1
|
Chen KC, Siriwananrangsun P, Bae WC. Ultrashort-Echo-Time MRI of the Disco-Vertebral Junction: Modulation of Image Contrast via Echo Subtraction and Echo Times. SENSORS (BASEL, SWITZERLAND) 2024; 24:5842. [PMID: 39275753 PMCID: PMC11398228 DOI: 10.3390/s24175842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION The disco-vertebral junction (DVJ) of the lumbar spine contains thin structures with short T2 values, including the cartilaginous endplate (CEP) sandwiched between the bony vertebral endplate (VEP) and the nucleus pulposus (NP). We previously demonstrated that ultrashort-echo-time (UTE) MRI, compared to conventional MRI, is able to depict the tissues at the DVJ with improved contrast. In this study, we sought to further optimize UTE MRI by characterizing the contrast-to-noise ratio (CNR) of these tissues when either single echo or echo subtraction images are used and with varying echo times (TEs). METHODS In four cadaveric lumbar spines, we acquired 3D Cones (a UTE sequence) images at varying TEs from 0.032 ms to 16 ms. Additionally, spin echo T1- and T2-weighted images were acquired. The CNRs of CEP-NP and CEP-VEP were measured in all source images and 3D Cones echo subtraction images. RESULTS In the spin echo images, it was challenging to distinguish the CEP from the VEP, as both had low signal intensity. However, the 3D Cones source images at the shortest TE of 0.032 ms provided an excellent contrast between the CEP and the VEP. As the TE increased, the contrast decreased in the source images. In contrast, the 3D Cones echo subtraction images showed increasing CNR values as the second TE increased, reaching statistical significance when the second TE was above 10 ms (p < 0.05). CONCLUSIONS Our study highlights the feasibility of incorporating UTE MRI for the evaluation of the DVJ and its advantages over conventional spin echo sequences for improving the contrast between the CEP and adjacent tissues. Additionally, modulation of the contrast for the target tissues can be achieved using either source images or subtraction images, as well as by varying the echo times.
Collapse
Affiliation(s)
- Karen C Chen
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Palanan Siriwananrangsun
- Department of Radiology, Siriraj Hospital, Bangkok 10700, Thailand
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Won C Bae
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Li X, Kim J, Yang M, Ok AH, Zbýň Š, Link TM, Majumdar S, Ma CB, Spindler KP, Winalski CS. Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades. Skeletal Radiol 2024; 53:1761-1781. [PMID: 38980364 PMCID: PMC11303573 DOI: 10.1007/s00256-024-04734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.
Collapse
Affiliation(s)
- Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA.
| | - Jeehun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet H Ok
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Štefan Zbýň
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sharmilar Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, UCSF, San Francisco, CA, USA
| | - Kurt P Spindler
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Carl S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
He Z, Soullié P, Lefebvre P, Ambarki K, Felblinger J, Odille F. Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI. Sci Rep 2024; 14:16109. [PMID: 38997324 PMCID: PMC11245625 DOI: 10.1038/s41598-024-67014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France.
| | | | | | - Jacques Felblinger
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
4
|
Fischer A, Martirosian P, Machann J, Fränkle B, Schick F. Frequency shifts of free water signals from compact bone: Simulations and measurements using a UTE-FID sequence. Magn Reson Med 2024; 92:257-268. [PMID: 38282291 DOI: 10.1002/mrm.30027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Free water in cortical bone is either contained in nearly cylindrical structures (mainly Haversian canals oriented parallel to the bone axis) or in more spherically shaped pores (lacunae). Those cavities have been reported to crucially influence bone quality and mechanical stability. Susceptibility differences between bone and water can lead to water frequency shifts dependent on the geometric characteristics. The purpose of this study is to calculate and measure the frequency distribution of the water signal in MRI in dependence of the microscopic bone geometry. METHODS Finite element modeling and analytical approaches were performed to characterize the free water components of bone. The previously introduced UTE-FID technique providing spatially resolved FID-spectra was used to measure the frequency distribution pixel-wise for different orientations of the bone axis. RESULTS The frequency difference between free water in spherical pores and in canals parallel to B0 amounts up to approximately 100 Hz at 3T. Simulated resonance frequencies showed good agreement with the findings in UTE-FID spectra. The intensity ratio of the two signal components (parallel canals and spherical pores) was found to vary between periosteal and endosteal regions. CONCLUSION Spatially resolved UTE-FID examinations allow the determination of the frequency distribution of signals from free water in cortical bone. This frequency distribution indicates the composition of the signal contributions from nearly spherical cavities and cylindrical canals which allows for further characterization of bone structure and status.
Collapse
Affiliation(s)
- Anja Fischer
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz, Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz, Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Bernd Fränkle
- Karlsruhe Institute of Technology, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe, Germany
| | - Fritz Schick
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Achar S, Hwang D, Finkenstaedt T, Malis V, Bae WC. Deep-Learning-Aided Evaluation of Spondylolysis Imaged with Ultrashort Echo Time Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:8001. [PMID: 37766055 PMCID: PMC10538057 DOI: 10.3390/s23188001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.
Collapse
Affiliation(s)
- Suraj Achar
- Department of Family Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | - Dosik Hwang
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Tim Finkenstaedt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
| | - Vadim Malis
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Won C. Bae
- Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
7
|
Zhou Z, Li Q, Liao C, Cao X, Liang H, Chen Q, Pu R, Ye H, Tong Q, He H, Zhong J. Optimized three-dimensional ultrashort echo time: Magnetic resonance fingerprinting for myelin tissue fraction mapping. Hum Brain Mapp 2023; 44:2209-2223. [PMID: 36629336 PMCID: PMC10028641 DOI: 10.1002/hbm.26203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Li
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- MR Collaborations, Siemens Healthineers Ltd, Shanghai, China
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Run Pu
- Neusoft Medical Systems, Shanghai, China
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
8
|
Landini N, Orlandi M, Occhipinti M, Nardi C, Tofani L, Bellando-Randone S, Ciet P, Wielopolski P, Benkert T, Bruni C, Bertolo S, Moggi-Pignone A, Matucci-Cerinic M, Morana G, Colagrande S. Ultrashort Echo-Time Magnetic Resonance Imaging Sequence in the Assessment of Systemic Sclerosis-Interstitial Lung Disease. J Thorac Imaging 2023; 38:97-103. [PMID: 35482025 DOI: 10.1097/rti.0000000000000637] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To test respiratory-triggered ultrashort echo-time (UTE) Spiral VIBE-MRI sequence in systemic sclerosis-interstitial lung disease assessment compared with computed tomography (CT). MATERIAL AND METHODS Fifty four SSc patients underwent chest CT and UTE (1.5 T). Two radiologists, independently and in consensus, verified ILD presence/absence and performed a semiquantitative analysis (sQA) of ILD, ground-glass opacities (GGO), reticulations and honeycombing (HC) extents on both scans. A CT software quantitative texture analysis (QA) was also performed. For ILD detection, intra-/inter-reader agreements were computed with Cohen K coefficient. UTE sensitivity and specificity were assessed. For extent assessments, intra-/inter-reader agreements and UTE performance against CT were computed by Lin's concordance coefficient (CCC). RESULTS Three UTE were discarded for low quality, 51 subjects were included in the study. Of them, 42 QA segmentations were accepted. ILD was diagnosed in 39/51 CT. UTE intra-/inter-reader K in ILD diagnosis were 0.56 and 0.26. UTE showed 92.8% sensitivity and 75.0% specificity. ILD, GGO, and reticulation extents were 14.8%, 7.7%, and 7.1% on CT sQA and 13.0%, 11.2%, and 1.6% on CT QA. HC was <1% and not further considered. UTE intra-/inter-reader CCC were 0.92 and 0.89 for ILD extent and 0.84 and 0.79 for GGO extent. UTE RET extent intra-/inter-reader CCC were 0.22 and 0.18. UTE ILD and GGO extents CCC against CT sQA and QA were ≥0.93 and ≥0.88, respectively. RET extent CCC were 0.35 and 0.22 against sQA and QA, respectively. CONCLUSION UTE Spiral VIBE-MRI sequence is reliable in assessing ILD and GGO extents in systemic sclerosis-interstitial lung disease patients.
Collapse
Affiliation(s)
- Nicholas Landini
- Department of Radiology, Ca' Foncello General Hospital, Treviso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence & Radiodiagnostic Unit n. 2 AOUC
| | - Martina Orlandi
- Department of Experimental and Clinical Medicine, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit
| | - Mariaelena Occhipinti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence & Radiodiagnostic Unit n. 2 AOUC
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence & Radiodiagnostic Unit n. 2 AOUC
| | - Lorenzo Tofani
- Department of Experimental and Clinical Medicine, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit
| | - Pierluigi Ciet
- Department of Pediatric Pulmonology, Erasmus University Medical Centre, Sophia Children's Hospital
- Department of Radiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Piotr Wielopolski
- Department of Radiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Thomas Benkert
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit
| | - Silvia Bertolo
- Department of Radiology, Ca' Foncello General Hospital, Treviso
| | - Alberto Moggi-Pignone
- Department of Experimental and Clinical Medicine, University of Florence & Division of Internal Medicine Unit IV AOUC, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence and Division of Rheumatology AOUC & Scleroderma Unit
| | - Giovanni Morana
- Department of Radiology, Ca' Foncello General Hospital, Treviso
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Sciences, University of Florence & Radiodiagnostic Unit n. 2 AOUC
| |
Collapse
|
9
|
Fauveau V, Jacobi A, Bernheim A, Chung M, Benkert T, Fayad ZA, Feng L. Performance of spiral UTE-MRI of the lung in post-COVID patients. Magn Reson Imaging 2023; 96:135-143. [PMID: 36503014 PMCID: PMC9731813 DOI: 10.1016/j.mri.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Patients recovered from COVID-19 may develop long-COVID symptoms in the lung. For this patient population (post-COVID patients), they may benefit from longitudinal, radiation-free lung MRI exams for monitoring lung lesion development and progression. The purpose of this study was to investigate the performance of a spiral ultrashort echo time MRI sequence (Spiral-VIBE-UTE) in a cohort of post-COVID patients in comparison with CT and to compare image quality obtained using different spiral MRI acquisition protocols. Lung MRI was performed in 36 post-COVID patients with different acquisition protocols, including different spiral sampling reordering schemes (line in partition or partition in line) and different breath-hold positions (inspiration or expiration). Three experienced chest radiologists independently scored all the MR images for different pulmonary structures. Lung MR images from spiral acquisition protocol that received the highest image quality scores were also compared against corresponding CT images in 27 patients for evaluating diagnostic image quality and lesion identification. Spiral-VIBE-UTE MRI acquired with the line in partition reordering scheme in an inspiratory breath-holding position achieved the highest image quality scores (score range = 2.17-3.69) compared to others (score range = 1.7-3.29). Compared to corresponding chest CT images, three readers found that 81.5% (22 out of 27), 81.5% (22 out of 27) and 37% (10 out of 27) of the MR images were useful, respectively. Meanwhile, they all agreed that MRI could identify significant lesions in the lungs. The Spiral-VIBE-UTE sequence allows for fast imaging of the lung in a single breath hold. It could be a valuable tool for lung imaging without radiation and could provide great value for managing different lung diseases including assessment of post-COVID lesions.
Collapse
Affiliation(s)
- Valentin Fauveau
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adam Jacobi
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adam Bernheim
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Chung
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Feng
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
10
|
Metz C, Weng AM, Böckle D, Heidenreich JF, Slawig A, Benkert T, Kraus S, Köstler H, Veldhoen S. Comparison of diagnostic quality of 3D ultrashort-echo-time techniques for pulmonary magnetic resonance imaging in free-breathing. Acta Radiol 2023; 64:1851-1858. [PMID: 36718493 DOI: 10.1177/02841851231151366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ultrashort-echo-time (UTE) sequences have been developed to overcome technical limitations of pulmonary magnetic resonance imaging (MRI). Recently, it has been shown that UTE sequences with breath-hold allow rapid image acquisition with sufficient image quality. However, patients with impaired respiration require alternative acquisition strategies while breathing freely. PURPOSE To compare the diagnostic performance of free-breathing three-dimensional (3D)-UTE sequences with different trajectories based on pulmonary imaging of immunocompromised patients. MATERIAL AND METHODS In a prospective study setting, two 3D-UTE sequences performed in free-breathing and exploiting non-Cartesian trajectories-one using a stack-of-spirals and the other exploiting a radial trajectory-were acquired at 3 T in patients undergoing hematopoietic stem cell transplantation. Two radiologists assessed the images regarding presence of pleural effusions and pulmonary infiltrations. Computed tomography (CT) was used as reference. RESULTS A total of 28 datasets, each consisting of free-breathing 3D-UTE MRI with the two sequence techniques and a reference CT scan, were acquired in 20 patients. Interrater agreement was substantial for pulmonary infiltrations using both sequence techniques (κ = 0.77 - 0.78). Regarding pleural effusions, agreement was almost perfect in the stack-of-spirals (κ = 0.81) and moderate in the radial sequence (κ = 0.59). No significant differences in detectability of the assessed pulmonary pathologies were observed between both 3D-UTE sequence techniques (P > 0.05), and their level of agreement was substantial throughout (κ = 0.62-0.81). Both techniques provided high sensitivities and specificities (79%-100%) for the detection of pulmonary infiltrations and pleural effusions compared to reference CT. CONCLUSION The diagnostic performance of the assessed 3D-UTE MRI sequences was similar. Both sequences enable the detection of typical inflammatory lung pathologies.
Collapse
Affiliation(s)
- Corona Metz
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II (Hematology and Oncology), 27207University Hospital of Würzburg, Würzburg, Germany
| | - Julius Frederik Heidenreich
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Anne Slawig
- Department for Radiation Medicine, Section Medical Physics, University Clinic and Outpatient Clinic for Radiology, 14942University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thomas Benkert
- Application Development, 42406Siemens Healthcare GmbH, Erlangen, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II (Hematology and Oncology), 27207University Hospital of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Gast LV, Baier LM, Chaudry O, Meixner CR, Müller M, Engelke K, Uder M, Heiss R, Nagel AM. Assessing muscle-specific potassium concentrations in human lower leg using potassium magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4819. [PMID: 35994248 DOI: 10.1002/nbm.4819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Noninvasively assessing tissue potassium concentrations (TPCs) using potassium magnetic resonance imaging (39 K MRI) could give valuable information on physiological processes connected to various pathologies. However, because of inherently low 39 K MR image resolution and strong signal blurring, a reliable measurement of the TPC is challenging. The aim of this work was to investigate the feasibility of a muscle-specific TPC determination with a focus on the influence of a varying residual quadrupolar interaction in human lower leg muscles. The quantification accuracy of a muscle-specific TPC determination was first assessed using simulated 39 K MRI data. In vivo 39 K and corresponding sodium (23 Na) MRI data of healthy lower leg muscles (n = 14, seven females) were acquired on a 7-T MR system using a double-resonant 23 Na/39 K birdcage Tx/Rx RF coil. Additional 1 H MR images were acquired on a 3-T MR system and used for tissue segmentation. Quantification of TPC was performed after a region-based partial volume correction (PVC) using five external reference phantoms. Simulations not only underlined the importance of PVC for correctly assessing muscle-specific TPC values, but also revealed the strong impact of a varying residual quadrupolar interaction between different muscle regions on the measured TPC. Using 39 K T2 * decay curves, we found significantly higher residual quadrupolar interaction in tibialis anterior muscle (TA; ωq = 194 ± 28 Hz) compared with gastrocnemius muscle (medial/lateral head, GM/GL; ωq = 151 ± 25 Hz) and soleus muscle (SOL; ωq = 102 ± 32 Hz). If considered in the PVC, TPC in individual muscles was similar (TPC = 98 ± 11/96 ± 14/99 ± 8/100 ± 12 mM in GM/GL/SOL/TA). Comparison with tissue sodium concentrations suggested that residual quadrupolar interactions might also influence the 23 Na MRI signal of lower leg muscles. A TPC determination of individual lower leg muscles is feasible and can therefore be applied in future studies. Considering a varying residual quadrupolar interaction for PVC of 39 K MRI data is essential to reliably assess potassium concentrations in individual muscles.
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura-Marie Baier
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Chaudry
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian R Meixner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Engelke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Diagnostic value of water-fat-separated images and CT-like susceptibility-weighted images extracted from a single ultrashort echo time sequence for the evaluation of vertebral fractures and degenerative changes of the spine. Eur Radiol 2023; 33:1445-1455. [PMID: 35980430 PMCID: PMC9889472 DOI: 10.1007/s00330-022-09061-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/08/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To evaluate the performance of single-echo Dixon water-fat imaging and computed tomography (CT)-like imaging based on a single ultrashort echo time (sUTE) MR sequence for imaging of vertebral fractures as well as degenerative bone changes of the spine in comparison to conventional CT and MR sequences. METHODS Thirty patients with suspected acute vertebral fractures were examined using a 3-T MRI, including an sUTE sequence as well as short-tau inversion recovery (STIR) and T1-weighted sequences. During postprocessing, water-fat separation was performed by solving the smoothness-constrained inverse water-fat problem based on a single-complex UTE image. By removing the unwanted low-frequency phase terms, additional MR-based susceptibility-weighted-like (SW-like) images with CT-like contrast were created. Two radiologists evaluated semi-quantitative and quantitative features of fractures and degenerative changes independently and separately on CT and MR images. RESULTS In total, all 58 fractures were accurately detected of whom 24 were correctly classified as acute fractures with an edema detected on the water-fat-separated UTE images, using STIR and T1w sequences as standard of reference. For the morphological assessment of fractures and degenerative changes, the overall agreement between SW-like images and CT was substantial to excellent (e.g., Genant: κ 0.90 (95% confidence interval 0.54-1.00); AO/Magerl: κ 0.75 (95% confidence interval 0.43-1.00)). Overall inter-reader agreement for water-fat-separated UTE images and SW-like images was substantial to almost perfect. CONCLUSION Detection and assessment of vertebral fractures and degenerative bone changes of the spine were feasible and accurate using water-fat-separated images as well as SW-like images, both derived from the same sUTE-Dixon sequence. KEY POINTS • The detection of acute vertebral fractures was feasible using water-fat-separated images and CT-like images reconstructed from one sUTE sequence. • Assessment of the vertebral fractures using SW-like images with CT-like contrast was found to be comparable to conventional CT. • sUTE imaging of the spine can help reduce examination times and radiation exposure.
Collapse
|
13
|
Yang X, Liu M, Duan J, Sun H, An J, Benkert T, Dai H, Wang C. Three-dimensional ultrashort echo time magnetic resonance imaging in assessment of idiopathic pulmonary fibrosis, in comparison with high-resolution computed tomography. Quant Imaging Med Surg 2022; 12:4176-4189. [PMID: 35919053 PMCID: PMC9338383 DOI: 10.21037/qims-21-1133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
Background We aimed to evaluate the image quality, feasibility, and diagnostic performance of three-dimensional ultrashort echo time magnetic resonance imaging (3D UTE-MRI) to assess idiopathic pulmonary fibrosis (IPF) compared with high-resolution computed tomography (HRCT) and half-Fourier single-shot turbo spin-echo (HASTE) MRI. Methods A total of 36 patients with IPF (34 men; mean age: 62±8 years, age range: 43 to 78 years) were prospectively included and underwent HRCT and chest MRI on the same day. Chest MRI was performed with a free-breathing 3D spiral UTE pulse sequence and HASTE sequence on a 1.5 T MRI. Two radiologists independently evaluated the image quality of the HRCT, HASTE, and 3D UTE-MRI. They assessed the representative imaging features of IPF, including honeycombing, reticulation, traction bronchiectasis, and ground-glass opacities. Image quality of the 3D UTE-MRI, HASTE, and HRCT were assessed using a 5-point visual scoring method. Kappa and weighted kappa analysis were used to measure intra- and inter-observer and inter-method agreements. Sensitivity (SE), specificity (SP), and accuracy (AC) were used to assess the performance of 3D UTE-MRI for detecting image features of IPF and monitoring the extent of pulmonary fibrosis. Linear regressions and Bland-Altman plots were generated to assess the correlation and agreement between the assessment of the extent of pulmonary fibrosis made by the 2 observers. Results The image quality of HRCT was higher than that of HASTE and UTE-MRI (HRCT vs. UTE-MRI vs. HASTE: 4.9±0.3 vs. 4.1±0.7 vs. 3.0±0.3; P<0.001). Interobserver agreement of HRCT, HASTE, and 3D UTE-MRI when assessing pulmonary fibrosis was substantial and excellent (HRCT: 0.727≤ κ ≤1, P<0.001; HASTE: 0.654≤ κ ≤1, P<0.001; 3D UTE-MRI: 0.719≤ κ ≤0.824, P<0.001). In addition, reticulation (SE: 97.1%; SP: 100%; AC: 97.2%; κ =0.654), honeycombing (SE: 83.3%; SP: 100%; AC: 86.1%; κ =0.625) patterns, and traction bronchiectasis (SE: 94.1%; SP: 100%; AC: 94.4%, κ =0.640) were also well-visualized on 3D UTE-MRI, which was significantly superior to HASTE. Compared with HRCT, the sensitivity of 3D UTE-MRI to detect signs of pulmonary fibrosis (n=35) was 97.2%. The interobserver agreement in elevation of the extent of pulmonary fibrosis with HRCT and 3D UTE-MRI was R2=0.84 (P<0.001) and R2=0.84 (P<0.001), respectively. The extent of pulmonary fibrosis assessed with 3D UTE-MRI [median =9, interquartile range (IQR): 6.25 to 10.00] was lower than that from HRCT (median =12, IQR: 9.25 to 13.00; U=320.00, P<0.001); however, they had a positive correlation (R=0.72, P<0.001). Conclusions As a radiation-free non-contrast enhanced imaging method, although the image quality of 3D UTE-MRI is inferior to that of HRCT, it has high reproducibility to identify the imaging features of IPF and evaluate the extent of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jianghui Duan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Haishuang Sun
- National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Boss A, Heeb L, Vats D, Starsich FHL, Balfourier A, Herrmann IK, Gupta A. Assessment of iron nanoparticle distribution in mouse models using ultrashort-echo-time MRI. NMR IN BIOMEDICINE 2022; 35:e4690. [PMID: 34994020 PMCID: PMC9286043 DOI: 10.1002/nbm.4690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microscopic magnetic field inhomogeneities caused by iron deposition or tissue-air interfaces may result in rapid decay of transverse magnetization in MRI. The aim of this study is to detect and quantify the distribution of iron-based nanoparticles in mouse models by applying ultrashort-echo-time (UTE) sequences in tissues exhibiting extremely fast transverse relaxation. In 24 C57BL/6 mice (two controls), suspensions containing either non-oxidic Fe or AuFeOx nanoparticles were injected into the tail vein at two doses (200 μg and 600 μg per mouse). Mice underwent MRI using a UTE sequence at 4.7 T field strength with five different echo times between 100 μs and 5000 μs. Transverse relaxation times T2 * were computed for the lung, liver, and spleen by mono-exponential fitting. In UTE imaging, the MRI signal could reliably be detected even in liver parenchyma exhibiting the highest deposition of nanoparticles. In animals treated with Fe nanoparticles (600 μg per mouse), the relaxation time substantially decreased in the liver (3418 ± 1534 μs (control) versus 228 ± 67 μs), the spleen (2170 ± 728 μs versus 299 ± 97 μs), and the lungs (663 ± 101 μs versus 413 ± 99 μs). The change in transverse relaxation was dependent on the number and composition of the nanoparticles. By pixel-wise curve fitting, T2 * maps were calculated showing nanoparticle distribution. In conclusion, UTE sequences may be used to assess and quantify nanoparticle distribution in tissues exhibiting ultrafast signal decay in MRI.
Collapse
Affiliation(s)
- Andreas Boss
- Institute of Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Laura Heeb
- Division of Visceral SurgeryUniversity Hospital ZurichZurichSwitzerland
| | | | - Fabian H. L. Starsich
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Alice Balfourier
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Inge K. Herrmann
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Anurag Gupta
- Division of Visceral SurgeryUniversity Hospital ZurichZurichSwitzerland
| |
Collapse
|
15
|
Hoesl MAU, Schad LR, Rapacchi S. Volumetric 23Na Single and Triple-Quantum Imaging at 7T: 3D-CRISTINA. Z Med Phys 2022; 32:199-208. [PMID: 34711477 PMCID: PMC9948835 DOI: 10.1016/j.zemedi.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To measure multi-quantum coherence (MQC) 23Na signals for noninvasive cell physiological information in the whole-brain, the 2D-CRISTINA method was extended to 3D. This experimental study investigated the use and results of a new sequence, 3D-CRISTINA, on a phantom and healthy volunteers. METHODS The 3D Cartesian single and triple-quantum imaging of 23Na (3D-CRISTINA) was developed and implemented at 7T, favoring a non-selective volume excitation for increased signal-to-noise ratio (SNR) and lower energy deployment than its 2D counterpart. Two independent phase cycles were used in analogy to the 2D method. A comparison of 6-steps cycles and 12-steps cycles was performed. We used a phantom composed of different sodium and agarose concentrations, 50mM to 150mM Na+, and 0-5% agarose for sequence validation. Four healthy volunteers were scanned at 7T for whole brain MQC imaging. The sequence 3D-CRISTINA was developed and tested at 7T. RESULTS At 7T, the 3D-CRISTINA acquisition allowed to reduce the TR to 230ms from the previous 390ms for 2D, resulting in a total acquisition time of 53min for a 3D volume of 4×4×8mm resolution. The phase cycle evaluation showed that the 7T acquisition time could be reduced by 4-fold with moderate single and triple-quantum signals SNR loss. The healthy volunteers demonstrated clinical feasibility at 7T and showed a difference in the MQC signals ratio of White Matter (WM) and Grey Matter (GM). CONCLUSION Volumetric CRISTINA multi-quantum imaging allowed whole-brain coverage. The non-selective excitation enabled a faster scan due to a decrease in energy deposition which enabled a lower repetition time. Thus, it should be the preferred choice for future in vivo multi-quantum applications compared to the 2D method. A more extensive study is warranted to explore WM and GM MQC differences.
Collapse
Affiliation(s)
- Michaela A U Hoesl
- Computer Assisted Clinical Medicine, Heidelberg University, 68167 Mannheim, Germany.
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Heidelberg University, 68167 Mannheim, Germany
| | | |
Collapse
|
16
|
Kronthaler S, Diefenbach MN, Boehm C, Zamskiy M, Makowski MR, Baum T, Sollmann N, Karampinos DC. On quantification errors of R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction mapping in trabecularized bone marrow in the static dephasing regime. Magn Reson Med 2022; 88:1126-1139. [PMID: 35481686 DOI: 10.1002/mrm.29279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To study the effect of field inhomogeneity distributions in trabecularized bone regions on the gradient echo (GRE) signal with short TEs and to characterize quantification errors on R 2 * $$ {R}_2^{\ast } $$ and proton density fat fraction (PDFF) maps when using a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model at short TEs. METHODS Field distortions were simulated based on a trabecular bone micro CT dataset. Simulations were performed for different bone volume fractions (BV/TV) and for different bone-fat composition values. A multi-TE UTE acquisition was developed to acquire multiple UTEs with random order to minimize eddy currents. The acquisition was validated in phantoms and applied in vivo in a volunteer's ankle and knee. Chemical shift encoded MRI (CSE-MRI) based on a Cartesian multi-TE GRE scan was acquired in the spine of patients with metastatic bone disease. RESULTS Simulations showed that signal deviations from the exponential signal decay at short TEs were more prominent for a higher BV/TV. UTE multi-TE measurements reproduced in vivo the simulation-based predicted behavior. In regions with high BV/TV, the presence of field inhomogeneities induced an R 2 * $$ {R}_2^{\ast } $$ underestimation in trabecularized bone marrow when using CSE-MRI at 3T with a short TE. CONCLUSION R 2 * $$ {R}_2^{\ast } $$ can be underestimated when using short TEs (<2 ms at 3 T) and a water-fat model with an exponential R 2 * $$ {R}_2^{\ast } $$ decay model in multi-echo GRE acquisitions of trabecularized bone marrow.
Collapse
Affiliation(s)
- Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mark Zamskiy
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res 2022; 40:55-64. [PMID: 34314066 DOI: 10.1002/jor.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) reconstruction is successful at restoring stability to return ACL injured patients to high-demand work, sports, and recreational activities. The development of posttraumatic osteoarthritis (OA) in roughly half of patients just 10-15 years after ACLR highlight the need to improve clinical care pathways. Graft failure and reinjury rates, which further increase OA risk, also remain high for younger and more active patients. The biological components of joint recovery and graft incorporation, therefore, impact short- and long-term clinical outcomes. Biochemical and magnetic resonance imaging (MRI) data show substantial compromise of articular cartilage metabolism and matrix composition after ACL injury and reconstructive surgery suggesting a potential need for activity modulation in early recovery. Furthermore, joint recovery is variable with compositional MRI studies showing progressive cartilage degeneration 1 and 2 years after ACLR. Biopsy and MRI studies also show high variability in ACL graft characteristics within the 1st year after ACLR followed by continued graft maturation into the 2nd year and beyond. To improve the care of ACL injured patients, there is a critical need for clinical attention and scientific inquiry into timing the reintroduction of higher load activities in relationship to neuromuscular recovery, joint biology, and graft maturation. In addition to symptomatic and mechanical recovery, development and validation of biological markers for joint and cartilage homeostasis as well as ACL graft healing are needed for personalized decision making on rehabilitation needs, reduction of OA risk, and resumption of athletic, recreational, and vocational activities.
Collapse
Affiliation(s)
- Constance R Chu
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Veterans Affairs Palo Alto Healthcare System, Livermore, California, USA
| |
Collapse
|
18
|
Fischer A, Martirosian P, Benkert T, Schick F. Spatially resolved free-induction decay spectroscopy using a 3D ultra-short echo time multi-echo imaging sequence with systematic echo shifting and compensation of B 0 field drifts. Magn Reson Med 2021; 87:2099-2110. [PMID: 34866240 DOI: 10.1002/mrm.29115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE Biologically interesting signals can exhibit fast transverse relaxation and frequency shifts compared to free water. For spectral assignment, a ultra-short echo time (UTE) imaging sequence was modified to provide pixel-wise free-induction decay (FID) acquisition. METHODS The UTE-FID approach presented relies on a multi-echo 3D spiral UTE sequence with six echoes per radiofrequency (RF) excitation (TEmin 0.05 ms, echo spacing 3 ms). A complex pixel-wise raw data set for FID spectroscopy is obtained by several multi-echo UTE measurements with systematic shifting of the readout by 0.25 or 0.5 ms, until the time domain is filled for 18 or 45 ms. B0 drifts are compensated by mapping and according phase correction. Autoregressive extrapolation of the signal is performed before Gaussian filtering. This method was applied to a phantom containing collagen-water solutions of different concentrations. To calculate the collagen content, a 19-peak collagen model was extracted from a non-selective FID spectrum (50% collagen solution). Proton-density-collagen-fraction (PDCF) was calculated for 10 collagen solutions (2%-50%). Furthermore, an in vivo UTE-FID spectrum of adipose tissue was recorded. RESULTS UTE-FID signal patterns agreed well with the non-spatially selective pulse-acquire FID spectrum from a sphere filled with 50% collagen. Differentiation of collagen solution from distilled water in the PDCF map was possible from 4% collagen concentration for a UTE-FID sequence with 128 × 128 × 64 matrix (voxel size 1 × 1 × 2.85 mm3 ). The mean values of the PDCF correlate linearly with collagen concentration. CONCLUSION The presented UTE-FID approach allows pixel-wise raw data acquisition similar to non-spatially selective pulse-acquire spectroscopy. Spatially resolved applications for assessment of spectra of rapidly decaying signals seem feasible.
Collapse
Affiliation(s)
- Anja Fischer
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Petros Martirosian
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Benkert
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Gräfe D, Anders R, Prenzel F, Sorge I, Roth C, Benkert T, Hirsch FW. Pediatric MR lung imaging with 3D ultrashort-TE in free breathing: Are we past the conventional T2 sequence? Pediatr Pulmonol 2021; 56:3899-3907. [PMID: 34491627 DOI: 10.1002/ppul.25664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) of the lungs is challenging for several reasons, mainly due to the respiratory motion, low proton density, and rapid T2* decay. Recent MR sequences with ultrashort TE (UTE) coupled with respiratory compensation promise to overcome these obstacles. So far, there are very few studies on the relevance of these sequences in children. The aim of the study was to compare the diagnostic value of a respiratory-self-gated three-dimensional UTE sequence versus a conventional respiratory-triggered T2-weighted turbo spin echo (T2-TSE) sequence in a pediatric collective. STUDY DESIGN Seventy-one patients between 0 and 18 years of age, who were scheduled for a thoracic MRI based on diverse clinical indications, were examined on a 3T MRI system. The UTE and T2-TSE sequences were evaluated by two readers regarding quality features and visualization of eight common pathology patterns. RESULTS The image quality of both sequences was equally high, with UTE depicting pleural and central bronchi more clearly. In pathologies, UTE was superior to T2-TSE for so-called "MR-negative pathologies", significant for air trapping, and in tendency for bullae and cysts. In all remaining pathologies, T2-TSE proved to be at least equivalent to UTE. CONCLUSIONS At present, UTE cannot serve as a universal replacement for conventional T2-TSE for all pathologies. It yields, however, a substantial benefit in the context of hyperinflation, emphysema, cysts, or pathologies of the bronchial system.
Collapse
Affiliation(s)
- Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Rebecca Anders
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Freerk Prenzel
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
| | - Ina Sorge
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Christian Roth
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | | |
Collapse
|
20
|
Olthof SC, Reinert C, Nikolaou K, Pfannenberg C, Gatidis S, Benkert T, Küstner T, Krumm P. Detection of lung lesions in breath-hold VIBE and free-breathing Spiral VIBE MRI compared to CT. Insights Imaging 2021; 12:175. [PMID: 34817715 PMCID: PMC8613318 DOI: 10.1186/s13244-021-01124-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Detection of pulmonary nodules in MRI requires fast imaging strategies without respiratory motion impairment, such as single-breath-hold Cartesian VIBE. As patients with pulmonary diseases have limited breath-hold capacities, this study investigates the clinical feasibility of non-Cartesian Spiral VIBE under free-breathing compared to CT as the gold standard. METHODS Prospective analysis of 27 oncological patients examined in PET/CT and PET/MR. A novel motion-robust 3D ultrashort-echo-time (UTE) MR sequence was evaluated in comparison with CT and conventional breath-hold MR. CT scans were performed under breath-hold in end-expiratory and end-inspiratory position (CT ex, CT in). MR data was acquired with non-contrast-enhanced breath-hold Cartesian VIBE followed by a free-breathing 3D UTE Spiral VIBE. Impact of respiratory motion on pulmonary evaluation was investigated by two readers in Cartesian VIBE, followed by UTE Spiral VIBE and CT ex and the reference standard of CT in. Diagnostic accuracy was calculated, and visual image quality assessed. RESULTS Higher detection rate and sensitivity of pulmonary nodules in free-breathing UTE Spiral VIBE in comparison with breath-hold Cartesian VIBE were found for lesions > 10 mm (UTE Spiral VIBE/VIBE/CT ex): 93%/54%/100%; Lesions 5-10 mm: 67%/25%/ 92%; Lesions < 5 mm: 11%/11%/78%. Lobe-based analysis revealed sensitivities and specificities of 64%/96%/41% and 96%/93%/100% for UTE Spiral VIBE/VIBE/CT ex. CONCLUSION Free-breathing UTE Spiral VIBE indicates higher sensitivity for detection of pulmonary nodules than breath-hold Cartesian VIBE and is a promising but time-consuming approach. However, sensitivity and specificity of inspiratory CT remain superior in comparison and should be preferred for detection of pulmonary lesions.
Collapse
Affiliation(s)
- Susann-Cathrin Olthof
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| | - Christian Reinert
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| | - Christina Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| | - Thomas Benkert
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Thomas Küstner
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany.
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straβe 3, 72076, Tuebingen, Germany
| |
Collapse
|
21
|
Cha MJ, Ahn HS, Choi H, Park HJ, Benkert T, Pfeuffer J, Paek MY. Accelerated Stack-of-Spirals Free-Breathing Three-Dimensional Ultrashort Echo Time Lung Magnetic Resonance Imaging: A Feasibility Study in Patients With Breast Cancer. Front Oncol 2021; 11:746059. [PMID: 34692529 PMCID: PMC8529215 DOI: 10.3389/fonc.2021.746059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the clinical feasibility of accelerated free-breathing stack-of-spirals (spiral) three-dimensional (3D) ultrashort echo time (UTE) lung magnetic resonance imaging (MRI) using iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space (SPIRiT) algorithm in patients with breast cancer. Methods The institutional review board approved this prospective study and patients’ informed consents were obtained. Between June and August 2018, 29 female patients with breast cancer underwent 3-T MRI including accelerated free-breathing spiral 3D UTE (0.98-mm isotropic spatial resolution; echo time, 0.05 msec) of the lungs and thin-section chest computed tomography (CT). Two radiologists evaluated the image quality and pulmonary nodules on MRI were assessed and compared, CT as a reference. Results The pulmonary vessels and bronchi were visible consistently up to the sub-sub-segmental and sub-segmental branch levels, respectively, on accelerated spiral 3D UTE. The overall image quality was evaluated as good and excellent for 70.7% of accelerated spiral 3D UTE images (reviewer [R]1, 72.4% [21/29]; R2, 69.0% [20/29]) and acceptable for 20.7% (both R1 and R2, 20.7% [6/29]). Five patients on CT revealed 141 pulmonary metastatic nodules (5.3 ± 2.6 mm); the overall nodule detection rate of accelerated spiral 3D UTE was sensitivity of 90.8% (128/141), accuracy of 87.7%, and positive predictive value of 96.2%. In the Bland-Altman plot analysis comparing nodule size between CT and MRI, 132/141 nodules (93.6%) were inside the limits of agreement. Conclusion Accelerated free-breathing spiral 3D UTE using the SPIRiT algorithm could be a potential alternative to CT for oncology patients.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hye Shin Ahn
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hyewon Choi
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hyun Jeong Park
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
22
|
Metz C, Böckle D, Heidenreich JF, Weng AM, Benkert T, Grigoleit GU, Bley T, Köstler H, Veldhoen S. Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. ROFO-FORTSCHR RONTG 2021; 194:39-48. [PMID: 34649285 DOI: 10.1055/a-1535-2341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the feasibility of non-contrast-enhanced three-dimensional ultrashort echo time (3D-UTE) MRI for pulmonary imaging in immunocompromised patients during hematopoietic stem cell transplantation (HSCT). METHODS MRI was performed using a stack-of-spirals 3D-UTE sequence (slice thickness: 2.34mm; matrix: 256 × 256; acquisition time: 12.7-17.6 seconds) enabling imaging of the entire thorax within single breath-holds. Patients underwent MRI before HSCT initiation, in the case of periprocedural pneumonia, before discharge, and in the case of re-hospitalization. Two readers separately assessed the images regarding presence of pleural effusions, ground glass opacities (GGO), and consolidations on a per lung basis. A T2-weighted (T2w) multi-shot Turbo Spin Echo sequence (BLADE) was acquired in coronal orientation during breath-hold (slice thickness: 6.00mm; matrix: 320 × 320; acquisition time: 3.1-5.5 min) and read on a per lesion basis. Low-dose CT scans in inspiration were used as reference and were read on a per lung basis. Only scans performed within a maximum of three days were included in the inter-method analyses. Interrater agreement, sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of 3D-UTE MRI were calculated. RESULTS 67 MRI scans of 28 patients were acquired. A reference CT examination was available for 33 scans of 23 patients. 3D-UTE MRI showed high sensitivity and specificity regarding pleural effusions (n = 6; sensitivity, 92 %; specificity, 100 %) and consolidations (n = 22; sensitivity 98 %, specificity, 86 %). Diagnostic performance was lower for GGO (n = 9; sensitivity, 63 %; specificity, 84 %). Accuracy rates were high (pleural effusions, 98 %; GGO, 79 %; consolidations 94 %). Interrater agreement was substantial for consolidations and pleural effusions (κ = 0.69-0.82) and moderate for GGO (κ = 0.54). Compared to T2w imaging, 3D-UTE MRI depicted the assessed pathologies with at least equivalent quality and was rated superior regarding consolidations and GGO in ~50 %. CONCLUSION Non-contrast 3D-UTE MRI enables radiation-free assessment of typical pulmonary complications during HSCT procedure within a single breath-hold. Yet, CT was found to be superior regarding the identification of pure GGO changes. KEY POINTS · 3D-UTE MRI of the thorax can be acquired within a single breath-hold.. · 3D-UTE MRI provides diagnostic imaging of pulmonary consolidations and pleural effusions.. · 3D-UTE sequences improve detection rates of ground glass opacities on pulmonary MRI.. · 3D-UTE MRI depicts pulmonary pathologies at least equivalent to T2-weighted Blade sequence.. CITATION FORMAT · Metz C, Böckle D, Heidenreich JF et al. Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. Fortschr Röntgenstr 2021; DOI: 10.1055/a-1535-2341.
Collapse
Affiliation(s)
- Corona Metz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II (Hematology and Oncology), University Hospital of Würzburg, Germany
| | | | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Thomas Benkert
- Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II (Hematology and Oncology), University Hospital of Würzburg, Germany
| | - Thorsten Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| |
Collapse
|
23
|
Chu CR, Williams AA, Erhart-Hledik JC, Titchenal MR, Qian Y, Andriacchi TP. Visualizing pre-osteoarthritis: Integrating MRI UTE-T2* with mechanics and biology to combat osteoarthritis-The 2019 Elizabeth Winston Lanier Kappa Delta Award. J Orthop Res 2021; 39:1585-1595. [PMID: 33788306 PMCID: PMC11472663 DOI: 10.1002/jor.25045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability for which disease-modifying treatments remain lacking. This is because the symptoms and radiographic changes of OA occur after the onset of likely irreversible changes. Defining and treating earlier disease states are therefore needed to delay or to halt OA progression. Taking this concept a step further, studying OA pathogenesis before disease onset by characterizing potentially reversible markers of increased OA risk to identify a state of "pre-osteoarthritis (pre-OA)" shifts the paradigm towards OA prevention. The purpose of this review is to summarize the 42 studies comprising the 2019 Kappa Delta Elizabeth Lanier Award where conceptualization of a systems-based definition for "pre-osteoarthritis (pre-OA)" was followed by demonstration of potentially reversible markers of heightened OA risk in patients after anterior cruciate ligament (ACL) injury and reconstruction. In the process, these efforts contributed a new magnetic resonance imaging method of ultrashort echo time (UTE) enhanced T2* mapping to visualize joint tissue damage before the development of irreversible changes. The studies presented here support a transformative approach to OA that accounts for interactions between mechanical, biological, and structural markers of OA risk to develop and evaluate new treatment strategies that can delay or prevent the onset of clinical disease. This body of work was inspired by and performed for patients. Shifting the paradigm from attempting to modify symptomatic radiographic OA towards monitoring and reversing markers of "pre-OA" opens the door for transforming the clinical approach to OA from palliation to prevention.
Collapse
Affiliation(s)
- Constance R. Chu
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Surgery, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | - Ashley A. Williams
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Surgery, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | - Jennifer C. Erhart-Hledik
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Surgery, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | | | - Yongxian Qian
- Center for Biomedical Imaging, New York University, New York, New York, USA
| | - Thomas P. Andriacchi
- Department Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Schwaiger BJ, Schneider C, Kronthaler S, Gassert FT, Böhm C, Pfeiffer D, Baum T, Kirschke JS, Karampinos DC, Makowski MR, Woertler K, Wurm M, Gersing AS. CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol 2021; 31:4680-4689. [PMID: 33443599 PMCID: PMC8213670 DOI: 10.1007/s00330-020-07597-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Objectives To evaluate the performance of 3D T1w spoiled gradient-echo (T1SGRE) and ultra-short echo time (UTE) MRI sequences for the detection and assessment of vertebral fractures and degenerative bone changes compared with conventional CT. Methods Fractures (n = 44) and degenerative changes (n = 60 spinal segments) were evaluated in 30 patients (65 ± 14 years, 18 women) on CT and 3-T MRI, including CT-like images derived from T1SGRE and UTE. Two radiologists evaluated morphological features on both modalities: Genant and AO/Magerl classifications, anterior/posterior vertebral height, fracture age; disc height, neuroforaminal diameter, grades of spondylolisthesis, osteophytes, sclerosis, and facet joint degeneration. Diagnostic accuracy and agreement between MRI and CT and between radiologists were assessed using crosstabs, weighted κ, and intraclass correlation coefficients. Image quality was graded on a Likert scale. Results For fracture detection, sensitivity, specificity, and accuracy were 0.95, 0.98, and 0.97 for T1SGRE and 0.91, 0.96, and 0.95 for UTE. Agreement between T1SGRE and CT was substantial to excellent (e.g., Genant: κ, 0.92 [95% confidence interval, 0.83–1.00]; AO/Magerl: κ, 0.90 [0.76–1.00]; osteophytes: κ, 0.91 [0.82–1.00]; sclerosis: κ, 0.68 [0.48–0.88]; spondylolisthesis: ICCs, 0.99 [0.99–1.00]). Agreement between UTE and CT was lower, ranging from moderate (e.g., sclerosis: κ, 0.43 [0.26–0.60]) to excellent (spondylolisthesis: ICC, 0.99 [0.99–1.00]). Inter-reader agreement was substantial to excellent (0.52–1.00), respectively, for all parameters. Median image quality of T1SGRE was rated significantly higher than that of UTE (p < 0.001). Conclusions Morphologic assessment of bone pathologies of the spine using MRI was feasible and comparable to CT, with T1SGRE being more robust than UTE. Key Points • Vertebral fractures and degenerative bone changes can be assessed on CT-like MR images, with 3D T1w spoiled gradient-echo–based images showing a high diagnostic accuracy and agreement with CT. • This could enable MRI to precisely assess bone morphology, and 3D T1SGRE MRI sequences may substitute additional spinal CT examinations in the future. • Image quality and robustness of T1SGRE sequences are higher than those of UTE MRI for the assessment of bone structures.
Collapse
Affiliation(s)
- Benedikt J Schwaiger
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Charlotte Schneider
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T Gassert
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Woertler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Wurm
- Department of Trauma Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
25
|
Handsfield GG, Greiner J, Madl J, Rog-Zielinska EA, Hollville E, Vanwanseele B, Shim V. Achilles Subtendon Structure and Behavior as Evidenced From Tendon Imaging and Computational Modeling. Front Sports Act Living 2020; 2:70. [PMID: 33345061 PMCID: PMC7739789 DOI: 10.3389/fspor.2020.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon is the largest and strongest tendon in the human body and is essential for storing elastic energy and positioning the foot for walking and running. Recent research into Achilles tendon anatomy and mechanics has revealed the importance of the Achilles subtendons, which are unique and semi-independent structures arising from each of the three muscular heads of the triceps surae. Of particular importance is the ability for the subtendons to slide, the role that this has in healthy tendons, and the alteration of this property in aging and disease. In this work, we discuss technical approaches that have led to the current understanding of Achilles subtendons, particularly imaging and computational modeling. We introduce a 3D geometrical model of the Achilles subtendons, built from dual-echo UTE MRI. We revisit and discuss computational models of Achilles subtendon twisting suggesting that optimal twist reduces both rupture loads and stress concentrations by distributing stresses. Second harmonic generation imaging shows collagenous subtendons within a rabbit Achilles tendon; a clear absence of signal between the subtendons indicates an inter-subtendon region on the order of 30 μm in our rabbit animal model. Entry of wheat germ agglutinin in both the inter-fascicular and the inter-subtendon regions suggests a glycoprotein-containing inter-subtendon matrix which may facilitate low friction sliding of the subtendons in healthy mammals. Lastly, we present a new computational model coupled with human exercise trials to demonstrate the magnitude of Achilles subtendon sliding which occurs during rehabilitation exercises for Achilles tendinopathy, and shows that specific exercise can maximize subtendon sliding and interface strains, without maximizing subtendon strains. This work demonstrates the value of imaging and computational modeling for probing tendon structure-function relationships and may serve to inform and develop treatments for Achilles tendinopathy.
Collapse
Affiliation(s)
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enzo Hollville
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Kronthaler S, Rahmer J, Börnert P, Makowski MR, Schwaiger BJ, Gersing AS, Karampinos DC. Trajectory correction based on the gradient impulse response function improves high-resolution UTE imaging of the musculoskeletal system. Magn Reson Med 2020; 85:2001-2015. [PMID: 33251655 DOI: 10.1002/mrm.28566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE UTE sequences typically acquire data during the ramping up of the gradient fields, which makes UTE imaging prone to eddy current and system delay effects. The purpose of this work was to use a simple gradient impulse response function (GIRF) measurement to estimate the real readout gradient waveform and to demonstrate that precise knowledge of the gradient waveform is important in the context of high-resolution UTE musculoskeletal imaging. METHODS The GIRF was measured using the standard hardware of a 3 Tesla scanner and applied on 3D radial UTE data (TE: 0.14 ms). Experiments were performed on a phantom, in vivo on a healthy knee, and in vivo on patients with spine fractures. UTE images were reconstructed twice, first using the GIRF-corrected gradient waveforms and second using nominal-corrected waveforms, correcting for the low-pass filter characteristic of the gradient chain. RESULTS Images reconstructed with the nominal-corrected gradient waveforms exhibited blurring and showed edge artifacts. The blurring and the edge artifacts were reduced when the GIRF-corrected gradient waveforms were used, as shown in single-UTE phantom scans and in vivo dual-UTE gradient-echo scans in the knee. Further, the importance of the GIRF-based correction was indicated in UTE images of the lumbar spine, where thin bone structures disappeared when the nominal correction was employed. CONCLUSION The presented GIRF-based trajectory correction method using standard scanner hardware can improve the quality of high-resolution UTE musculoskeletal imaging.
Collapse
Affiliation(s)
- Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Benedikt J Schwaiger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Benlala I, Albat A, Blanchard E, Macey J, Raherison C, Benkert T, Berger P, Laurent F, Dournes G. Quantification of MRI T2 Interstitial Lung Disease Signal-Intensity Volume in Idiopathic Pulmonary Fibrosis: A Pilot Study. J Magn Reson Imaging 2020; 53:1500-1507. [PMID: 33241628 DOI: 10.1002/jmri.27454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Imaging has played a pivotal role in the diagnosis of idiopathic pulmonary fibrosis (IPF). Recent reports suggest that T2 -weighted MRI could be sensitive to monitor signal-intensity modifications of the lung parenchyma, which may relate to the disease activity in IPF. However, there is a lack of automated tools to reproducibly quantify the extent of the disease, especially using MRI. PURPOSE To assess the feasibility of T2 interstitial lung disease signal-intensity volume quantification using a semiautomated method in IPF. STUDY TYPE Single center, retrospective. POPULATION A total of 21 adult IPF patients and four control subjects without lung interstitial abnormalities. FIELD STRENGTH/SEQUENCE Both free-breathing ultrashort echo time (TE) lung MRI using the spiral volume interpolated breath hold examination (VIBE) sequence (3D-UTE) and T2 -BLADE at 1.5T. ASSESSMENT Semiautomated segmentation of the lung volume was done using 3D-UTE and registered to the T2 -BLADE images. The interstitial lung disease signal-intensity volume (ISIV) was quantified using a Gaussian mixture model clustering and then normalized to the lung volume to calculate T2 -ISIV. The composite physiological index (CPI) and forced vital capacity (FVC) were measured as known biomarkers of IPF severity. Measurements were performed independently by three readers and averaged. The reproducibility between measurements was also assessed. STATISTICAL TESTS Reproducibility was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Correlations were assessed using Spearman test. Comparison of median was assessed using the Mann-Whitney test. RESULTS The reproducibility of T2 -ISIV was high, with ICCs = 0.99. Using Bland-Altman analysis, the mean differences were found between -0.8 to 0.1. T2 -ISIV significantly correlated with CPI and FVC (rho = 0.48 and 0.50, respectively; P < 0.05). T2 -ISIV was significantly higher in IPF than in controls (P < 0.05). DATA CONCLUSION T2 -ISIV appears to be able to reproducibly assess the volumetric extent of abnormal interstitial lung signal-intensity modifications in patients with IPF, and correlate with disease severity. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Ilyes Benlala
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, INSERM U1045, CIC 1401, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Agnes Albat
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Elodie Blanchard
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Julie Macey
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, INSERM U1045, CIC 1401, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Chantal Raherison
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France.,Bordeaux Population Health Research Center, Univ. Bordeaux, INSERM, Team EPICENE, UMR 1219, Bordeaux, France
| | - Thomas Benkert
- Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, INSERM U1045, CIC 1401, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - François Laurent
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, INSERM U1045, CIC 1401, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| | - Gaël Dournes
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, INSERM U1045, CIC 1401, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, Pessac, France
| |
Collapse
|
28
|
Utzschneider M, Müller M, Gast LV, Lachner S, Behl NGR, Maier A, Uder M, Nagel AM. Towards accelerated quantitative sodium MRI at 7 T in the skeletal muscle: Comparison of anisotropic acquisition- and compressed sensing techniques. Magn Reson Imaging 2020; 75:72-88. [PMID: 32979516 DOI: 10.1016/j.mri.2020.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare three anisotropic acquisition schemes and three compressed sensing (CS) approaches for accelerated tissue sodium concentration (TSC) quantification using 23Na MRI at 7 T. MATERIALS AND METHODS Three anisotropic 3D-radial acquisition sequences were evaluated using simulations, phantom- and in vivo TSC measurements: An anisotropic density-adapted 3D-radial sequence (3DPR-C), a 3D acquisition-weighted density-adapted stack-of-stars sampling scheme (SOS) and a SOS approach with golden-ratio rotation (SOS-GR). Eight healthy volunteers were examined at a 7 Tesla MRI system. TSC measurements of the calf were conducted with a nominal spatial resolution of Δx = (3.0 × 3.0 × 15.0) mm3 and a field of view of (156.0 × 156.0 × 240.0) mm3 for multiple undersampling factors (USF). Three CS reconstructions were evaluated: Total variation CS (TV-CS), 3D dictionary-learning compressed sensing (3D-DLCS) and TV-CS with a block matching prior (TV-BL-CS). Results of the simulations and measurements were compared to a simulated ground truth (GT) or a fully sampled reference measurement (FS), respectively. The deviation of the mean TSC evaluated in multiple ROI (mEGT/FS) and the normalized root-mean-squared error (NRMSE) for simulations were evaluated for CS and NUFFT reconstructions. RESULTS In simulations, the SOS-GR yielded the lowest NRMSE and mEGT (< 4%) with NUFFT for an acquisition time (TA) of less than 2 min. CS further improved the results. In simulations and measurements, the best TSC quantification results were obtained with 3D-DLCS and SOS-GR (lowest NRMSE, mEGT < 2.6% in simulations, mEGT < 10.7% for phantom measurements and mEFS < 6% in vivo) with an USF = 4.1 (TA < 2 min). TV-CS showed no or only slight improvements to NUFFT. The results of TV-BL-CS were similar to 3D-DLCS. DISCUSSION The TA for TSC measurements could be reduced to less than 2 min by using adapted sequences such as SOS-GR and CS reconstruction approaches such as 3D-DLCS or TV-BL-CS, while the quantitative accuracy stays comparable to a fully sampled NUFFT reconstruction (approx. 8 min TA). In future, the lower TA could improve clinical applicability of TSC measurements.
Collapse
Affiliation(s)
- Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas G R Behl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
29
|
Gast LV, Völker S, Utzschneider M, Linz P, Wilferth T, Müller M, Kopp C, Hensel B, Uder M, Nagel AM. Combined imaging of potassium and sodium in human skeletal muscle tissue at 7 T. Magn Reson Med 2020; 85:239-253. [PMID: 32869364 DOI: 10.1002/mrm.28428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To validate the feasibility of quantitative combined potassium (39 K) and sodium (23 Na) MRI in human calf muscle tissue, as well as to evaluate the reproducibility of the apparent tissue potassium concentration (aTPC) and apparent tissue sodium concentration (aTSC) determination in healthy muscle tissue. METHODS Quantitative 23 Na and 39 K MRI acquisition protocols were implemented on a 7 T MR system. A double-resonant 23 Na/39 K birdcage RF coil was used. Measurements of human lower leg were performed in a total acquisition time of TANa = 10:54 min/TAK = 8:06 min and using a nominal spatial resolution of 2.5 × 2.5 × 15 mm3 /7.5 × 7.5 × 30 mm3 for 23 Na/39 K MRI. Two aTSC and aTPC examinations in muscle tissue were performed during the same day on 10 healthy subjects. RESULTS The proposed acquisition and postprocessing workflow for 23 Na and 39 K MRI data sets provided reproducible aTSC and aTPC measurements. In human calf muscle tissue, the coefficient of variation between scan and re-scan was 5.7% for both aTSC and aTPC determination. Overall, mean values of aTSC = (17 ± 1) mM and aTPC = (85 ± 5) mM were measured. Moreover, for 39 K in calf muscle tissue, T 2 ∗ components of T 2 f ∗ = (1.2 ± 0.2) ms and T 2 s ∗ = (7.9 ± 0.9) ms, as well as a residual quadrupolar interaction of ω q ¯ = (143 ± 17) Hz, were determined. The fraction of the fast component was f = (58 ± 4)%. CONCLUSION Using the presented measurement and postprocessing approach, a reproducible aTSC and aTPC determination using 23 Na and 39 K MRI at 7 T in human skeletal muscle tissue is feasible in clinically acceptable acquisition durations.
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Völker
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
31
|
Soullié P, Missoffe A, Ambarki K, Felblinger J, Odille F. MR electrical properties imaging using a generalized image-based method. Magn Reson Med 2020; 85:762-776. [PMID: 32783236 DOI: 10.1002/mrm.28458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a fast and easy-to-use electrical properties tomography (EPT) method based on a single MR scan, avoiding both the need of a B1 -map and transceive phase assumption, and that is robust against noise. THEORY Derived from Maxwell's equations, conductivity, and permittivity are reconstructed from a new partial differential equation involving the product of the RF fields and its derivatives. This also allows us to clarify and revisit the relevance of common assumptions of MREPT. METHODS Our new governing equation is solved using a 3D finite-difference scheme and compared to previous frameworks. The benefits of our method over selected existing MREPT methods are demonstrated for different simulation models, as well as for both an inhomogeneous agar phantom gel and in vivo brain data at 3T. RESULTS Simulation and experimental results are illustrated to highlight the merits of the proposed method over existing methods. We show the validity of our algorithm in versatile configurations, with many transition regions notably. Complex admittivity maps are also provided as a complementary MR contrast. CONCLUSION Because it avoids time-consuming RF field mapping and generalizes the use of standard MR image for electrical properties reconstruction, this contribution is promising as a new step forward for clinical applications.
Collapse
Affiliation(s)
- Paul Soullié
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | | | | | - Jacques Felblinger
- IADI, INSERM U1254, Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU de Nancy, Nancy, France
| | - Freddy Odille
- IADI, INSERM U1254, Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU de Nancy, Nancy, France
| |
Collapse
|
32
|
van den Ende RPJ, Ercan E, Keesman R, Kerkhof EM, Marijnen CAM, van der Heide UA. Applicator visualization using ultrashort echo time MRI for high-dose-rate endorectal brachytherapy. Brachytherapy 2020; 19:618-623. [PMID: 32747144 DOI: 10.1016/j.brachy.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The individual channels in an endorectal applicator for high-dose-rate endorectal brachytherapy are not visible on standard MRI sequences. The aim of this study was to test whether an ultrashort echo time (UTE) MRI sequence could be used to visualize the individual channels to enable MR-only treatment planning for rectal cancer. METHODS AND MATERIALS We used a radial three-dimensional (3D) UTE pulse sequence and acquired images of phantoms and two patients with rectal cancer. We rigidly registered a UTE image and CT scan of an applicator phantom, based on the outline of the applicator. One observer compared channel positions on the UTE image and CT scan in five slices spaced 25 mm apart. To quantify geometric distortions, we scanned a commercial 3D geometric quality assurance phantom and calculated the difference between detected marker positions on the UTE image and corresponding marker positions on two 3D T1-weighted images with opposing readout directions. RESULTS On the UTE images, there is sufficient contrast to discern the individual channels. The difference in channel positions on the UTE image compared with the CT was on average -0.1 ± 0.1 mm (left-right) and 0.1 ± 0.3 mm (anteroposterior). After rigid registration to the 3D T1-weighted sequences, the residual 95th percentile of the geometric distortion inside a 550-mm-diameter sphere was 1.0 mm (left-right), 0.9 mm (anteroposterior), and 0.9 mm (craniocaudal). CONCLUSIONS With a UTE sequence, the endorectal applicator and individual channels can be adequately visualized in both phantom and patients. The geometrical fidelity is within an acceptable range.
Collapse
Affiliation(s)
- Roy P J van den Ende
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Ece Ercan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick Keesman
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ellen M Kerkhof
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Corrie A M Marijnen
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Papp D, Breda S, Oei E, Poot D, Kotek G, Hernandez-Tamames J. Fractional order vs. exponential fitting in UTE MR imaging of the patellar tendon. Magn Reson Imaging 2020; 70:91-97. [DOI: 10.1016/j.mri.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/09/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023]
|
34
|
Heidenreich JF, Veldhoen S, Metz C, Mendes Pereira L, Benkert T, Pfeuffer J, Bley TA, Köstler H, Weng AM. Functional MRI of the Lungs Using Single Breath-Hold and Self-Navigated Ultrashort Echo Time Sequences. Radiol Cardiothorac Imaging 2020; 2:e190162. [PMID: 33778581 DOI: 10.1148/ryct.2020190162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 01/29/2023]
Abstract
Purpose To evaluate three-dimensional (3D) ultrashort echo time (UTE) MRI regarding image quality and suitability for functional image analysis using gradient-echo sequences in breath-hold and with self-navigation. Materials and Methods In this prospective exploratory study, 10 patients (mean age, 21 years; age range, 5-58 years; five men) and 10 healthy control participants (mean age, 25 years; age range, 10-39 years; five men) underwent 3D UTE MRI at 3.0 T. Imaging was performed with a prototypical stack-of-spirals 3D UTE sequence during single breath holds (echo time [TE], 0.05 msec) and with a self-navigated "Koosh ball" 3D UTE sequence at free breathing (TE, 0.03 msec). Image quality was rated on a four-point Likert scale. Edge sharpness was calculated. After semiautomated segmentation, fractional ventilation was calculated from MRI signal intensity (FVSI) and volume change (FVVol). The air volume fraction (AVF) was estimated from relative signal intensity (aortic blood signal intensity was used as a reference). Means were compared between techniques and participants. The Wilcoxon signed rank test and Spearman rank correlation were used for statistical analyses. Results Image quality ratings were equal for both techniques. However, stack-of-spirals breath-hold UTE was more susceptible to motion and aliasing artifacts. Mean FVSI was higher during breath hold than at free breathing (mean ± standard deviation in milliliters of gas per milliliters of parenchyma, 0.17 mL/mL ± 0.06 [minimum, 0.07; maximum, 0.34] vs 0.11 mL/mL ± 0.03 [minimum, 0.06; maximum, 0.17], P = .016). Mean FVSI and FVVol were in good agreement (mean difference: at breath hold, -0.008 [95% confidence interval {CI}: 0.007, -0.024]; ρ = 0.97 vs free breathing, -0.004 [95% CI: 0.007, -0.016]; ρ = 0.91). AVF correlated between both techniques (ρ = 0.94). Conclusion Breath-hold and self-navigated 3D UTE sequences yield proton density-weighted images of the lungs that are similar in quality, and both techniques are suitable for functional image analysis.Supplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Corona Metz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Lenon Mendes Pereira
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Thomas Benkert
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Josef Pfeuffer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| |
Collapse
|
35
|
Li S, Huang X, Li G, Zhang Y, Li Z, Liu L, Gao S. Exponential subtraction in 3D ultrashort echo time imaging to visualize short T2 tissues in tibia. Acta Radiol 2020; 61:760-767. [PMID: 31569946 DOI: 10.1177/0284185119877797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Short T2 tissues can be directly visualized by dual-echo ultrashort echo time imaging with weighted subtraction. As a type of post-processing method, exponential subtraction of ultrashort echo time images with an optimal exponential factor is expected to provide improved positive short T2 contrast. PURPOSE To test the feasibility and effectiveness of exponential subtraction in three-dimensional ultrashort echo time imaging and to determine the optimal exponential factor. MATERIAL AND METHODS A dual-echo three-dimensional ultrashort echo time sequence was implemented on a 3-T MRI system. Exponential subtraction was performed on dual three-dimensional ultrashort echo time images of the tibia of seven healthy volunteers with exponential factors in the range of 1.00-3.00 in increments of 0.01. The regions of interest, including cortical bone, marrow, and muscle, were depicted on subtracted images of different exponential factors. Contrast-to-noise ratio values were calculated from these regions of interest and then used to assess the optimal exponential factor. To determine intra-observer agreement regarding region of interest selection, paired intra-observer measurements of regions of interest in all direct subtraction images were conducted with a one-week interval and the paired measurements were assessed using Bland-Altman analysis and paired-samples t-test. RESULTS Cortical bone can be better visualized by using exponential subtraction in three-dimensional ultrashort echo time imaging; the suggested optimal exponential factor is 1.99-2.03 in the tibia. Paired measurements showed excellent intra-observer agreement. CONCLUSION It is feasible to visualize cortical bone of the tibia using exponential subtraction in three-dimensional ultrashort echo time imaging. Compared with weighted subtraction images, exponential subtraction images with an optimal exponential factor provide enhanced visualization of short T2 tissues.
Collapse
Affiliation(s)
- Sha Li
- Department of Medical Physics, Institute of Medical Humanities, Peking University, Beijing, PR China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, PR China
| | - Xinrui Huang
- Department of Biophysics, School of basic medical sciences, Peking University, Beijing, PR China
| | - Guozhen Li
- Department of Precision Instrument, Tsinghua University, Beijing, PR China
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing Cancer Hospital & Institute, Beijing, PR China
| | - Zhaotong Li
- Department of Medical Physics, Institute of Medical Humanities, Peking University, Beijing, PR China
| | - Liangyou Liu
- Department of Medical Physics, Institute of Medical Humanities, Peking University, Beijing, PR China
| | - Song Gao
- Department of Medical Physics, Institute of Medical Humanities, Peking University, Beijing, PR China
| |
Collapse
|
36
|
Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. J Thorac Imaging 2020; 36:43-51. [PMID: 32453280 DOI: 10.1097/rti.0000000000000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Ultrashort echotime (UTE) sequences aim to improve the signal yield in pulmonary magnetic resonance imaging (MRI). We demonstrate the initial results of spiral 3-dimensional (3D) UTE-MRI for combined morphologic and functional imaging in pediatric patients. METHODS Seven pediatric patients with pulmonary abnormalities were included in this observational, prospective, single-center study, with the patients having the following conditions: cystic fibrosis (CF) with middle lobe atelectasis, CF with allergic bronchopulmonary aspergillosis, primary ciliary dyskinesia, air trapping, congenital lobar overinflation, congenital pulmonary airway malformation, and pulmonary hamartoma.Patients were scanned during breath-hold in 5 breathing states on a 3-Tesla system using a prototypical 3D stack-of-spirals UTE sequence. Ventilation maps and signal intensity maps were calculated. Morphologic images, ventilation-weighted maps, and signal intensity maps of the lungs of each patient were assessed intraindividually and compared with reference examinations. RESULTS With a scan time of ∼15 seconds per breathing state, 3D UTE-MRI allowed for sufficient imaging of both "plus" pathologies (atelectasis, inflammatory consolidation, and pulmonary hamartoma) and "minus" pathologies (congenital lobar overinflation, congenital pulmonary airway malformation, and air trapping). Color-coded maps of normalized signal intensity and ventilation increased diagnostic confidence, particularly with regard to "minus" pathologies. UTE-MRI detected new atelectasis in an asymptomatic CF patient, allowing for rapid and successful therapy initiation, and it was able to reproduce atelectasis and hamartoma known from multidetector computed tomography and to monitor a patient with allergic bronchopulmonary aspergillosis. CONCLUSION 3D UTE-MRI using a stack-of-spirals trajectory enables combined morphologic and functional imaging of the lungs within ~115 second acquisition time and might be suitable for monitoring a wide spectrum of pulmonary diseases.
Collapse
|
37
|
Temperature-Sensitive Frozen-Tissue Imaging for Cryoablation Monitoring Using STIR-UTE MRI. Invest Radiol 2020; 55:310-317. [PMID: 31977600 DOI: 10.1097/rli.0000000000000642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to develop a method to delineate the lethally frozen-tissue region (temperature less than -40°C) arising from interventional cryoablation procedures using a short tau inversion-recovery ultrashort echo-time (STIR-UTE) magnetic resonance (MR) imaging sequence. This method could serve as an intraprocedural validation of the completion of tumor ablation, reducing the number of local recurrences after cryoablation procedures. MATERIALS AND METHODS The method relies on the short T1 and T2* relaxation times of frozen soft tissue. Pointwise Encoding Time with Radial Acquisition, a 3-dimensional UTE sequence with TE = 70 microseconds, was optimized with STIR to null tissues with a T1 of approximately 271 milliseconds, the threshold T1. Because the T1 relaxation time of frozen tissue in the temperature range of -40°C < temperature < -8°C is shorter than the threshold T1 at the 3-tesla magnetic field, tissues in this range should appear hyperintense. The sequence was evaluated in ex vivo frozen tissue, where image intensity and actual tissue temperatures, measured by thermocouples, were correlated. Thereafter, the sequence was evaluated clinically in 12 MR-guided prostate cancer cryoablations, where MR-compatible cryoprobes were used to destroy cancerous tissue and preserve surrounding normal tissue. RESULTS The ex vivo experiment using a bovine muscle demonstrated that STIR-UTE images showed regions approximately between -40°C and -8°C as hyperintense, with tissues at lower and higher temperatures appearing dark, making it possible to identify the region likely to be above the lethal temperature inside the frozen tissue. In the clinical cases, the STIR-UTE images showed a dark volume centered on the cryoprobe shaft, Vinner, where the temperature is likely below -40°C, surrounded by a doughnut-shaped hyperintense volume, where the temperature is likely between -40°C and -8°C. The hyperintense region was itself surrounded by a dark volume, where the temperature is likely above -8°C, permitting calculation of Vouter. The STIR-UTE frozen-tissue volumes, Vinner and Vouter, appeared significantly smaller than signal voids on turbo spin echo images (P < 1.0 × 10), which are currently used to quantify the frozen-tissue volume ("the iceball"). The ratios of the Vinner and Vouter volumes to the iceball were 0.92 ± 0.08 and 0.29 ± 0.07, respectively. In a single postablation follow-up case, a strong correlation was seen between Vinner and the necrotic volume. CONCLUSIONS Short tau inversion-recovery ultrashort echo-time MR imaging successfully delineated the area approximately between -40°C and -8°C isotherms in the frozen tissue, demonstrating its potential to monitor the lethal ablation volume during MR-guided cryoablation.
Collapse
|
38
|
Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S. Magnetic Resonance Imaging of the Musculoskeletal System at 7T: Morphological Imaging and Beyond. Top Magn Reson Imaging 2019; 28:125-135. [PMID: 30951006 PMCID: PMC6565434 DOI: 10.1097/rmr.0000000000000205] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2017, a whole-body 7T magnetic resonance imaging (MRI) device was given regulatory approval for clinical use in both the EU and United States for neuro and musculoskeletal applications. As 7 Tesla allows for higher signal-to-noise , which results in higher resolution images than those obtained on lower-field-strength scanners, it has attracted considerable attention from the musculoskeletal field, as evidenced by the increasing number of publications in the last decade. Besides morphological imaging, the quantitative MR methods, such as T2, T2∗, T1ρ mapping, sodium imaging, chemical-exchange saturation transfer, and spectroscopy, substantially benefit from ultrahigh field scanning. In this review, we provide technical considerations for the individual techniques and an overview of (mostly) clinical applications for the assessment of cartilage, tendon, meniscus, and muscle. The first part of the review is dedicated to morphological applications at 7T, and the second part describes the most recent developments in quantitative MRI at 7T.
Collapse
Affiliation(s)
- Vladimir Juras
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Mlynarik
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner Society, St. Pölten, Austria
| | - Pavol Szomolanyi
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovič
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Oxford Centre for Clinical Magnetic Resonance Research, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Siegfried Trattnig
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
39
|
Sharafi A, Baboli R, Chang G, Regatte RR. 3D-T 1ρ prepared zero echo time-based PETRA sequence for in vivo biexponential relaxation mapping of semisolid short-T 2 tissues at 3 T. J Magn Reson Imaging 2019; 50:1207-1218. [PMID: 30693600 PMCID: PMC6816051 DOI: 10.1002/jmri.26664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In addition to the articular cartilage, osteoarthritis (OA) affects several other tissues such as tendons, ligaments, and subchondral bone. T1ρ relaxation study of these short T2 tissues may provide a more comprehensive evaluation of OA. PURPOSE To develop a 3D spin-lattice relaxation in the rotating frame (T1ρ ) prepared zero echo time (ZTE)-based pointwise encoding time reduction with radial acquisition (3D-T1ρ -PETRA) sequence for relaxation mapping of semisolid short-T2 tissues on a clinical 3 T scanner. STUDY TYPE Prospective. POPULATION Phantom, two bovine whole knee joint and Achilles tendon specimens, 10 healthy volunteers with no known inflammation, trauma or pain in the knee or ankle. FIELD STRENGTH/SEQUENCE A customized PETRA sequence to acquire fat-suppressed 3D T1ρ -weighted images tissues with semisolid short T2 / T 2 * relaxation times in the knee and ankle joints at 3 T. ASSESSMENT Mono- and biexponential T1ρ relaxation components were assessed in the patellar tendon (PT), anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and Achilles tendon (AT). STATISTICAL TESTS Kruskal-Wallis with post-hoc Dunn's test for multiple pairwise comparisons. RESULTS Phantom and ex vivo studies showed the feasibility of T1ρ relaxation mapping using the proposed 3D-T1ρ -PETRA sequence. The in vivo study demonstrated an averaged mono-T1ρ relaxation of (median [IQR]) 15.9 [14.5] msec, 23.6 [9.4] msec, 17.4 [7.4] msec, and 5.8 [10.2] msec in the PT, ACL, PCL, and AT, respectively. The bicomponent analysis showed the short and long components (with their relative fractions) of 0.65 [1.0] msec (46.9 [15.3]%) and 37.3 [18.4] msec (53.1 [15.3]%) for PT, 1.7 [2.1] msec (42.5 [12.5]%) and 43.7 [17.8] msec (57.5 [12.5]%) for ACL, and 1.2 [1.9] msec (42.6 [14.0]%) and 27.7 [14.7] msec (57.3 [14.0]%) for PCL and 0.4 [0.02] msec (58.8 [13.3]%/) and 31.3 [10.8] msec (41.2 [13.3]%) for AT. Statistically significant (P ≤ 0.05) differences were observed in the mono- and biexponential relaxation between several regions. DATA CONCLUSION The 3D-T1ρ -PETRA sequence allows volumetric, isotropic (0.78 × 0.78 × 0.78 mm), biexponential T1ρ assessment with corresponding fractions of the tissues with semisolid short T2 / T 2 * . LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;50:1207-1218.
Collapse
Affiliation(s)
- Azadeh Sharafi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York New York, USA
| | - Rahman Baboli
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York New York, USA
| | - Ravinder R. Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York New York, USA
| |
Collapse
|
40
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
41
|
Chu CR, Williams AA. Quantitative MRI UTE-T2* and T2* Show Progressive and Continued Graft Maturation Over 2 Years in Human Patients After Anterior Cruciate Ligament Reconstruction. Orthop J Sports Med 2019; 7:2325967119863056. [PMID: 31448301 PMCID: PMC6693027 DOI: 10.1177/2325967119863056] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Noninvasive quantitative magnetic resonance imaging (MRI) measures to assess
anterior cruciate ligament (ACL) graft maturity are needed to help inform
return to high-demand activities and to evaluate the effectiveness of new
treatments to accelerate ACL graft maturation. Quantitative MRI ultrashort
echo time T2* (UTE-T2*) and T2* mapping captures short T2 signals arising
from collagen-associated water in dense regular connective tissues, such as
tendon, ligament, and maturing grafts, which are invisible to conventional
MRI. Hypothesis: Quantitative MRI UTE-T2* and T2* mapping is sensitive to ACL graft changes
over the first 2 years after ACL reconstruction (ACLR). Study Design: Case series; Level of evidence, 4. Methods: A total of 32 patients (18 men; mean ± SD age, 30 ± 9 years) undergoing
unilateral ACLR and 30 uninjured age-matched controls (18 men; age, 30 ± 9
years) underwent 3-T MRI examination. Patients who underwent ACLR were
imaged at 6 weeks, 6 months, and 1 and 2 years postoperatively. Two separate
ACLR cohorts were scanned with 2 MRI platforms at 2 institutions. Twelve
ACLR knees were scanned with a 3-dimensional acquisition-weighted stack of
spirals UTE sequence on a Siemens scanner, and 20 ACLR knees were scanned
with a 3-dimensional Cones UTE sequence on a GE scanner. UTE-T2* or T2* maps
were calculated for the intra-articular portion of the ACL graft. Results: Mean ACL graft UTE-T2* and T2* decreased from 1 to 2 years after ACLR. ACL
graft T2* increased 25% to 30% during the first 6 months (P
< .013) to a level not different from that of uninjured native ACL
(P > .4), stabilized between 6 months and 1 year
(P ≥ .999), and then decreased 19% between 1 and 2
years after ACLR (P = .027). At 6-month follow-up, ACL
graft UTE-T2* differed from that of tendon (P < .02) but
not uninjured native ACL (P > .7) and showed the
greatest variability among patients. Conclusion: UTE-T2* mapping suggested substantial changes within the graft during the
first 6 months postsurgery. T2* and UTE-T2* mapping showed relatively stable
graft composition from 6 months to 1 year, consistent with remodeling,
followed by decreases from 1 to 2 years, suggestive of continuing
maturation. MRI UTE-T2* and T2* mapping demonstrated potential clinical
utility as noninvasive quantitative imaging metrics for evaluation of human
ACL grafts.
Collapse
Affiliation(s)
- Constance R Chu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Redwood City, California, USA
| | - Ashley A Williams
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Redwood City, California, USA
| |
Collapse
|
42
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
44
|
Chassagnon G, Martin C, Ben Hassen W, Freche G, Bennani S, Morel B, Revel MP. High-resolution lung MRI with Ultrashort-TE: 1.5 or 3 Tesla? Magn Reson Imaging 2019; 61:97-103. [PMID: 31051201 DOI: 10.1016/j.mri.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To assess the influence of magnetic field strength and additionally of acquisition and reconstruction parameters on the quality of high-resolution lung MRI, using a prototype Ultrashort-TE (UTE) sequence. MATERIALS AND METHODS This prospective study received ethical approval and all participants provided written informed consent. From January to February 2018, images were obtained in 10 healthy volunteers at 1.5 T and 3 T with a prototypical free-breathing UTE spiral 3D-GRE sequence with volumetric interpolation (VIBE) sequence and near-millimeter resolution. Five sequences were acquired to assess the effects of magnetic field strength (1.5 vs 3 T), voxel resolution (1.2 vs 1.0mm3), number of spiral interleaves (464 vs 264) and iterative reconstruction (iterative self-consistent parallel imaging reconstruction [SPIRiT] versus Non-Uniform Fourier Transform [NUFFT]) on image quality. Image quality was assessed by two independent observers. They evaluated the proportion of detected airways from the trachea down to the subsegmental level and placed ROI in the lung parenchyma, airways and vessels to calculate signal-to noise (SNR) and contrast-to-noise (CNR) ratios. Continuous variables were expressed as mean ± standard deviation and were compared by t-test. RESULTS Nearly complete visualization of the segmental bronchi (94 ± 12 to 99 ± 3%) was obtained with all sequences. Acquisition at 3 T (p < 0.001), use of a fewer spiral interleaves (p < 0.001) and NUFFT reconstruction (p < 0.001) all resulted in a significantly lower visibility of the subsegmental bronchi, while a smaller voxel size improved their visibility (p = 0.001). SNR and CNR were significantly lower at 3 T (140.2 ± 19.9 vs 190.2 ± 34.8, p < 0.001; and 5.7 ± 2.4vs 10.8 ± 2.8, p < 0.001, respectively). CONCLUSIONS Using equivalent acquisition and reconstruction parameters, image quality was lower at 3 T than at 1.5 T with decreased visibility of the subsegmental bronchi and lower SNR and CNR values.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France; Center for Visual Computing, Ecole CentraleSupelec, 3 Rue Joliot Curie, 91190, Gif-sur-Yvette, France
| | - Charlotte Martin
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Wadie Ben Hassen
- Siemens Healthineers France, 40 avenue des fruitiers, 93210 Saint-Denis, France
| | - Gael Freche
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Souhail Bennani
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Baptiste Morel
- Radiology Department, Hopital Clocheville, CHU Tours, Université François Rabelais, 49 Boulevard Béranger, 37000 Tours, France
| | - Marie-Pierre Revel
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, AP-HP, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
45
|
Chu CR, Fortier LA, Williams A, Payne KA, McCarrel TM, Bowers ME, Jaramillo D. Minimally Manipulated Bone Marrow Concentrate Compared with Microfracture Treatment of Full-Thickness Chondral Defects: A One-Year Study in an Equine Model. J Bone Joint Surg Am 2019; 100:138-146. [PMID: 29342064 DOI: 10.2106/jbjs.17.00132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microfracture is commonly performed for cartilage repair but usually results in fibrocartilage. Microfracture augmented by autologous bone marrow concentrate (BMC) was previously shown to yield structurally superior cartilage repairs in an equine model compared with microfracture alone. The current study was performed to test the hypothesis that autologous BMC without concomitant microfracture improves cartilage repair compared with microfracture alone. METHODS Autologous sternal bone marrow aspirate (BMA) was concentrated using a commercial system. Cells from BMC were evaluated for chondrogenic potential in vitro and in vivo. Bilateral full-thickness chondral defects (15-mm diameter) were created on the midlateral trochlear ridge in 8 horses. Paired defects were randomly assigned to treatment with BMC without concomitant microfracture, or to microfracture alone. The repairs were evaluated at 1 year by in vitro assessment, arthroscopy, morphological magnetic resonance imaging (MRI), quantitative T2-weighted and ultrashort echo time enhanced T2* (UTE-T2*) MRI mapping, and histological assessment. RESULTS Culture-expanded but not freshly isolated cells from BMA and BMC underwent cartilage differentiation in vitro. In vivo, cartilage repairs in both groups were fibrous to fibrocartilaginous at 1 year of follow-up, with no differences observed between BMC and microfracture by arthroscopy, T2 and UTE-T2* MRI values, and histological assessment (p > 0.05). Morphological MRI showed subchondral bone changes not observed by arthroscopy and improved overall outcomes for the BMC repairs (p = 0.03). Differences in repair tissue UTE-T2* texture features were observed between the treatment groups (p < 0.05). CONCLUSIONS When BMC was applied directly to critical-sized, full-thickness chondral defects in an equine model, the cartilage repair results were similar to those of microfracture. Our data suggest that, given the few mesenchymal stem cells in minimally manipulated BMC, other mechanisms such as paracrine, anti-inflammatory, or immunomodulatory effects may have been responsible for tissue regeneration in a previous study in which BMC was applied to microfractured repairs. While our conclusions are limited by small numbers, the better MRI outcomes for the BMC repairs may have been related to reduced surgical trauma to the subchondral bone. CLINICAL RELEVANCE MRI provides important information on chondral defect subsurface repair organization and subchondral bone structure that is not well assessed by arthroscopy.
Collapse
Affiliation(s)
- Constance R Chu
- Department of Orthopedic Surgery, Stanford University, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California
| | - Lisa A Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ashley Williams
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Karin A Payne
- Department of Orthopedics, University of Colorado, Aurora, Colorado
| | - Taralyn M McCarrel
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Diego Jaramillo
- VA Palo Alto Health Care System, Palo Alto, California.,Nicklaus Children's Hospital, Miami, Florida
| |
Collapse
|
46
|
Mahar R, Batool S, Badar F, Xia Y. Quantitative measurement of T2, T1ρ and T1 relaxation times in articular cartilage and cartilage-bone interface by SE and UTE imaging at microscopic resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:76-85. [PMID: 30366222 PMCID: PMC6289866 DOI: 10.1016/j.jmr.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
Both spin-echo (SE) and ultra-short echo (UTE) based MRI sequences were used on a 7 T µMRI system to quantify T2, T1ρ and T1 relaxation times from articular cartilage to the cartilage-bone interface on canine humeral specimens at 19.5 µm pixel resolution. A series of five relaxation-weighted images were acquired to calculate one relaxation map (T2, T1ρ or T1), from which the depth-dependent profiles were examined between the SE method and the UTE method, over the entire non-calcified cartilage and within the cartilage-bone interface. SE-based methods enabled the quantification of relaxation profiles over the noncalcified cartilage, from 0 µm (articular surface) to approximately 460 µm in depth (near the end of radial zone). Most of the cartilage-bone interface was imaged by the UTE-based methods, to a tissue depth of about 810 µm. Pixel-by-pixel calculation of the relaxation times between the independent SE and UTE methods correlated well with each other. A better understanding of the tissue properties reliably over the cartilage-bone interface region by a non-invasive MRI approach could contribute to the clinical diagnostics of trauma-induced osteoarthritis.
Collapse
Affiliation(s)
- Rohit Mahar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Syeda Batool
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
47
|
Hager B, Walzer SM, Deligianni X, Bieri O, Berg A, Schreiner MM, Zalaudek M, Windhager R, Trattnig S, Juras V. Orientation dependence and decay characteristics of T 2 * relaxation in the human meniscus studied with 7 Tesla MR microscopy and compared to histology. Magn Reson Med 2018; 81:921-933. [PMID: 30269374 PMCID: PMC6396872 DOI: 10.1002/mrm.27443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
Purpose To evaluate: (1) the feasibility of MR microscopy T2* mapping by performing a zonal analysis of spatially matched T2* maps and histological images using microscopic in‐plane pixel resolution; (2) the orientational dependence of T2* relaxation of the meniscus; and (3) the T2* decay characteristics of the meniscus by statistically evaluating the quality of mono‐ and biexponential model. Methods Ultrahigh resolution T2* mapping was performed with ultrashort echo time using a 7 Tesla MR microscopy system. Measurement of one meniscus was performed at three orientations to the main magnetic field (0, 55, and 90°). Histological assessment was performed with picrosirius red staining and polarized light microscopy. Quality of mono‐ and biexponential model fitting was tested using Akaike Information Criteria and F‐test. Results (1) The outer laminar layer, connective tissue fibers from the joint capsule, and the highly organized tendon‐like structures were identified using ultra‐highly resolved MRI. (2) Highly organized structures of the meniscus showed considerable changes in T2* values with orientation. (3) No significant biexponential decay was found on a voxel‐by‐voxel–based evaluation. On a region‐of‐interest–averaged basis, significant biexponential decay was found for the tendon‐like region in a fiber‐to‐field angle of 0°. Conclusion The MR microscopy approach used in this study allows the identification of meniscus substructures and to quantify T2* with a voxel resolution approximately 100 times higher than previously reported. T2* decay showed a strong fiber‐to‐field angle dependence reflecting the anisotropic properties of the meniscal collagen fibers. No clear biexponential decay behavior was found for the meniscus substructures.
Collapse
Affiliation(s)
- Benedikt Hager
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Sonja M Walzer
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Xeni Deligianni
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andreas Berg
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus M Schreiner
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Zalaudek
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Vladimir Juras
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
48
|
Dournes G, Yazbek J, Benhassen W, Benlala I, Blanchard E, Truchetet ME, Macey J, Berger P, Laurent F. 3D ultrashort echo time MRI of the lung using stack-of-spirals and spherical k-Space coverages: Evaluation in healthy volunteers and parenchymal diseases. J Magn Reson Imaging 2018; 48:1489-1497. [PMID: 30203889 DOI: 10.1002/jmri.26212] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ultrashort echo time (UTE) has been shown to improve lung MRI quality in three dimensions. The evaluation of 3D-UTE stack-of-spirals VIBE (3D-USV) sequence for parenchymal diseases and a comparison of performance with that of a spherical mode of acquisition is needed. PURPOSE To assess MRI quality using a prototypical 3D-USV sequence and to compare performance with that of a spherical acquisition using Pointwise Encoding Time Reduction with Radial Acquisition (PETRA). STUDY TYPE Monocenter, prospective. POPULATION Twelve healthy volunteers and 32 adult patients with either cystic fibrosis (CF; n = 16) or interstitial lung disease (ILD; n = 16). FIELD STRENGTH/SEQUENCE Both free-breathing 3D-USV and PETRA were completed at 1.5T. ASSESSMENT In healthy volunteers, visual analysis of imaging quality was scored using a Likert scale. Quantitative evaluation of apparent signal ratio (Sr) and contrast ratio (Cr) was measured. Patients with CF and ILD completed both computed tomography (CT) and MRI. Depiction of structural alterations was assessed using dedicated clinical scores. All evaluations were done in consensus by two readers. STATISTICAL TESTS Comparison of means was assessed using the Wilcoxon signed rank test. Concordance and agreement between CT and MRI were assessed using the intraclass correlation coefficient (ICC) and kappa test. RESULTS In controls, 3D-USV yielded lower artifacts owing to better automatic respiratory synchronization than PETRA (P < 0.001). However, Sr and Cr of 3D-USV were found significantly lower by 2.25- and 2.36-fold, respectively (P < 0.001). In patients, 3D-USV and PETRA showed comparable performances to assess airway severity in CF (Bhalla score, ICC = 0.89 and ICC = 0.92, respectively) and presence of structural alterations in ILD such as honeycombing (kappa = 0.68 and kappa = 0.69, respectively). DATA CONCLUSION 3D-USV enables high-resolution morphological imaging of the lung without need of an external device to compensate respiratory motions. Automation and robustness of the method may facilitate clinical application for both airway and interstitial lung investigations. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1489-1497.
Collapse
Affiliation(s)
- Gaël Dournes
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Joseph Yazbek
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | | | - Ilyes Benlala
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Elodie Blanchard
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Marie-Elise Truchetet
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Julie Macey
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - Patrick Berger
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| | - François Laurent
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service de Rhumatologie, Service d'Exploration Fonctionnelle Respiratoire, Pessac, France
| |
Collapse
|
49
|
Cha MJ, Park HJ, Paek MY, Stemmer A, Lee ES, Park SB, Kim YS. Free-breathing ultrashort echo time lung magnetic resonance imaging using stack-of-spirals acquisition: A feasibility study in oncology patients. Magn Reson Imaging 2018; 51:137-143. [PMID: 29775663 DOI: 10.1016/j.mri.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To investigate the diagnostic accuracy of lung magnetic resonance imaging (MRI) with a free-breathing three-dimensional ultrashort echo time spoiled gradient echo sequence using a stack-of-spirals acquisition (spiral 3D UTE) for pulmonary nodule detection at 3 T in oncology patients. METHODS The institutional review board approved this retrospective study. Between June and September of 2017, 32 oncology patients underwent both free-breathing spiral 3D UTE of the lungs and thin-section chest computed tomography (CT) for pulmonary metastasis workups. Semiquantitative analyses of the visible pulmonary vessels, bronchi, mediastinum, and overall image quality on spiral 3D UTE were assessed by two reviewers; CT was used as the reference standard. The probability of nodule presence also was assessed. RESULTS The mean acquisition duration of the spiral 3D UTE was 327 s (range, 300-465 s). The pulmonary vessels and bronchi were visible nearly consistently up to the sub-sub-segmental branch levels on spiral 3D UTE (96.9% [31/32] and 90.6% [29/32], respectively). >90% of the spiral 3D UTE images had an acceptable or good mediastinal evaluation; >80% had good or excellent overall image quality. Fifty nodules (6.1 ± 5.9 mm) were identified in 13 patients on CT; the overall nodule detection rate of spiral 3D UTE was 86% (43/50). All 20 nodules ≥ 5 mm in diameter were identified on spiral 3D UTE (100%). CONCLUSIONS Free-breathing spiral 3D UTE had high sensitivity for the detection of pulmonary nodules, a reasonable scan duration, and acceptable image quality, which may make it a potential alternative to CT for oncology patients.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Park
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| | | | | | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung Bin Park
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|