1
|
David E, Grazhdani H, Aliotta L, Gavazzi LM, Foti PV, Palmucci S, Inì C, Tiralongo F, Castiglione D, Renda M, Pacini P, Di Bella C, Solito C, Gigli S, Fazio A, Bella R, Basile A, Cantisani V. Imaging of Carotid Stenosis: Where Are We Standing? Comparison of Multiparametric Ultrasound, CT Angiography, and MRI Angiography, with Recent Developments. Diagnostics (Basel) 2024; 14:1708. [PMID: 39202195 PMCID: PMC11352936 DOI: 10.3390/diagnostics14161708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Atherosclerotic disease of the carotid arteries is a crucial risk factor in predicting the likelihood of future stroke events. In addition, emerging studies suggest that carotid stenosis may also be an indicator of plaque load on coronary arteries and thus have a correlation with the risk of acute cardiovascular events. Furthermore, although in symptomatic patients the degree of stenosis is the main morphological parameter studied, recent evidence suggests, especially in asymptomatic patients, that plaque vulnerability should also be evaluated as an emerging and significant imaging parameter. The reference diagnostic methods for the evaluation of carotid stenosis are currently ultrasonography, magnetic resonance imaging (MRI), and computed tomography angiography (CTA). In addition, other more invasive methods such as 123I-metaiodobenzylguanidine (MIBG) scintigraphy and PET-CT, as well as digital subtraction angiography, can be used. Each method has advantages and disadvantages, and there is often some confusion in their use. For example, the usefulness of MRI is often underestimated. In addition, implementations for each method have been developed over the years and are already enabling a significant increase in diagnostic accuracy. The purpose of our study is to make an in-depth analysis of all the methods in use and in particular their role in the diagnostic procedure of carotid stenosis, also discussing new technologies.
Collapse
Affiliation(s)
- Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Lorenzo Aliotta
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Livio Maria Gavazzi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Corrado Inì
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Francesco Tiralongo
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Davide Castiglione
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Silvia Gigli
- Department of Diagnostic Imaging, Sandro Pertini Hospital, Via dei Monti Tiburtini, 385, 00157 Rome, Italy;
| | - Alessandro Fazio
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Rita Bella
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| |
Collapse
|
2
|
Abdi M, Feng X, Sun C, Bilchick KC, Meyer CH, Epstein FH. Suppression of artifact-generating echoes in cine DENSE using deep learning. Magn Reson Med 2021; 86:2095-2104. [PMID: 34021628 PMCID: PMC8295221 DOI: 10.1002/mrm.28832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/21/2021] [Accepted: 04/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To use deep learning for suppression of the artifact-generating T1 -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time. METHODS A U-Net was trained to suppress the artifact-generating T1 -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T1 -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain. RESULTS The DAS-Net method effectively suppressed the T1 -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE. CONCLUSION The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T1 -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.
Collapse
Affiliation(s)
- Mohamad Abdi
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Xue Feng
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Changyu Sun
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kenneth C. Bilchick
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Craig H. Meyer
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Departments of Radiology, University of Virginia Health System, Charlottesville, Virginia
| | - Frederick H. Epstein
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Departments of Radiology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
3
|
Zohar O, Khatib M, Omar R, Vishinkin R, Broza YY, Haick H. Biointerfaced sensors for biodiagnostics. VIEW 2021. [DOI: 10.1002/viw.20200172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Orr Zohar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rawan Omar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Yoav Y. Broza
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
- School of Advanced Materials and Nanotechnology Xidian University Xi'an Shaanxi P. R. China
| |
Collapse
|
4
|
Hierarchical biofabrication of biomimetic collagen-elastin vascular grafts with controllable properties via lyophilisation. Acta Biomater 2020; 112:52-61. [PMID: 32525053 DOI: 10.1016/j.actbio.2020.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
This article describes the development of a hierarchical biofabrication technique suitable to create large but complex structures, such as vascular mimicking grafts, using facile lyophilisation technology amenable to multiple other biomaterial classes. The combination of three fabrication techniques together, namely solvent evaporation, lyophilisation, and crosslinking together allows highly tailorable structures from the microstructure up to the macrostructure, and with the ability to independently crosslink each layer it allows great flexibility to match desired native mechanical properties independently of the micro/macrostructure. We have demonstrated the flexibility of this biofabrication technique by independently optimising each of the layers to create a multi-layered arterial structure with tailored architectural and biophysical/biochemical properties using a collagen-elastin composite. Taken together, the facile biofabrication methodology developed has led to the development of a biomimetic bilayered scaffold suitable for use as a tissue engineered vascular graft (for haemodialysis access or peripheral/coronary bypass), or as an in vitro test platform to examine disease progression, pharmacological toxicity, or cardiovascular medical device testing. STATEMENT OF SIGNIFICANCE: The ability to grow large complex tissues such as blood vessels for transplantation is often hampered by the limitations of the selected biofabrication technique. Here, we sought to overcome some of the fabrication limitations for naturally occurring cardiovascular polymers (collagen/elastin) via a hierarchical approach to fabrication where each layer is built upon the previous. This approach enabled the flexibility to modify and tailor each layer's properties independently via control over polymer concentration, microstructure, and crosslinking. This simple approach facilitated us to fabricate multi-layered vascular grafts which were remodelled into high-density vascular tissue after 21-days. The fabrication approach could be translated to a myriad of other tissues while the engineered vascular graft could also be used as a test platform for drugs/medical devices or as a tissue engineering scaffold for vascular grafting for different indications.
Collapse
|
5
|
Noble C, Carlson KD, Neumann E, Dragomir-Daescu D, Erdemir A, Lerman A, Young M. Patient specific characterization of artery and plaque material properties in peripheral artery disease. J Mech Behav Biomed Mater 2019; 101:103453. [PMID: 31585351 DOI: 10.1016/j.jmbbm.2019.103453] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Patient-specific finite element (FE) modeling of atherosclerotic plaque is challenging, as there is limited information available clinically to characterize plaque components. This study proposes that for the limited data available in vivo, material properties of plaque and artery can be identified using inverse FE analysis and either a simple neo-Hookean constitutive model or assuming linear elasticity provides sufficient accuracy to capture the changes in vessel deformation, which is the available clinical metric. To test this, 10 human cadaveric femoral arteries were each pressurized ex vivo at 6 pressure levels, while intravascular ultrasound (IVUS) and virtual histology (VH) imaging were performed during controlled pull-back to determine vessel geometry and plaque structure. The VH images were then utilized to construct FE models with heterogeneous material properties corresponding to the vessel plaque components. The constitutive models were then fit to each plaque component by minimizing the difference between the experimental and the simulated geometry using the inverse FE method. Additionally, we further simplified the analysis by assuming the vessel wall had a homogeneous structure, i.e. lumping artery and plaque as one tissue. We found that for the heterogeneous wall structure, the simulated and experimental vessel geometries compared well when the fitted neo-Hookean parameters or elastic modulus, in the case of linear elasticity, were utilized. Furthermore, taking the median of these fitted parameters then inputting these as plaque component mechanical properties in the finite element simulation yielded differences between simulated and experimental geometries that were on average around 2% greater (1.30-5.55% error range to 2.33-11.71% error range). For the homogeneous wall structure the simulated and experimental wall geometries had an average difference of around 4% although when the difference was calculated using the median fitted value this difference was larger than for the heterogeneous fits. Finally, comparison to uniaxial tension data and to literature constitutive models also gave confidence to the suitability of this simplified approach for patient-specific arterial simulation based on data that may be acquired in the clinic.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kent D Carlson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Erica Neumann
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dan Dragomir-Daescu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Golemati S, Patelaki E, Nikita KS. Image-Based Motion and Strain Estimation of the Vessel Wall. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-981-10-5092-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Castle PE, Scheven UM, Crouch AC, Cao AA, Goergen CJ, Greve JM. Anatomical location, sex, and age influence murine arterial circumferential cyclic strain before and during dobutamine infusion. J Magn Reson Imaging 2018; 49:69-80. [PMID: 30291650 PMCID: PMC6519256 DOI: 10.1002/jmri.26232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background One of the primary biomechanical factors influencing arterial health is their deformation across the cardiac cycle, or cyclic strain, which is often associated with arterial stiffness. Deleterious changes in the cardiovascular system, e.g., increased arterial stiffness, can remain undetected until the system is challenged, such as under a cardiac stressor like dobutamine. Purpose To quantify cyclic strain in mice at different locations along the arterial tree prior to and during dobutamine infusion, while evaluating the effects of sex and age. Study Type Control/cohort study. Animal Model Twenty C57BL/6 mice; male, female; ∼12 and 24 weeks of age; n = 5 per group. Field Strength/Sequence 7T; CINE MRI with 12 frames, velocity compensation, and prospective cardiac gating. Assessment Prior to and during the infusion of dobutamine, Green–Lagrange circumferential cyclic strain was calculated from perimeter measurements derived from CINE data acquired at the carotid artery, suprarenal and infrarenal abdominal aorta, and iliac artery. Statistical Tests Analysis of variance (ANOVA) followed by post‐hoc tests was used to evaluate the influence of dobutamine, anatomical location, sex, and age. Results Heart rates did not differ between groups prior to or during dobutamine infusion (P = 0.87 and P = 0.08, respectively). Dobutamine increased cyclic strain in each group. Within a group, increases in strain were similar across arteries. At the suprarenal aorta, strain was reduced in older mice at baseline (young 27.6 > mature 19.3%, P = 0.01) and during dobutamine infusion (young 53.0 > mature 36.2%, P = 0.005). In the infrarenal aorta, the response (dobutamine – baseline) was reduced in older mice (young 21.9 > mature 13.5%, P = 0.04). Data Conclusion Dobutamine infusion increases circumferential cyclic strain throughout the arterial tree of mice. This effect is quantifiable using CINE MRI. The results demonstrate that strain prior to and during dobutamine is influenced by anatomical location, sex, and age. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:69–80.
Collapse
Affiliation(s)
- Paige E Castle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ulrich M Scheven
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - A Colleen Crouch
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Amos A Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Joan M Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Rosenberg AJ, Lane-Cordova AD, Wee SO, White DW, Hilgenkamp TIM, Fernhall B, Baynard T. Healthy aging and carotid performance: strain measures and β-stiffness index. Hypertens Res 2018; 41:748-755. [PMID: 29968848 DOI: 10.1038/s41440-018-0065-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 11/09/2022]
Abstract
Arterial stiffness is related to the risk of cardiovascular disease (CVD) and increases with aging. Functional impairment of the arterial wall can occur before structural changes and can be detectable before CVD symptoms. The elastic properties of the carotid arterial wall during the cardiac cycle can be evaluated by standard 2-dimensional (2D) ultrasound longitudinal or circumferential imaging of vascular deformation (strain) using speckle tracking. The purpose of this study was to compare standard 2D ultrasound circumferential and longitudinal images of vascular tissue motion and strain using speckle tracking in young and older individuals. Participants underwent recording of 2D ultrasound circumferential and longitudinal images of the common carotid artery. Circumferential carotid strain (CS) and CS rate were obtained and analyzed via speckle tracking software. Following the strain analysis, the circumferential strain β-stiffness (C-β) was calculated. Conventional longitudinal β-stiffness (L-β) was calculated and non-invasive blood pressure measurements were obtained from carotid artery pressure measurements in a resting supine position using applanation tonometry. C-β was significantly higher than L-β, and the association with age was greater (r = .824 vs. r = .547). CS and CS rate were significantly higher in the young compared to the older group. L-β does not explain as much of the age-dependent differences in the carotid artery compared with C-β. This is possibly due to the inclusion of whole arterial wall motion and deformation observed in the CS image. The ability of C-β to accurately predict the future risk of CVD independent of age still needs further investigation.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA.
| | - Abbi D Lane-Cordova
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Sang Ouk Wee
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA.,Department of Kinesiology, California State University San Bernardino, San Bernardino, CA, USA
| | - Daniel W White
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biomedical Sciences, University of Houston-Victoria, Victoria, TX, USA
| | - Thessa I M Hilgenkamp
- Department of General Practice, Intellectual Disability Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bo Fernhall
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| | - Tracy Baynard
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Pakravan HA, Saidi MS, Firoozabadi B. A multiscale approach for determining the morphology of endothelial cells at a coronary artery. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28445003 DOI: 10.1002/cnm.2891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
The morphology of endothelial cells (ECs) may be an indication for determining atheroprone sites. Until now, there has been no clinical imaging technique to visualize the morphology of ECs in the arteries. The present study introduces a computational technique for determining the morphology of ECs. This technique is a multiscale simulation consisting of the artery scale and the cell scale. The artery scale is a fluid-structure interaction simulation. The input for the artery scale is the geometry of the coronary artery, that is, the dynamic curvature of the artery due to the cardiac motion, blood flow, blood pressure, heart rate, and the mechanical properties of the blood and the arterial wall, the measurements of which can be obtained for a specific patient. The results of the artery scale are wall shear stress (WSS) and cyclic strains as the mechanical stimuli of ECs. The cell scale is an inventive mass-and-spring model that is able to determine the morphological response of ECs to any combination of mechanical stimuli. The results of the multiscale simulation show the morphology of ECs at different locations of the coronary artery. The results indicate that the atheroprone sites have at least 1 of 3 factors: low time-averaged WSS, high angle of WSS, and high longitudinal strain. The most probable sites for atherosclerosis are located at the bifurcation region and lie on the myocardial side of the artery. The results also indicated that a higher dynamic curvature is a negative factor and a higher pulse pressure is a positive factor for protection against atherosclerosis.
Collapse
Affiliation(s)
- Hossein Ali Pakravan
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Said Saidi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bahar Firoozabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Nguyen C, Fan Z, Xie Y, Pang J, Speier P, Bi X, Kobashigawa J, Li D. In vivo diffusion-tensor MRI of the human heart on a 3 tesla clinical scanner: An optimized second order (M2) motion compensated diffusion-preparation approach. Magn Reson Med 2016; 76:1354-1363. [PMID: 27550078 PMCID: PMC5067209 DOI: 10.1002/mrm.26380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/23/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To optimize a diffusion-prepared balanced steady-state free precession cardiac MRI (CMR) technique to perform diffusion-tensor CMR (DT-CMR) in humans on a 3 Tesla clinical scanner METHODS: A previously developed second order motion compensated (M2) diffusion-preparation scheme was significantly shortened (40%) yielding sufficient signal-to-noise ratio for DT-CMR imaging. In 20 healthy volunteers and 3 heart failure (HF) patients, DT-CMR was performed comparing no motion compensation (M0), first order motion compensation (M1), and the optimized M2. Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and HA transmural slope (HATS) were calculated. Reproducibility and success rate (SR) were investigated. RESULTS M2-derived left ventricular (LV) MD, FA, and HATS (1.4 ± 0.2 μm2 /ms, 0.28 ± 0.06, -1.0 ± 0.2 °/%trans) were significantly (P < 0.001) less than M1 (1.8 ± 0.3 μm2 /ms, 0.46 ± 0.14, -0.1 ± 0.3 °/%trans) and M0 (4.8 ± 1.0 μm2 /ms, 0.70 ± 0.14, 0.1 ± 0.3 °/%trans) indicating less motion corruption and yielding values more consistent with previous literature. M2-derived DT-CMR parameters had higher reproducible (ICC > 0.85) and SR (82%) than M1 (ICC = 0.20-0.85; SR = 37%) and M0 (ICC = 0.20-0.30; SR = 11%). M2 DT-CMR was able to yield HA maps with smooth transmural transition from endocardium to epicardium. CONCLUSION The proposed M2 DT-CMR reproducibly yielded bulk motion robust estimations of mean LV MD, FA, HA, and HATS on a 3T clinical scanner. Magn Reson Med 76:1354-1363, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jianing Pang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Xiaoming Bi
- Siemens Healthcare, Los Angeles, California, USA
| | - Jon Kobashigawa
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
11
|
Hu X, Zhang L, Zhang X, Zhu H, Chen X, Zhang Y, Chung YC, Liu X, Zheng H, Li Y. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T. Med Phys 2016; 43:1897. [DOI: 10.1118/1.4944500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Speelman L, Teng Z, Nederveen AJ, van der Lugt A, Gillard JH. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment. Thromb Haemost 2016; 115:493-500. [PMID: 26791734 DOI: 10.1160/th15-09-0712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022]
Abstract
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.
Collapse
Affiliation(s)
- Lambert Speelman
- Dr. Lambert Speelman, Department of Biomedical Engineering, Ee 23.38B, P.O Box 2040, 3000 CA Rotterdam, the Netherlands, Tel.: +31 10 70 44039, Fax: +31 10 70 44720, E-mail:
| | | | | | | | | |
Collapse
|
13
|
PAKRAVAN HOSSEINALI, SAIDI MOHAMMADSAID, FIROOZABADI BAHAR. FSI SIMULATION OF A HEALTHY CORONARY BIFURCATION FOR STUDYING THE MECHANICAL STIMULI OF ENDOTHELIAL CELLS UNDER DIFFERENT PHYSIOLOGICAL CONDITIONS. J MECH MED BIOL 2015. [DOI: 10.1142/s021951941550089x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a world-spread and well-known disease. This disease strongly relates to the endothelial cells (ECs) function. Normally, the endothelial cells align in the flow direction in the atheroprotected sites; however, in the case of atheroprone sites these cells orient randomly. The mechanical stimuli such as wall shear stress and strains could determine the morphology and function of the endothelial cells. In the present study, we numerically simulated the left main coronary artery (LCA) and its branches to left anterior descending (LAD) and left circumflex coronary (LCX) artery using fluid–structure interaction (FSI) modeling. The results were presented as longitudinal and circumferential strains of ECs as well as wall shear stress. Wide ranges of heart rate, cardiac motion, systolic and diastolic pressures were considered and their effects on mechanical stimuli were described in detail. The results showed that these factors could greatly influence the risk of atherosclerosis and the location of atherosclerotic lesions.
Collapse
Affiliation(s)
- HOSSEIN ALI PAKRAVAN
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - MOHAMMAD SAID SAIDI
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - BAHAR FIROOZABADI
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Functional and molecular aortic imaging has shown great promise for evaluation of aortic disease, and may soon augment conventional assessment of aortic dimensions for the clinical management of patients. RECENT FINDINGS A range of imaging techniques is available for evaluation of patients with aortic disease. Magnetic resonance blood flow imaging can identify atherosclerosis prone aortic regions and may be useful for predicting aneurysm growth. Computational modeling can demonstrate significant differences in wall stress between abdominal aortic aneurysms of similar size and may better predict rupture than diameter alone. Metabolic imaging with fluorodeoxyglucose-PET [(FDG)-PET] can identify focal aortic wall inflammation that may portend rapid progression of disease. Molecular imaging with probes that target collagen and elastin can directly exhibit changes in the vessel wall associated with disease. SUMMARY The complexity of aortic disease is more fully revealed with new functional imaging techniques than with conventional anatomic analysis alone. This may better inform surveillance imaging regimens, medical management and decisions regarding early intervention for aortic disease.
Collapse
|
15
|
Tang D, Kamm RD, Yang C, Zheng J, Canton G, Bach R, Huang X, Hatsukami TS, Zhu J, Ma G, Maehara A, Mintz GS, Yuan C. Image-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: data, modeling, validation, uncertainty and predictions. J Biomech 2014; 47:834-46. [PMID: 24480706 DOI: 10.1016/j.jbiomech.2014.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
Medical imaging and image-based modeling have made considerable progress in recent years in identifying atherosclerotic plaque morphological and mechanical risk factors which may be used in developing improved patient screening strategies. However, a clear understanding is needed about what we have achieved and what is really needed to translate research to actual clinical practices and bring benefits to public health. Lack of in vivo data and clinical events to serve as gold standard to validate model predictions is a severe limitation. While this perspective paper provides a review of the key steps and findings of our group in image-based models for human carotid and coronary plaques and a limited review of related work by other groups, we also focus on grand challenges and uncertainties facing the researchers in the field to develop more accurate and predictive patient screening tools.
Collapse
Affiliation(s)
- Dalin Tang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China; Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| | - Roger D Kamm
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chun Yang
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; China Information Tech. Designing & Consulting Institute Co., Ltd., Beijing 100048, China
| | - Jie Zheng
- Mallinkcrodt Inst. of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Gador Canton
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard Bach
- Cardiovascular Division, Washington University, St. Louis, MO 63110, USA
| | - Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Thomas S Hatsukami
- Division of Vascular Surgery, University of Washington, Seattle, WA, 98195, USA
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | | | - Gary S Mintz
- The Cardiovascular Research Foundation, NY, NY, USA
| | - Chun Yuan
- Deparment of Radiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Nederveen AJ, Avril S, Speelman L. MRI strain imaging of the carotid artery: present limitations and future challenges. J Biomech 2014; 47:824-33. [PMID: 24468207 DOI: 10.1016/j.jbiomech.2014.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/18/2022]
Abstract
Rupture of atherosclerotic plaques in the carotid artery is a main cause of stroke. Current diagnostics are not sufficient to identify all rupture-prone plaques, and studies have shown that biomechanical factors improve current plaque risk assessment. Strain imaging may be a valuable contribution to this risk assessment. MRI is a versatile imaging technique that offers various methods that are capable of measuring tissue strain. In this review, MR imaging techniques with displacement (DENSE), velocity (PC MRI), or strain (SENC) encoding protocols are discussed, together with post-processing techniques based on time-resolved MRI data. Although several MRI techniques are being developed to improve time-resolved MR imaging, current technical limitations related to spatial and temporal resolutions render MRI strain imaging currently unfit for carotid plaque strain evaluation. A novel approach using non-rigid image registration of MR images to determine strain in carotid arteries based on black blood cine MRI is proposed in this review. This and other post-processing techniques based on time-resolved MRI data may provide a good estimate of plaque strain, but are also dependent on the spatial and temporal resolution of the MR images. However, they seem to be the most promising approach for MRI based plaque strain analysis in the near future.
Collapse
Affiliation(s)
- Aart J Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Stéphane Avril
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines de Saint-Étienne, France
| | - Lambert Speelman
- Department of Biomedical Engineering, Erasmus MC Rotterdam, The Netherlands
| |
Collapse
|
17
|
Haraldsson H, Hope M, Acevedo-Bolton G, Tseng E, Zhong X, Epstein FH, Ge L, Saloner D. Feasibility of asymmetric stretch assessment in the ascending aortic wall with DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:6. [PMID: 24400865 PMCID: PMC3895850 DOI: 10.1186/1532-429x-16-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/27/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vessel diameter is the principal imaging parameter assessed clinically for aortic disease, but adverse events can occur at normal diameters. Aortic stiffness has been studied as an additional imaging-based risk factor, and has been shown to be an independent predictor of cardiovascular morbidity and all-cause mortality. Reports suggest that some aortic pathology is asymmetric around the vessel circumference, a feature which would not be identified with current imaging approaches. We propose that this asymmetry may be revealed using Displacement Encoding with Stimulated Echoes (DENSE). The objective of this study is to investigate the feasibility of assessing asymmetric stretch in healthy and diseased ascending aortas using DENSE. METHODS Aortic wall displacement was assessed with DENSE cardiovascular magnetic resonance (CMR) in 5 volunteers and 15 consecutive patients. Analysis was performed in a cross-sectional plane through the ascending aorta at the pulmonary artery. Displacement data was used to determine the wall stretch between the expanded and resting states of the aorta, in four quadrants around the aortic circumference. RESULTS Analysis of variance (ANOVA) did not only show significant differences in stretch between groups of volunteers (p<0.001), but also significant differences in stretch along the circumference of the aorta (p<0.001), indicating an asymmetric stretch pattern. Furthermore, there is a significant difference in the asymmetry between volunteers and different groups of patients (p<0.01). CONCLUSIONS Evaluation of asymmetric stretch is feasible in the ascending aorta with DENSE CMR. Clear differences in stretch are seen between patients and volunteers, with asymmetric patterns demonstrated around the aortic circumference.
Collapse
Affiliation(s)
- Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- VAMC/UCSF, Radiology 114-D, Bldg 203, Rm BA-51, 4150 Clement Street, San Francisco, CA 94530, USA
| | - Michael Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Gabriel Acevedo-Bolton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Elaine Tseng
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlotteville, VA, USA
| | - Liang Ge
- Department of Surgery, University of California, San Francisco, CA, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
18
|
El Ghannudi S, Germain P, Jeung MY, Breton E, Croisille P, Durand E, Roy C, Gangi A. Quantification of left ventricular dyssynchrony in patients with systolic dysfunction: A comparison of circumferential strain MR-tagging metrics. J Magn Reson Imaging 2013; 40:1238-46. [DOI: 10.1002/jmri.24447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/10/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Soraya El Ghannudi
- Department of Radiology; University Hospital; Strasbourg France
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Philippe Germain
- Department of Radiology; University Hospital; Strasbourg France
- Department of Cardiology; University Hospital; Strasbourg France
| | - Mi-Young Jeung
- Department of Radiology; University Hospital; Strasbourg France
| | - Elodie Breton
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| | - Pierre Croisille
- Department of Radiology; University Jean Monnet Saint-Etienne; CREATIS, UMR CNRS 5220-INSERM U1044 Lyon France
| | - Emmanuel Durand
- Department of Nuclear Medicine; University Hospital; Strasbourg France
| | - Catherine Roy
- Department of Radiology; University Hospital; Strasbourg France
| | - Afshin Gangi
- Department of Radiology; University Hospital; Strasbourg France
- ICube; Université de Strasbourg, CNRS; Strasbourg France
| |
Collapse
|
19
|
Franquet A, Avril S, Le Riche R, Badel P, Schneider FC, Li ZY, Boissier C, Favre JP. A new method for the in vivo identification of mechanical properties in arteries from cine MRI images: theoretical framework and validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1448-1461. [PMID: 23591477 DOI: 10.1109/tmi.2013.2257828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantifying the stiffness properties of soft tissues is essential for the diagnosis of many cardiovascular diseases such as atherosclerosis. In these pathologies it is widely agreed that the arterial wall stiffness is an indicator of vulnerability. The present paper focuses on the carotid artery and proposes a new inversion methodology for deriving the stiffness properties of the wall from cine-MRI (magnetic resonance imaging) data. We address this problem by setting-up a cost function defined as the distance between the modeled pixel signals and the measured ones. Minimizing this cost function yields the unknown stiffness properties of both the arterial wall and the surrounding tissues. The sensitivity of the identified properties to various sources of uncertainty is studied. Validation of the method is performed on a rubber phantom. The elastic modulus identified using the developed methodology lies within a mean error of 9.6%. It is then applied to two young healthy subjects as a proof of practical feasibility, with identified values of 625 kPa and 587 kPa for one of the carotid of each subject.
Collapse
Affiliation(s)
- Alexandre Franquet
- CIS-EMSE, CNRS UMR 5146, Ecole Nationale Supérieure des Mines, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
McCormick M, Varghese T, Wang X, Mitchell C, Kliewer MA, Dempsey RJ. Methods for robust in vivo strain estimation in the carotid artery. Phys Med Biol 2012; 57:7329-53. [PMID: 23079725 DOI: 10.1088/0031-9155/57/22/7329] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hierarchical block-matching motion tracking algorithm for strain imaging is presented. Displacements are estimated with improved robustness and precision by utilizing a Bayesian regularization algorithm and an unbiased subsample interpolation technique. A modified least-squares strain estimator is proposed to estimate strain images from a noisy displacement input while addressing the motion discontinuity at the wall-lumen boundary. Methods to track deformation over the cardiac cycle incorporate a dynamic frame skip criterion to process data frames with sufficient deformation to produce high signal-to-noise displacement and strain images. Algorithms to accumulate displacement and/or strain on particles in a region of interest over the cardiac cycle are described. New methods to visualize and characterize the deformation measured with the full 2D strain tensor are presented. Initial results from patients imaged prior to carotid endarterectomy suggest that strain imaging detects conditions that are traditionally considered high risk including soft plaque composition, unstable morphology, abnormal hemodynamics and shear of plaque against tethering tissue can be exacerbated by neoangiogenesis. For example, a maximum absolute principal strain exceeding 0.2 is observed near calcified regions adjacent to turbulent flow, protrusion of the plaque into the arterial lumen and regions of low echogenicity associated with soft plaques. Non-invasive carotid strain imaging is therefore a potentially useful tool for detecting unstable carotid plaque.
Collapse
Affiliation(s)
- M McCormick
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chan DD, Neu CP. Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance. PLoS One 2012; 7:e33463. [PMID: 22448245 PMCID: PMC3308970 DOI: 10.1371/journal.pone.0033463] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms), set by the repetition time (TR) of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR) echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T(2) biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues.
Collapse
Affiliation(s)
| | - Corey P. Neu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Allan A, Gao H, McComb C, Berry C. Myocardial strain estimated from standard cine MRI closely represents strain estimated from dedicated strain-encoded MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2650-3. [PMID: 22254886 DOI: 10.1109/iembs.2011.6090729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A method of non-rigid image registration was developed and evaluated for the purpose of quantifying myocardial displacement and strain from cine MRI using DENSE MRI as the reference standard. The objective of this paper was to study the potential use of cine MRI with image registration, as a means of measuring strain. The local displacement of the left ventricle was modelled by free-form deformations using b-splines. Cardiac MRI images were obtained from four healthy volunteers at 1.5T and analysed by the implementation of image registration algorithms in cine data and with DENSE view in DENSE data. The results indicated there was less than 3% difference between the strain values obtained from cine and DENSE scans averaging across the regions of the left ventricle in healthy subjects (n=4). There lies great potential in the implementation of cine MRI as a means of strain estimation. As such the measurement of strain from standard cine MRI poses an appealing and potentially clinically useful new option for assessing patients with myocardial dysfunction.
Collapse
Affiliation(s)
- Andrew Allan
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
23
|
Yuda S, Kaneko R, Muranaka A, Hashimoto A, Tsuchihashi K, Miura T, Watanabe N, Shimamoto K. Quantitative Measurement of Circumferential Carotid Arterial Strain by Two-Dimensional Speckle Tracking Imaging in Healthy Subjects. Echocardiography 2011; 28:899-906. [DOI: 10.1111/j.1540-8175.2011.01443.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Cheng DC, Billich C, Liu SH, Brunner H, Qiu YC, Shen YL, Brambs HJ, Schmidt-Trucksäss A, Schütz UH. Automatic detection of the carotid artery boundary on cross-sectional MR image sequences using a circle model guided dynamic programming. Biomed Eng Online 2011; 10:26. [PMID: 21477378 PMCID: PMC3083378 DOI: 10.1186/1475-925x-10-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/11/2011] [Indexed: 11/14/2022] Open
Abstract
Background Systematic aerobe training has positive effects on the compliance of dedicated arterial walls. The adaptations of the arterial structure and function are associated with the blood flow-induced changes of the wall shear stress which induced vascular remodelling via nitric oxide delivered from the endothelial cell. In order to assess functional changes of the common carotid artery over time in these processes, a precise measurement technique is necessary. Before this study, a reliable, precise, and quick method to perform this work is not present. Methods We propose a fully automated algorithm to analyze the cross-sectional area of the carotid artery in MR image sequences. It contains two phases: (1) position detection of the carotid artery, (2) accurate boundary identification of the carotid artery. In the first phase, we use intensity, area size and shape as features to discriminate the carotid artery from other tissues and vessels. In the second phase, the directional gradient, Hough transform, and circle model guided dynamic programming are used to identify the boundary accurately. Results We test the system stability using contrast degraded images (contrast resolutions range from 50% to 90%). The unsigned error ranges from 2.86% ± 2.24% to 3.03% ± 2.40%. The test of noise degraded images (SNRs range from 16 to 20 dB) shows the unsigned error ranging from 2.63% ± 2.06% to 3.12% ± 2.11%. The test of raw images has an unsigned error 2.56% ± 2.10% compared to the manual tracings. Conclusions We have proposed an automated system which is able to detect carotid artery cross sectional boundary in MRI sequences during heart cycles. The accuracy reaches 2.56% ± 2.10% compared to the manual tracings. The system is stable, reliable and results are reproducible.
Collapse
Affiliation(s)
- Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun C, Standish B, Yang VXD. Optical coherence elastography: current status and future applications. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:043001. [PMID: 21529067 DOI: 10.1117/1.3560294] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has several advantages over other imaging modalities, such as angiography and ultrasound, due to its inherently high in vivo resolution, which allows for the identification of morphological tissue structures. Optical coherence elastography (OCE) benefits from the superior spatial resolution of OCT and has promising applications, including cancer diagnosis and the detailed characterization of arterial wall biomechanics, both of which are based on the elastic properties of the tissue under investigation. We present OCE principles based on techniques associated with static and dynamic tissue excitation, and their corresponding elastogram image-reconstruction algorithms are reviewed. OCE techniques, including the development of intravascular- or catheter-based OCE, are in their early stages of development but show great promise for surgical oncology or intravascular cardiology applications.
Collapse
Affiliation(s)
- Cuiru Sun
- Department of Electrical and Computer Engineering, Biophotonics and Bioengineering Laboratory, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | | | | |
Collapse
|
26
|
Sigfridsson A, Haraldsson H, Ebbers T, Knutsson H, Sakuma H. In vivo SNR in DENSE MRI; temporal and regional effects of field strength, receiver coil sensitivity and flip angle strategies. Magn Reson Imaging 2010; 29:202-8. [PMID: 21129876 DOI: 10.1016/j.mri.2010.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
AIM The influences on the signal-to-noise ratio (SNR) of Displacement ENcoding with Stimulated Echoes (DENSE) MRI of field strength, receiver coil sensitivity and choice of flip angle strategy have been previously investigated individually. In this study, all of these parameters have been investigated in the same setting, and a mutual comparison of their impact on SNR is presented. MATERIALS AND METHODS Ten healthy volunteers were imaged in a 1.5 T and a 3 T MRI system, using standard five- or six-channel cardiac coils as well as 32-channel coils, with four different excitation patterns. Variation of spatial coil sensitivity was assessed by regional SNR analysis. RESULTS SNR ranging from 2.8 to 30.5 was found depending on the combination of excitation patterns, coil sensitivity and field strength. The SNR at 3 T was 53±26% higher than at 1.5 T (P<.001), whereas spatial differences of 59±26% were found in the ventricle (P<.001). Thirty-two-channel coils provided 52±29% higher SNR compared to standard five- or six-channel coils (P<.001). A fixed flip angle strategy provided an excess of 50% higher SNR in half of the imaged cardiac cycle compared to a sweeping flip angle strategy, and a single-phase acquisition provided a sixfold increase of SNR compared to a cine acquisition. CONCLUSION The effect of field strength and receiver coil sensitivity influences the SNR with the same order of magnitude, whereas flip angle strategy can have a larger effect on SNR. Thus, careful choice of imaging hardware in combination with adaptation of the acquisition protocol is crucial in order to realize sufficient SNR in DENSE MRI.
Collapse
|
27
|
Haraldsson H, Sigfridsson A, Sakuma H, Engvall J, Ebbers T. Influence of the FID and off-resonance effects in dense MRI. Magn Reson Med 2010; 65:1103-11. [PMID: 21413075 DOI: 10.1002/mrm.22692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 08/19/2010] [Accepted: 09/26/2010] [Indexed: 11/09/2022]
Abstract
Accurate functional measurement in cardiovascular diseases is important as inaccuracy may compromise diagnostic decisions. Cardiac function can be assessed using displacement encoding with stimulated echoes, resulting in three signal components. The free induction decay (FID), arising from spins undergoing T(1) -relaxation, is not displacement encoded and impairs the displacement acquired. Techniques for suppressing the FID exist; however, a residual will remain. The effect of the residual is difficult to distinguish and investigate in vitro and in vivo. In this work, the influence of the FID as well as of off-resonance effects is evaluated by altering the phase of the FID in relation to the stimulated echo. The results show that the FID and off-resonance effects can impair the accuracy of the displacement measurement acquired. The influence of the FID can be avoided by using an encoded reference. We therefore recommend the assessment of this influence of the FID for each displacement encoding with stimulated echoes protocol.
Collapse
Affiliation(s)
- Henrik Haraldsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Sigfridsson A, Haraldsson H, Ebbers T, Knutsson H, Sakuma H. Single-breath-hold multiple-slice DENSE MRI. Magn Reson Med 2010; 63:1411-4. [PMID: 20432313 DOI: 10.1002/mrm.22305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A method to acquire multiple displacement encoded slices within a single breath hold is presented. Efficiency is improved over conventional DENSE without compromising image quality by readout of multiple slices in the same cardiac cycle, thus utilizing the position-encoded stimulated echo available in the whole heart. The method was evaluated by comparing strain values obtained using the proposed method to strain values obtained by conventional separate breath-hold single-slice DENSE acquisitions. Good agreement (Lagrangian E(2) strain bias = 0.000, 95% limits of agreement +/- 0.04, root-mean-square-difference 0.02 [9.4% of mean end-systolic E(2)]) was found between the methods, indicating that the proposed method can replace a multiple breath-hold acquisition. Eliminating the need for multiple breath holds reduces the risk of changes in breath-hold positions or heart rate, results in higher patient comfort, and facilitates inclusion of DENSE in a clinical routine protocol.
Collapse
|
29
|
Abstract
This review examines the state of the art in vessel wall imaging by magnetic resonance imaging (MRI) with an emphasis on the biomechanical assessment of atherosclerotic plaque. Three areas of advanced techniques are discussed. First, alternative contrast mechanisms, including susceptibility, magnetization transfer, diffusion, and perfusion, are presented as to how they facilitate accurate determination of plaque constituents underlying biomechanics. Second, imaging technologies including hardware and sequences, are reviewed as to how they provide the resolution and signal-to-noise ratio necessary for determining plaque structure. Finally, techniques for combining MRI data into an overall assessment of plaque biomechanical properties, including wall shear stress and internal plaque strain, are presented. The paper closes with a discussion of the extent to which these techniques have been applied to different arteries commonly targeted by vessel wall MRI.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
30
|
An experimental and theoretical study on the anisotropy of elastin network. Ann Biomed Eng 2009; 37:1572-83. [PMID: 19484387 DOI: 10.1007/s10439-009-9724-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
The mechanical properties of elastin network from bovine thoracic aorta under biaxial tensile loading were studied both experimentally and theoretically. Histology and scanning electron microscopy were performed to verify the removal of cells, collagen, and other extracellular matrix components. Equi- and nonequi-biaxial tests were performed to study the effect of different loading conditions on the stress-strain responses of the elastin network. The mechanical properties of different elastin sections along the thoracic aorta were examined and studied to understand the anisotropy of elastin along the whole artery. Biaxial tensile test data comparing elastin vs. intact aorta showed that elastin is mainly responsible for the linear elastic response of the arterial wall at lower strains. Experimental results revealed that elastin network possesses significant anisotropic mechanical properties with the circumferential direction being stiffer than the longitudinal direction. The mechanical properties of elastin vary significantly along the thoracic aorta, with the thin section appearing to have the highest tangent modulus. Biological assay results indicate that elastin content is about the same along the thoracic aorta. The mechanical behavior of elastin network was well captured by the eight-chain statistical mechanics based microstructural model. Material parameters obtained from the equi-biaxial test were able to predict the stress-strain responses of elastin network under arbitrary nonequi-biaxial loading conditions. Also, by varying material parameters in the model, the changes in microstructure such as elastin fiber orientation and cross-linking density on the macroscopic mechanical properties of elastin network were discussed.
Collapse
|
31
|
Sigfridsson A, Haraldsson H, Ebbers T, Takase S, Sakuma H. Multi slice DENSE in a single breath hold. J Cardiovasc Magn Reson 2009. [PMCID: PMC7852368 DOI: 10.1186/1532-429x-11-s1-p221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|