnosis and mortality. Glutamate is implicated closely in microglial activation, and activated microglia are key players in encephalitis. Hence, using glutamate chemical exchange saturation transfer (GluCEST) imaging for the early diagnosis of encephalitis holds promise. METHODS The sensitivity of GluCEST imaging with different concentrations of glutamate and other major metabolites in the brain was validated in phantoms. Twenty-seven Sprague-Dawley (SD) rats with encephalitis induced by Staphylococcus aureus infection were used for preclinical research of GluCEST imaging in a 7.0-Tesla scanner. For the clinical study, six patients with encephalitis, six patients with lacunar infarction, and six healthy volunteers underwent GluCEST imaging in a 3.0-Tesla scanner. RESULTS The number of amine protons on glutamate that had a chemical shift of 3.0 ppm away from bulk water and the signal intensity of GluCEST were concentration-dependent. Under physiological conditions, glutamate is the main contributor to the GluCEST signal. Compared with normal tissue, in both rats and patients with encephalitis, the encephalitis areas demonstrated a hyper-intense GluCEST signal, while the lacunar infarction had a decreased GluCEST signal intensity. After intravenous immunoglobulin therapy, patients with encephalitis lesions showed a decrease in GluCEST signal, and the results were significantly different from the pre-treatment signal (1.34 ± 0.31 vs 5.0 ± 0.27%, respectively; p = 0.000). CONCLUSION Glutamate plays a role in encephalitis, and the GluCEST imaging signal has potential as an in vivo imaging biomarker for the early diagnosis of encephalitis. GluCEST will provide new insight into encephalitis and help improve the differential diagnosis of brain disorders.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Radiology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, China
| | - Kuan Geng
- Department of Radiology, The First People’s Hospital of Honghe Prefecture, Mengzi, China
| | - Yan Cheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jinming Qiu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huaidong Huang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Runrun Wang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yunping Zhang
- Department of Nuclear Medicine, Shenzhen Luohu District People’s Hospital, Shenzhen, China
- *Correspondence: Yunping Zhang,
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Renhua Wu,
| |
Collapse
|
3
|
Liu CH, Abrams ND, Carrick DM, Chander P, Dwyer J, Hamlet MRJ, Kindzelski AL, PrabhuDas M, Tsai SYA, Vedamony MM, Wang C, Tandon P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities. FASEB J 2019; 33:13085-13097. [PMID: 31577913 DOI: 10.1096/fj.201902024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is a normal process in our body; acute inflammation acts to suppress infections and support wound healing. Chronic inflammation likely leads to a wide range of diseases, including cancer. Tools to locate and monitor inflammation are critical for developing effective interventions to arrest inflammation and promote its resolution. To identify current clinical needs, challenges, and opportunities in advancing imaging-based evaluations of inflammatory status in patients, the U.S. National Institutes of Health convened a workshop on imaging inflammation and its resolution in health and disease. Clinical speakers described their needs for image-based capabilities that could help determine the extent of inflammatory conditions in patients to guide treatment planning and undertake necessary interventions. The imaging speakers showcased the state-of-the-art in vivo imaging techniques for detecting inflammation in different disease areas. Many imaging capabilities developed for 1 organ or disease can be adapted for other diseases and organs, whereas some have promise for clinical utility within the next 5-10 yr. Several speakers demonstrated that multimodal imaging measurements integrated with serum-based measures could improve in robustness for clinical utility. All speakers agreed that multiple inflammatory measures should be acquired longitudinally to comprehend the dynamics of unresolved inflammation that leads to disease development. They also agreed that the best strategies for accelerating clinical translation of imaging inflammation capabilities are through integration between new imaging techniques and biofluid-based biomarkers of inflammation as well as already established imaging measurements.-Liu, C. H., Abrams, N. D., Carrick, D. M., Chander, P., Dwyer, J., Hamlet, M. R. J., Kindzelski, A. L., PrabhuDas, M., Tsai, S.-Y. A., Vedamony, M. M., Wang, C., Tandon, P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities.
Collapse
Affiliation(s)
| | | | | | - Preethi Chander
- National Institute of Dental and Craniofacial Research, (NIH), Bethesda, Maryland, USA
| | - Johanna Dwyer
- Office of Dietary Supplements, (NIH), Bethesda, Maryland, USA
| | | | | | - Mercy PrabhuDas
- National Institute of Allergy and Infectious Diseases, (NIH), Rockville, Maryland, USA
| | - Shang-Yi Anne Tsai
- National Institute on Drug Abuse, National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Merriline M Vedamony
- National Institute of Allergy and Infectious Diseases, (NIH), Rockville, Maryland, USA
| | - Chiayeng Wang
- National Institute of Dental and Craniofacial Research, (NIH), Bethesda, Maryland, USA
| | - Pushpa Tandon
- National Cancer Institute, (NIH), Rockville, Maryland, USA
| |
Collapse
|
4
|
Abreu CM, Veenhuis RT, Avalos CR, Graham S, Parrilla DR, Ferreira EA, Queen SE, Shirk EN, Bullock BT, Li M, Metcalf Pate KA, Beck SE, Mangus LM, Mankowski JL, Mac Gabhann F, O'Connor SL, Gama L, Clements JE. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. mBio 2019; 10:e01659-19. [PMID: 31431552 PMCID: PMC6703426 DOI: 10.1128/mbio.01659-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies.IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.
Collapse
Affiliation(s)
- Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claudia R Avalos
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shelby Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daymond R Parrilla
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ming Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
|
6
|
Zhao J, Chen F, Ren M, Li L, Li A, Jing B, Li H. Low-frequency fluctuation characteristics in rhesus macaques with SIV infection: a resting-state fMRI study. J Neurovirol 2018; 25:141-149. [PMID: 30478797 DOI: 10.1007/s13365-018-0694-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Simian immunodeficiency virus (SIV)-infected macaque is a widely used model to study human immunodeficiency virus. The purpose of the study is to discover the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) changes in SIV-infected macaques. Seven rhesus macaques were involved in the longitudinal MRI scans: (1) baseline (healthy state); (2) SIV infection stage (12 weeks after SIV inoculation). ALFF and fALFF were subsequently computed and compared to ascertain the changes caused by SIV infection. Whole-brain correlation analysis was further used to explore the possible associations between ALFF/fALFF values and immune status parameters (CD4+ T cell counts, CD4/CD8 ratio and virus load). Compared with the baseline, macaques in SIV infection stage displayed strengthened ALFF values in left precuneus, postcentral gyrus, and temporal gyrus, and weakened ALFF values in orbital gyrus and inferior temporal gyrus. Meanwhile, increased fALFF values were found in left superior frontal gyrus, right precentral gyrus, and superior temporal gyrus, while decreased fALFF values existed in left hippocampus, left caudate, and right inferior frontal gyrus. Furthermore, ALFF and fALFF values in several brain regions showed significant relationships with CD4+ T cell counts, CD4/CD8 ratio, and plasma virus load. Our findings could promote the understanding of neuroAIDS caused by HIV infection, which may provide supplementary evidences for the future therapy study in SIV model.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Feng Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Meiji Ren
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Li Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China
| | - Aixin Li
- Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing, 10069, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, No.10, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing, 100069, China.
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8, Xi Tou Tiao, You An MenWai, Feng Tai District, Beijing, 100069, China.
| |
Collapse
|
7
|
Zhao J, Jing B, Chen F, Liu J, Wang Y, Li H. Altered regional homogeneity of brain spontaneous signals in SIV infected rhesus macaque model. Magn Reson Imaging 2016; 37:56-61. [PMID: 27989909 DOI: 10.1016/j.mri.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Regional homogeneity (ReHo), a measurement from resting-state functional magnetic imaging (rs-fMRI) to reflect local synchronization of brain activities, has been widely explored in previous studies of neurological diseases. SIV infected model for detecting the neurological changes with progression was studied. METHODS In the study, six rhesus macaques infected by simian immunodeficiency virus (SIV) were scanned by resting-state fMRI at the following time points: before SIV inoculation (baseline), 12weeks and 24weeks post inoculation (12wpi, 24wpi). Meanwhile, the immunological parameters including serum percentage of CD4+ T cell, CD4/CD8 ratio and absolute CD4+ T cell number were measured and analyzed. RESULTS In comparison of baseline, significant decreased ReHo was found in the left superior frontal gyrus, left superior temporal gyrus, left hippocampus, right precuneus, left angular gyrus, and bilateral occipital gyrus; in contrast increased ReHo in putamen at 12wpi. Moreover, at the time of 24wpi, decreased ReHo was observed in the right postcentral gyrus, left precentral gyrus, posterior cingulated gyrus and thalamus, while ReHo was increased in the left putamen, hippocampus, left anterior cingulated cortex and precentral cortex. The correlation analysis revealed that ReHo in the superior frontal gyrus showed negative association with CD4/CD8 ratio and positive with absolute CD4+ T cell number. The correlation analysis showed that percentage of CD4+ was correlated with the ReHo values in right middle frontal gyrus, bilateral thalamus and amygdala positively; negative relationship with left putamen, left superior frontal gyrus, left superior and middle temporal gyrus. CONCLUSION The study first indicates that hippocampus, putamen, frontal and occipital lobe were impaired by using rs-fMRI and correlated with immunological parameters. Thus, ReHo value can be utilized as a noninvasive biomarker of spontaneous brain activity changes caused by the progression of neurological impairments.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, No. 10, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China
| | - Feng Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China
| | - Yuanyuan Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, You An Men Wai, Feng Tai District, Beijing 100069, China.
| |
Collapse
|
8
|
Zahr NM, Mayer D, Rohlfing T, Sullivan EV, Pfefferbaum A. Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol 2014; 24:654-64. [PMID: 25345895 PMCID: PMC4493672 DOI: 10.1111/bpa.12197] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022] Open
Abstract
Neuroinflammatory mechanisms contribute to the brain pathology resulting from human immunodeficiency virus (HIV) infection. Magnetic resonance spectroscopy (MRS) has been touted as a suitable method for discriminating in vivo markers of neuroinflammation. The present MRS study was conducted in four groups: alcohol dependent (A, n = 37), HIV-infected (H, n = 33), alcohol dependent + HIV infected (HA, n = 38) and healthy control (C, n = 62) individuals to determine whether metabolites would change in a pattern reflecting neuroinflammation. Significant four-group comparisons were evident only for striatal choline-containing compounds (Cho) and myo-inositol (mI), which follow-up analysis demonstrated were due to higher levels in HA compared with C individuals. To explore the potential relevance of elevated Cho and mI, correlations between blood markers, medication status and alcohol consumption were evaluated in H + HA subjects. Having an acquired immune deficiency syndrome (AIDS)-defining event or hepatitis C was associated with higher Cho; lower Cho levels, however, were associated with low thiamine levels and with highly active antiretroviral HIV treatment (HAART). Higher levels of mI were related to greater lifetime alcohol consumed, whereas HAART was associated with lower mI levels. The current results suggest that competing mechanisms can influence in vivo Cho and mI levels, and that elevations in these metabolites cannot necessarily be interpreted as reflecting a single underlying mechanism, including neuroinflammation.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
- Neuroscience ProgramSRI InternationalMenlo ParkCA
| | - Dirk Mayer
- Neuroscience ProgramSRI InternationalMenlo ParkCA
- Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
| | | | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
- Neuroscience ProgramSRI InternationalMenlo ParkCA
| |
Collapse
|
9
|
Abstract
Multiple MRI modalities including Diffusion Tensor Imaging (DTI), perfusion MRI, in vivo MR Spectroscopy (MRS), volumetric MRI, contrast-enhanced MRI, and functional MRI have demonstrated abnormalities of the structural and functional integrity as well as neurochemical alterations of the HIV-infected central nervous system (CNS). MRI has been proposed as a robust imaging approach for the characterization of the stage of progression in HIV infection. However, the interpretation of the MRI findings of HIV patients is complicated by the fact that these clinical studies cannot readily be controlled. Simian immunodeficiency virus (SIV) infected macaques exhibit neuropathological symptoms similar to those of HIV patients, and are an important model for studying the course of CNS infection, cognitive impairment, and neuropathology of HIV disease as well as treatment efficacy. MRI of non-human primates (NHPs) is of limited benefit on most clinical scanners operating at or below 1.5 Tesla because this low field strength does not produce high-quality images of the relatively small NHP brain. Contemporary high field MRI (3T or more) for clinical use provides impressive sensitivity for magnetic resonance signal detection and is now accessible in many imaging centers and hospitals, facilitating the use of various MRI techniques in NHP studies. In this article, several high field MRI techniques and applications in macaque models of neuroAIDS are reviewed and the relation between quantitative MRI measures and blood T-cell alterations is discussed.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
10
|
Cloak CC, Chang L, O'Neil SP, Ernst TM, Anderson DC, Donahoe RM. Neurometabolite abnormalities in simian immunodeficiency virus-infected macaques with chronic morphine administration. J Neuroimmune Pharmacol 2011; 6:371-80. [PMID: 20938808 PMCID: PMC3084341 DOI: 10.1007/s11481-010-9246-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Opiate abuse increases the risk for human immunodeficiency virus (HIV) infection, while both opiates and HIV may impact the immune and nervous systems. To model potential interactions between opiate drugs and HIV on the brain, neurometabolite levels were evaluated in simian immunodeficiency virus (SIV)-infected macaques with or without chronic morphine administration. Over the course of the study, 58% of these SIV-infected animals progressed to acquired immune deficiency syndrome (AIDS). Brain extracts from four brain regions were evaluated with proton magnetic resonance spectroscopy. Animals with AIDS had lower N-acetyl-aspartate in all four brain regions (p ≤ 0.05) as well as lower frontal gray matter total creatine (p= 0.03), lower frontal white matter (p= 0.003) and caudate (p = 0.002) glutamate, and higher frontal white matter myo-inositol (p= 0.05) than the healthier non-AIDS macaques. Morphine-dependent animals had higher levels of myo-inositol in the putamen (p = 0.003), especially those with AIDS. In the animals with AIDS, those with morphine dependence had higher total creatine in the frontal white matter (p= 0.04) than those treated with saline, which in turn had lower creatine than saline-injected animals without AIDS (p = 0.04), leading to an interaction between the effects of morphine and AIDS on total creatine in this brain region (ANOVA p = 0.02). The majority of these brain metabolites correlated with viral counts indicating more severe metabolite abnormalities in animals with higher viral loads or set points. Collectively, these findings suggest that chronic morphine may protect against the neurotoxic effect of AIDS and reinforce the importance of maintaining a low viral load in AIDS.
Collapse
Affiliation(s)
- Christine C Cloak
- Department of Medicine, Neuroscience and MRI Research, University of Hawaii, 1356 Lusitana St #713, Honolulu, HI 96813, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Growth-associated protein-43 and ephrin B3 induction in the brain of adult SIV-infected rhesus macaques. J Neurovirol 2011; 17:455-68. [PMID: 21789725 DOI: 10.1007/s13365-011-0047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 06/06/2011] [Accepted: 07/12/2011] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms of neuronal regeneration and repair in the adult central nervous system is a vital area of research. Using a rhesus lentiviral encephalitis model, we sought to determine whether recovery of neuronal metabolism after injury coincides with the induction of two important markers of synaptodendritic repair: growth-associated protein-43 (GAP-43) and ephrin B3. We examined whether the improvement of neuronal metabolism with combined anti-retroviral therapy (cART) after simian immunodeficiency virus (SIV) infection in rhesus macaques involved induction of GAP-43, also known as neuromodulin, and ephrin B3, both implicated in axonal pathfinding during neurodevelopment and regulation of synapse formation, neuronal plasticity, and repair in adult brain. We utilized magnetic resonance spectroscopy to demonstrate improved neuronal metabolism in vivo in adult SIV-infected cART animals compared to untreated and uninfected controls. We then assessed levels of GAP-43, ephrin B3, and synaptophysin, a pre-synaptic marker, in three brain regions important for cognitive function, cortex, hippocampus, and putamen, by quantitative real-time RT-PCR and immunohistochemistry. Here we demonstrate that (1) GAP-43 mRNA and protein are induced with SIV infection, (2) GAP-43 protein is higher in the hippocampus outer molecular layer in SIV-infected animals that received cART compared to those that did not, and (3) activated microglia and infiltrating SIV-infected macrophages express abundant ephrin B3, an important axonal guidance molecule. We propose a model whereby SIV infection triggers events that lead to induction of GAP-43 and ephrin B3, and that short-term cART results in increased magnitude of repair mechanisms especially in the hippocampus, a region known for high levels of adult plasticity.
Collapse
|
12
|
Bucy DS, Brown MS, Bielefeldt-Ohmann H, Thompson J, Bachand AM, Morges M, Elder JH, Vandewoude S, Kraft SL. Early detection of neuropathophysiology using diffusion-weighted magnetic resonance imaging in asymptomatic cats with feline immunodeficiency viral infection. J Neurovirol 2011; 17:341-52. [PMID: 21786078 DOI: 10.1007/s13365-011-0040-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/20/2010] [Accepted: 05/10/2011] [Indexed: 01/20/2023]
Abstract
HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.
Collapse
Affiliation(s)
- Daniel S Bucy
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Neuronal damage induced by ongoing human immunodeficiency virus type 1 (HIV-1) infection was investigated in humanized NOD/scid-IL-2Rγ(c)(null) mice transplanted at birth with human CD34-positive hematopoietic stem cells. Mice infected at 5 months of age and followed for up to 15 weeks maintained significant plasma viral loads and showed reduced numbers of CD4(+) T-cells. Prospective serial proton magnetic resonance spectroscopy tests showed selective reductions in cortical N-acetyl aspartate in infected animals. Diffusion tensor imaging revealed structural changes in cortical gray matter. Postmortem immunofluorescence brain tissue examinations for neuronal and glial markers, captured by multispectral imaging microscopy and quantified by morphometric and fluorescence emission, showed regional reduction of neuronal soma and synaptic architectures. This was evidenced by loss of microtubule-associated protein 2, synaptophysin, and neurofilament antigens. This study is the first, to our knowledge, demonstrating lost neuronal integrity after HIV-1 infection in humanized mice. As such, the model permits studies of the relationships between ongoing viral replication and virus-associated neurodegeneration.
Collapse
|
14
|
Wu WE, Kirov II, Zhang K, Babb JS, Joo CG, Ratai EM, González RG, Gonen O. Cross-sectional and longitudinal reproducibility of rhesus macaque brain metabolites: a proton MR spectroscopy study at 3 T. Magn Reson Med 2011; 65:1522-31. [PMID: 21337426 DOI: 10.1002/mrm.22867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/09/2022]
Abstract
Non-human primates are often used as preclinical model systems for (mostly diffuse or multi-focal) neurological disorders and their experimental treatment. Due to cost considerations, such studies frequently utilize non-destructive imaging modalities, MRI and proton MR spectroscopy ((1) H MRS). Cost may explain why the inter- and intra-animal reproducibility of the (1) H MRS observed brain metabolites, are not reported. To this end, we performed test-retest three-dimensional brain (1) H MRS in five healthy rhesus macaques at 3 T. Spectra were acquired from 224 isotropic (0.5 cm)(3) = 125 μL voxels, over 28 cm(3) (∼ 35%) of the brain, then individually phased, frequency aligned and summed into a spectrum representative of the entire volume of interest. This dramatically increases the metabolites' signal-to-noise ratios, while maintaining the (narrow) voxel linewidth. The results show that the average N-acetylaspartate, creatine, choline, and myo-inositol concentrations in the macaque brain are: 7.7 ± 0.5, 7.0 ± 0.5, 1.2 ± 0.1 and 4.0 ± 0.6 mM/g wet weight (mean ± standard deviation). Their inter-animal coefficients of variation (CV) are 4%, 4%, 6%, and 15%; and the longitudinal (intra-animal) CVs are lower still: 4%, 5%, 5%, and 4%, much better than the 22%, 33%, 36%, and 45% intra-voxel CVs, demonstrating the advantage of the approach and its utility for preclinical studies of diffuse neurological diseases in rhesus macaques.
Collapse
Affiliation(s)
- William E Wu
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu S, Fleysher R, Fleysher L, Joo CG, Ratai EM, González RG, Gonen O. Brain metabolites B1-corrected proton T1 mapping in the rhesus macaque at 3 T. Magn Reson Med 2010; 63:865-71. [PMID: 20373387 DOI: 10.1002/mrm.22270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accuracy of metabolic quantification in MR spectroscopy is limited by the unknown radiofrequency field and T(1). To address both issues in proton ((1)H) MR spectroscopy, we obtained radiofrequency field-corrected T(1) maps of N-acetylaspartate, choline, and creatine in five healthy rhesus macaques at 3 T. For efficient use of the 4 hour experiment, we used a new three-point protocol that optimizes the precision of T(1) in three-dimensional (1)H-MR spectroscopy localization for extensive, approximately 30%, brain coverage at 0.6 x 0.6 x 0.5 cm(3) = 180-microL spatial resolution. The resulting mean T(1)s in 700 voxels were N-acetylaspartate = 1232 +/- 44, creatine = 1238 +/- 23 and choline = 1107 +/- 56 ms (mean +/- standard error of the mean). Their histograms from all 140 voxels in each animal were similar in position and shape, characterized by standard errors of the mean of the full width at half maximum divided by their means of better than 8%. Regional gray matter N-acetylaspartate, choline, and creatine T(1)s (1333 +/- 43, 1265 +/- 52, and 1131 +/- 28 ms) were 5-10% longer than white matter: 1188 +/- 34, 1201 +/- 24, and 1082 +/- 50 ms (statistically significant for the N-acetylaspartate only), all within 10% of the corresponding published values in the human brain.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu S, Gonen O, Fleysher R, Fleysher L, Babb JS, Soher BJ, Joo CG, Ratai EM, González RG. Metabolite proton T(2) mapping in the healthy rhesus macaque brain at 3 T. Magn Reson Med 2010; 62:1292-9. [PMID: 19780178 DOI: 10.1002/mrm.22117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure and metabolism of the rhesus macaque brain, an advanced model for neurologic diseases and their treatment response, is often studied noninvasively with MRI and (1)H-MR spectroscopy. Due to the shorter transverse relaxation time (T(2)) at the higher magnetic fields these studies favor, the echo times used in (1)H-MR spectroscopy subject the metabolites to unknown T(2) weighting, decreasing the accuracy of quantification which is key for inter- and intra-animal comparisons. To establish the "baseline" (healthy animal) T(2) values, we mapped them for the three main metabolites' T(2)s at 3 T in four healthy rhesus macaques and tested the hypotheses that their mean values are similar (i) among animals; and (ii) to analogs regions in the human brain. This was done with three-dimensional multivoxel (1)H-MR spectroscopy at (0.6 x 0.6 x 0.5 cm)(3) = 180 microL spatial resolution over a 4.2 x 3.0 x 2.0 = 25 cm(3) ( approximately 30%) of the macaque brain in a two-point protocol that optimizes T(2) precision per unit time. The estimated T(2)s in several gray and white matter regions are all within 10% of those reported in the human brain (mean +/- standard error of the mean): N-acetylaspartate = 316 +/- 7, creatine = 177 +/- 3, and choline = 264 +/- 9 ms, with no statistically significant gray versus white matter differences.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ratai EM, Pilkenton SJ, Greco JB, Lentz MR, Bombardier JP, Turk KW, He J, Joo CG, Lee V, Westmoreland S, Halpern E, Lackner AA, González RG. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain. BMC Neurosci 2009; 10:63. [PMID: 19545432 PMCID: PMC2711091 DOI: 10.1186/1471-2202-10-63] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo proton magnetic resonance spectroscopy (1H-MRS) studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. RESULTS Changes in the N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), creatine (Cr) and glutamine/glutamate (Glx) resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi). At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. CONCLUSION These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.
Collapse
Affiliation(s)
- Eva-Maria Ratai
- Neuroradiology Division, Department of Radiology and A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sailasuta N, Shriner K, Ross B. Evidence of reduced glutamate in the frontal lobe of HIV-seropositive patients. NMR IN BIOMEDICINE 2009; 22:326-331. [PMID: 18988228 DOI: 10.1002/nbm.1329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurological complications associated with the acquired immunodeficiency syndrome, in particular, HIV-associated dementia, continue to plague those infected. We report our finding that the concentration of brain Glu is reduced in the frontal white matter region in this condition. In addition, our data appear to absolve highly active retroviral therapy (HAART) from blame, as drug-naïve patients were equally affected. Our findings suggest that Glu neurotransmission is abnormal and may be a key target for early interventions to reduce the later incidence of neurocognitive impairment and dementia among HIV-seropositive patients.
Collapse
|
19
|
Lentz MR, Lee V, Westmoreland SV, Ratai EM, Halpern EF, González RG. Factor analysis reveals differences in brain metabolism in macaques with SIV/AIDS and those with SIV-induced encephalitis. NMR IN BIOMEDICINE 2008; 21:878-887. [PMID: 18574793 PMCID: PMC2562421 DOI: 10.1002/nbm.1276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MRS has often been used to study metabolic processes in the HIV-infected brain. However, it remains unclear how changes in individual metabolites are related to one another in this context of virus-induced central nervous system dysfunction. We used factor analysis (FA) to identify patterns of metabolite distributions from an MRS study of healthy macaques and those infected with simian immunodeficiency virus (SIV) which were moribund with AIDS. FA summarized the correlations from nine metabolites into three main factors. Factor 3 identified patterns that discern healthy animals from those with SIV/AIDS. Factor 2 was able to differentiate between animals that had encephalitis and those moribund with AIDS but lacking encephalitis. Specifically, Factor 2 was able to distinguish animals with moderate to severe encephalitis from animals with mild or no encephalitis as well as uninfected controls. FA not only confirmed the involvement of neuronal metabolites (N-acetylaspartate and glutamate) in disease severity, but also detected changes in creatine and myo-inositol that have not been observed in the SIV macaque model previously. These results suggest that the divergent pathways of N-acetylaspartate and creatine in this disease may enable the commonly reported ratio N-acetylaspartate/creatine to be a more sensitive marker of disease severity.
Collapse
Affiliation(s)
- Margaret R. Lentz
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Vallent Lee
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Eva-Maria Ratai
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Elkan F. Halpern
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - R. Gilberto González
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|