1
|
Meerbothe TG, Florczak S, van den Berg CAT, Levato R, Mandija S. A reusable 3D printed brain-like phantom for benchmarking electrical properties tomography reconstructions. Magn Reson Med 2024; 92:2271-2279. [PMID: 38852180 DOI: 10.1002/mrm.30189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE In MR electrical properties tomography (MR-EPT), electrical properties (EPs, conductivity and permittivity) are reconstructed from MR measurements. Phantom measurements are important to characterize the performance of MR-EPT reconstruction methods, since they allow knowledge of reference EPs values. To assess reconstruction methods in a more realistic scenario, it is important to test the methods using phantoms with realistic shapes, internal structures, and dielectric properties. In this work, we present a 3D printing procedure for the creation of realistic brain-like phantoms to benchmark MR-EPT reconstructions. METHODS We created two brain-like geometries with three different compartments using 3D printing. The first geometry was filled once, while the second geometry was filled three times with different saline-gelatin solutions, resulting in a total of four phantoms with different EPs. The saline solutions were characterized using a probe. 3D MR-EPT reconstructions were performed from MR measurements at 3T. The reconstructed conductivity values were compared to reference values of the saline-gelatin solutions. The measured fields were also compared to simulated fields using the same phantom geometry and electrical properties. RESULTS The measured fields were consistent with simulated fields. Reconstructed conductivity values were consistent with the reference (probe) conductivity values. This indicated the suitability of such phantoms for benchmarking MR-EPT reconstructions. CONCLUSION We presented a new workflow to 3D print realistic brain-like phantoms in an easy and affordable way. These phantoms are suitable to benchmark MR-EPT reconstructions, but can also be used for benchmarking other quantitative MR methods.
Collapse
Affiliation(s)
- T G Meerbothe
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S Mandija
- Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Therapy and Diagnostics, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Giannakopoulos II, Carluccio G, Keerthivasan MB, Koerzdoerfer G, Lakshmanan K, De Moura HL, Cruz Serrallés JE, Lattanzi R. MR electrical properties mapping using vision transformers and canny edge detectors. Magn Reson Med 2024. [PMID: 39415436 DOI: 10.1002/mrm.30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. THEORY AND METHODS Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. RESULTS The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. CONCLUSION We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
Collapse
Affiliation(s)
- Ilias I Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | | | | | - Karthik Lakshmanan
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L De Moura
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - José E Cruz Serrallés
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Iyyakkunnel S, Weigel M, Bieri O. Fast bias-corrected conductivity mapping using stimulated echoes. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01194-3. [PMID: 39105952 DOI: 10.1007/s10334-024-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate "full" homogeneous Helmholtz-based electrical properties tomography using a simultaneous B 1 + magnitude and transceive phase measurement. METHODS The combination of a spin and stimulated echo can be used to yield an estimate of both B 1 + magnitude and transceive phase and thus provides the means for "full" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer. RESULTS The B 1 + magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the "full" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values. DISCUSSION The method allows the use of the "full" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- B 1 + mapping technique that could render EPT clinically relevant at 3 T.
Collapse
Affiliation(s)
- Santhosh Iyyakkunnel
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - Matthias Weigel
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
He Z, Soullié P, Lefebvre P, Ambarki K, Felblinger J, Odille F. Changes of in vivo electrical conductivity in the brain and torso related to age, fat fraction and sex using MRI. Sci Rep 2024; 14:16109. [PMID: 38997324 PMCID: PMC11245625 DOI: 10.1038/s41598-024-67014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.
Collapse
Affiliation(s)
- Zhongzheng He
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
| | - Paul Soullié
- IADI U1254, INSERM and Université de Lorraine, Nancy, France.
| | | | | | - Jacques Felblinger
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI U1254, INSERM and Université de Lorraine, Nancy, France
- CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
5
|
Wang J, Gao Y, Xin SX. Using the Probability Density Function-Based Channel-Combination Bloch-Siegert Method Realizes Permittivity Imaging at 3T. Bioengineering (Basel) 2024; 11:699. [PMID: 39061781 PMCID: PMC11274052 DOI: 10.3390/bioengineering11070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Magnetic resonance electrical properties tomography (MR EPT) can retrieve permittivity from the B1+ magnitude. However, the accuracy of the permittivity measurement using MR EPT is still not ideal due to the low signal-to-noise ratio (SNR) of B1+ magnitude. In this study, the probability density function (PDF)-based channel-combination Bloch-Siegert (BSS) method was firstly introduced to MR EPT for improving the accuracy of the permittivity measurement. MRI experiments were performed using a 3T scanner with an eight-channel receiver coil. The homogeneous water phantom was scanned for assessing the spatial distribution of B1+ magnitude obtained from the PDF-based channel-combination BSS method. Gadolinium (Gd) phantom and rats were scanned for assessing the feasibility of the PDF-based channel-combination BSS method in MR EPT. The Helmholtz-based EPT reconstruction algorithm was selected. For quantitative comparison, the permittivity measured by the open-ended coaxial probe method was considered as the ground-truth value. The accuracy of the permittivity measurement was estimated by the relative error between the reconstructed value and the ground-truth value. The reconstructed relative permittivity of Gd phantom was 52.413, while that of rat leg muscle was 54.053. The ground-truth values of relative permittivity of Gd phantom and rat leg muscle were 78.86 and 49.04, respectively. The relative error of average permittivity was 33.53% for Gd and 10.22% for rat leg muscle. The results indicated the high accuracy of the permittivity measurement using the PDF-based channel-combination BSS method in MR EPT. This improvement may promote the clinical application of MR EPT technology, such as in the early diagnosis of cancers.
Collapse
Affiliation(s)
| | | | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Özdemir S, Ilicak E, Zapp J, Schad LR, Zöllner FG. Feasibility of undersampled spiral trajectories in MREPT for fast conductivity imaging. Magn Reson Med 2024; 91:1567-1575. [PMID: 38044757 DOI: 10.1002/mrm.29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE To investigate spiral-based imaging including trajectories with undersampling as a fast and robust alternative for phase-based magnetic resonance electrical properties tomography (MREPT) techniques. METHODS Spiral trajectories with various undersampling ratios were prescribed to acquire images from an experimental phantom and a healthy volunteer at 3T. The non-Cartesian acquisitions were reconstructed using SPIRiT, and conductivity maps were derived using phase-based cr-MREPT. The resulting maps were compared between different sampling trajectories. Additionally, a conductivity map was obtained using a Cartesian balanced SSFP acquisition from the volunteer to comparatively demonstrate the robustness of the proposed method. RESULTS The phantom and volunteer results illustrate the benefits of the spiral acquisitions. Specifically, undersampled spiral acquisitions display improved robustness against field inhomogeneity artifacts and lowered SD values with shortened readout times. Furthermore, average of conductivity values measured for the cerebrospinal fluid with the spiral acquisitions were 1.703 S/m, indicating a close agreement with the theoretical values of 1.794 S/m. CONCLUSION A spiral-based acquisition framework for conductivity imaging with and without undersampling is presented. Overall, spiral-based acquisitions improved robustness against field inhomogeneity artifacts, while achieving whole head coverage with multiple averages in less than a minute.
Collapse
Affiliation(s)
- Safa Özdemir
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Efe Ilicak
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jascha Zapp
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Katscher U. Editorial for "Problem Solving MRI to Reduce False-Positive Biopsy Related to Breast US: Conductivity vs. DWI vs. Abbreviated Contrast-Enhanced MRI". J Magn Reson Imaging 2024; 59:1229-1230. [PMID: 37410055 DOI: 10.1002/jmri.28883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Level of Evidence5Technical Efficacy Stage3
Collapse
|
8
|
Jung K, Mandija S, Cui C, Kim J, Al‐masni MA, Meerbothe TG, Park M, van den Berg CAT, Kim D. Data-driven electrical conductivity brain imaging using 3 T MRI. Hum Brain Mapp 2023; 44:4986-5001. [PMID: 37466309 PMCID: PMC10502651 DOI: 10.1002/hbm.26421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.5 T and 128 MHz for 3 T MR systems). Clinical studies have shown the potential of tissue conductivity as a biomarker. To date, model-based conductivity reconstructions rely on numerical assumptions and approximations, leading to inaccuracies in the reconstructed maps. To address such limitations, we propose an artificial neural network (ANN)-based non-linear conductivity estimator trained on simulated data for conductivity brain imaging. Network training was performed on 201 synthesized T2-weighted spin-echo (SE) data obtained from the finite-difference time-domain (FDTD) electromagnetic (EM) simulation. The dataset was composed of an approximated T2-w SE magnitude and transceive phase information. The proposed method was tested three in-silico and in-vivo on two volunteers and three patients' data. For comparison purposes, various conventional phase-based EPT reconstruction methods were used that ignoreB 1 + magnitude information, such as Savitzky-Golay kernel combined with Gaussian filter (S-G Kernel), phase-based convection-reaction EPT (cr-EPT), magnitude-weighted polynomial-fitting phase-based EPT (Poly-Fit), and integral-based phase-based EPT (Integral-based). From the in-silico experiments, quantitative analysis showed that the proposed method provides more accurate and improved quality (e.g., high structural preservation) conductivity maps compared to conventional reconstruction methods. Representatively, in the healthy brain in-silico phantom experiment, the proposed method yielded mean conductivity values of 1.97 ± 0.20 S/m for CSF, 0.33 ± 0.04 S/m for WM, and 0.52 ± 0.08 S/m for GM, which were closer to the ground-truth conductivity (2.00, 0.30, 0.50 S/m) than the integral-based method (2.56 ± 2.31, 0.39 ± 0.12, 0.68 ± 0.33 S/m). In-vivo ANN-based conductivity reconstructions were also of improved quality compared to conventional reconstructions and demonstrated network generalizability and robustness to in-vivo data and pathologies. The reported in-vivo brain conductivity values were in agreement with literatures. In addition, the proposed method was observed for various SNR levels (SNR levels = 10, 20, 40, and 58) and repeatability conditions (the eight acquisitions with the number of signal averages = 1). The preliminary investigations on brain tumor patient datasets suggest that the network trained on simulated dataset can generalize to unforeseen in-vivo pathologies, thus demonstrating its potential for clinical applications.
Collapse
Affiliation(s)
- Kyu‐Jin Jung
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Stefano Mandija
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chuanjiang Cui
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Jun‐Hyeong Kim
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| | - Mohammed A. Al‐masni
- Department of Artificial IntelligenceCollege of Software & Convergence Technology, Daeyang AI Center, Sejong UniversitySeoulRepublic of Korea
| | - Thierry G. Meerbothe
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mina Park
- Department of Radiology, Gangnam Severance HospitalYonsei University College of MedicineSeoulRepublic of Korea
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MR Therapy and DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dong‐Hyun Kim
- Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
9
|
Arduino A, Pennecchi F, Katscher U, Cox M, Zilberti L. Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom. Tomography 2023; 9:420-435. [PMID: 36828386 PMCID: PMC9961522 DOI: 10.3390/tomography9010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging because it makes comparable, in a strict metrological sense, the results of different scans, for example during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties inside a human body. Although EPT has been used in some early clinical studies, a rigorous experimental assessment of the associated uncertainty has not yet been performed. This paper aims at evaluating the repeatability and reproducibility uncertainties in phase-based Helmholtz-EPT applied on homogeneous phantom data acquired with a clinical 3 T scanner. The law of propagation of uncertainty is used to evaluate the uncertainty in the estimated conductivity values starting from the uncertainty in the acquired scans, which is quantified through a robust James-Stein shrinkage estimator to deal with the dimensionality of the problem. Repeatable errors are detected in the estimated conductivity maps and are quantified for various values of the tunable parameters of the EPT implementation. The spatial dispersion of the estimated electric conductivity maps is found to be a good approximation of the reproducibility uncertainty, evaluated by changing the position of the phantom after each scan. The results underpin the use of the average conductivity (calculated by weighting the local conductivity values by their uncertainty and taking into account the spatial correlation) as an estimate of the conductivity of the homogeneous phantom.
Collapse
Affiliation(s)
- Alessandro Arduino
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- Correspondence:
| | - Francesca Pennecchi
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | | | - Maurice Cox
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| |
Collapse
|
10
|
Correlation analysis between the complex electrical permittivity and relaxation time of tissue mimicking phantoms in 7 T MRI. Sci Rep 2022; 12:15444. [PMID: 36104392 PMCID: PMC9474530 DOI: 10.1038/s41598-022-19832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Dielectric relaxation theory describes the complex permittivity of a material in an alternating field; in particular, Debye theory relates the time it takes for an applied field to achieve the maximum polarization and the electrical properties of the material. Although, Debye’s equations were proposed for electrical polarization, in this study, we investigate the correlation between the magnetic longitudinal relaxation time T1 and the complex electrical permittivity of tissue-mimicking phantoms using a 7 T magnetic resonance scanner. We created phantoms that mimicked several human tissues with specific electrical properties. The electrical properties of the phantoms were measured using bench-test equipment. T1 values were acquired from phantoms using MRI. The measured values were fitted with functions based on dielectric estimations, using relaxation times of electrical polarization, and the mixture theory for dielectrics. The results show that, T1 and the real permittivity are correlated; therefore, the correlation can be approximated with a rational function in the case of water-based phantoms. The correlation between index loss and T1 was determined using a fitting function based on the Debye equation and mixture theory equation, in which the fraction of the materials was taken into account. This phantom study and analysis provide an insight into the application relaxation times used for estimating dielectric properties. Currently, the measurement of electrical properties based on dielectric relaxation theory is based on an antenna, sometimes invasive, that irradiates an electric field into a small sample; thus, it is not possible to create a map of electrical properties for a complex structure such as the human body. This study could be further used to compute the electrical properties maps of tissues by scanning images and measuring T1 maps.
Collapse
|
11
|
Sasaki K, Porter E, Rashed EA, Farrugia L, Schmid G. Measurement and image-based estimation of dielectric properties of biological tissues —past, present, and future—. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7b64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022]
Abstract
Abstract
The dielectric properties of biological tissues are fundamental pararmeters that are essential for electromagnetic modeling of the human body. The primary database of dielectric properties compiled in 1996 on the basis of dielectric measurements at frequencies from 10 Hz to 20 GHz has attracted considerable attention in the research field of human protection from non-ionizing radiation. This review summarizes findings on the dielectric properties of biological tissues at frequencies up to 1 THz since the database was developed. Although the 1996 database covered general (normal) tissues, this review also covers malignant tissues that are of interest in the research field of medical applications. An intercomparison of dielectric properties based on reported data is presented for several tissue types. Dielectric properties derived from image-based estimation techniques developed as a result of recent advances in dielectric measurement are also included. Finally, research essential for future advances in human body modeling is discussed.
Collapse
|
12
|
Daval-Frérot G, Massire A, Mailhe B, Nadar M, Vignaud A, Ciuciu P. Iterative static field map estimation for off-resonance correction in non-Cartesian susceptibility weighted imaging. Magn Reson Med 2022; 88:1592-1607. [PMID: 35735217 PMCID: PMC9545844 DOI: 10.1002/mrm.29297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
Purpose Patient‐induced inhomogeneities in the magnetic field cause distortions and blurring during acquisitions with long readouts such as in susceptibility‐weighted imaging (SWI). Most correction methods require collecting an additional ΔB0 field map to remove these artifacts. Theory The static ΔB0 field map can be approximated with an acceptable error directly from a single echo acquisition in SWI. The main component of the observed phase is linearly related to ΔB0 and the echo time (TE), and the relative impact of non‐ ΔB0 terms becomes insignificant with TE >20 ms at 3 T for a well‐tuned system. Methods The main step is to combine and unfold the multi‐channel phase maps wrapped many times, and several competing algorithms are compared for this purpose. Four in vivo brain data sets collected using the recently proposed 3D spreading projection algorithm for rapid k‐space sampling (SPARKLING) readouts are used to assess the proposed method. Results The estimated 3D field maps generated with a 0.6 mm isotropic spatial resolution provide overall similar off‐resonance corrections compared to reference corrections based on an external ΔB0 acquisitions, and even improved for 2 of 4 individuals. Although a small estimation error is expected, no aftermath was observed in the proposed corrections, whereas degradations were observed in the references. Conclusion A static ΔB0 field map estimation method was proposed to take advantage of acquisitions with long echo times, and outperformed the reference technique based on an external field map. The difference can be attributed to an inherent robustness to mismatches between volumes and external ΔB0 maps, and diverse other sources investigated. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Guillaume Daval-Frérot
- Siemens Healthcare SAS, Saint-Denis, France.,CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Inria, Palaiseau, France
| | | | - Boris Mailhe
- Siemens Healthineers, Digital Technology & Innovation, Princeton, New Jersey, USA
| | - Mariappan Nadar
- Siemens Healthineers, Digital Technology & Innovation, Princeton, New Jersey, USA
| | - Alexandre Vignaud
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciuciu
- CEA, NeuroSpin, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Inria, Palaiseau, France
| |
Collapse
|
13
|
Garcia Inda AJ, Huang SY, Imamoglu N, Yu W. Physics-Coupled Neural Network Magnetic Resonance Electrical Property Tomography (MREPT) for Conductivity Reconstruction. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3463-3478. [PMID: 35533164 DOI: 10.1109/tip.2022.3172220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrical property (EP) of human tissues is a quantitative biomarker that facilitates early diagnosis of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is an imaging modality that reconstructs EPs by the radio-frequency field in an MRI system. MREPT reconstructs EPs by solving analytic models numerically based on Maxwell's equations. Most MREPT methods suffer from artifacts caused by inaccuracy of the hypotheses behind the models, and/or numerical errors. These artifacts can be mitigated by adding coefficients to stabilize the models, however, the selection of such coefficient has been empirical, which limit its medical application. Alternatively, end-to-end Neural networks-based MREPT (NN-MREPT) learns to reconstruct the EPs from training samples, circumventing Maxwell's equations. However, due to its pattern-matching nature, it is difficult for NN-MREPT to produce accurate reconstructions for new samples. In this work, we proposed a physics-coupled NN for MREPT (PCNN-MREPT), in which an analytic model, cr-MREPT, works with diffusion and convection coefficients, learned by NNs from the difference between the reconstructed and ground-truth EPs to reduce artifacts. With two simulated datasets, three generalization experiments in which test samples deviate gradually from the training samples, and one noise-robustness experiment were conducted. The results show that the proposed PCNN-MREPT achieves higher accuracy than two representative analytic methods. Moreover, compared with an end-to-end NN-MREPT, the proposed method attained higher accuracy in two critical generalization tests. This is an important step to practical MREPT medical diagnoses.
Collapse
|
14
|
Lee JH, Yoon YC, Kim HS, Lee J, Kim E, Findeklee C, Katscher U. In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography. Sci Rep 2022; 12:73. [PMID: 34996978 PMCID: PMC8741940 DOI: 10.1038/s41598-021-03928-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate whether in vivo MR-electrical properties tomography (MR-EPT) is feasible in musculoskeletal tissues by evaluating the conductivity of muscle, cartilage, and peripheral nerve around the knee joint, and to explore whether these measurements change after exercise. This prospective study was approved by the institutional review board. On February 2020, ten healthy volunteers provided written informed consent and underwent MRI of the right knee using a three-dimensional balanced steady-state free precession (bSSFP) sequence. To test the effect of loading, the subjects performed 60 squatting exercises after baseline MRI, immediately followed by post-exercise MRI with the same sequences. After reconstruction of conductivity map based on the bSSFP sequence, conductivity of muscles, cartilages, and nerves were measured. Measurements between the baseline and post-exercise MRI were compared using the paired t-test. Test–retest reliability for baseline conductivity was evaluated using the intraclass correlation coefficient. The baseline and post-exercise conductivity values (mean ± standard deviation) [S/m] of muscles, cartilages, and nerves were 1.73 ± 0.40 and 1.82 ± 0.50 (p = 0.048), 2.29 ± 0.47 and 2.51 ± 0.37 (p = 0.006), and 2.35 ± 0.57 and 2.36 ± 0.57 (p = 0.927), respectively. Intraclass correlation coefficient for the baseline conductivity of muscles, cartilages, and nerves were 0.89, 0.67, and 0.89, respectively. In conclusion, in vivo conductivity measurement of musculoskeletal tissues is feasible using MR-EPT. Conductivity of muscles and cartilages significantly changed with an overall increase after exercise.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea.
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | - Jiyeong Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | | | | | | |
Collapse
|
15
|
Katscher U, Minhas AS, Katoch N. Magnetic Resonance Electrical Properties Tomography (MREPT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1380:185-202. [DOI: 10.1007/978-3-031-03873-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kronthaler S, Boehm C, Feuerriegel G, Börnert P, Katscher U, Weiss K, Makowski MR, Schwaiger BJ, Gersing AS, Karampinos DC. Assessment of vertebral fractures and edema of the thoracolumbar spine based on water-fat and susceptibility-weighted images derived from a single ultra-short echo time scan. Magn Reson Med 2021; 87:1771-1783. [PMID: 34752650 DOI: 10.1002/mrm.29078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a methodology to simultaneously perform single echo Dixon water-fat imaging and susceptibility-weighted imaging (SWI) based on a single echo time (TE) ultra-short echo time (UTE) (sUTE) scan to assess vertebral fractures and degenerative bone changes in the thoracolumbar spine. METHODS A methodology was developed to solve the smoothness-constrained inverse water-fat problem to separate water and fat while removing unwanted low-frequency phase terms. Additionally, the corrected UTE phase was used for SWI. UTE imaging (TE: 0.14 ms, 3T MRI) was performed in the lumbar spine of nine patients with vertebral fractures and bone marrow edema (BME). All images were reviewed by two radiologists. Water- and fat-separated images were analyzed in comparison with short-tau inversion recovery (STIR) and with respect to BME visibility. The visibility of fracture lines and cortical outlining of the UTE magnitude images were analyzed in comparison with computed tomography. RESULTS Unwanted phase components, dominated by the B1 phase, were removed from the UTE phase images. The rating of the diagnostic quality of BME visualization showed a high preference for the sUTE-Dixon water- and fat-separated images in comparison with STIR. The UTE magnitude images enabled better visualizing fracture lines compared with STIR and slightly better visibility of cortical outlining. With increasing SWI weighting osseous structures and fatty tissues were enhanced. CONCLUSION The proposed sUTE-Dixon-SWI methodology allows the removal of unwanted low-frequency phases and enables water-fat separation and SWI processing from a single complex UTE image. The methodology can be used for the simultaneous assessment of vertebral fractures and BME of the thoracolumbar spine.
Collapse
Affiliation(s)
- Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Georg Feuerriegel
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Benedikt J Schwaiger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Marino M, Cordero-Grande L, Mantini D, Ferrazzi G. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques. Front Neurosci 2021; 15:694645. [PMID: 34393709 PMCID: PMC8363203 DOI: 10.3389/fnins.2021.694645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Conductivity tensor imaging (CTI) has been recently proposed to map the conductivity tensor in 3D using magnetic resonance imaging (MRI) at the frequency range of the brain at rest, i.e., low-frequencies. Conventional CTI mapping methods process the trans-receiver phase of the MRI signal using the MR electric properties tomography (MR-EPT) technique, which in turn involves the application of the Laplace operator. This results in CTI maps with a low signal-to-noise ratio (SNR), artifacts at tissue boundaries and a limited spatial resolution. In order to improve on these aspects, a methodology independent from the MR-EPT method is proposed. This relies on the strong assumption for which electrical conductivity is univocally pre-determined by water concentration. In particular, CTI maps are calculated by combining high-frequency conductivity derived from water maps and multi b-value diffusion tensor imaging (DTI) data. Following the implementation of a pipeline to optimize the pre-processing of diffusion data and the fitting routine of a multi-compartment diffusivity model, reconstructed conductivity images were evaluated in terms of the achieved spatial resolution in five healthy subjects scanned at rest. We found that the pre-processing of diffusion data and the optimization of the fitting procedure improve the quality of conductivity maps. We achieve reproducible measurements across healthy participants and, in particular, we report conductivity values across subjects of 0.55 ± 0.01Sm, 0.3 ± 0.01Sm and 2.15 ± 0.02Sm for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), respectively. By attaining an actual spatial resolution of the conductivity tensor close to 1 mm in-plane isotropic, partial volume effects are reduced leading to good discrimination of tissues with similar conductivity values, such as GM and WM. The application of the proposed framework may contribute to a better definition of the head tissue compartments in electroencephalograpy/magnetoencephalography (EEG/MEG) source imaging and be used as biomarker for assessing conductivity changes in pathological conditions, such as stroke and brain tumors.
Collapse
Affiliation(s)
- Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | | |
Collapse
|
18
|
Lesbats C, Katoch N, Minhas AS, Taylor A, Kim HJ, Woo EJ, Poptani H. High-frequency electrical properties tomography at 9.4T as a novel contrast mechanism for brain tumors. Magn Reson Med 2021; 86:382-392. [PMID: 33533114 PMCID: PMC8603929 DOI: 10.1002/mrm.28685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE To establish high-frequency magnetic resonance electrical properties tomography (MREPT) as a novel contrast mechanism for the assessment of glioblastomas using a rat brain tumor model. METHODS Six F98 intracranial tumor bearing rats were imaged longitudinally 8, 11 and 14 days after tumor cell inoculation. Conductivity and mean diffusivity maps were generated using MREPT and Diffusion Tensor Imaging. These maps were co-registered with T2 -weighted images and volumes of interests (VOIs) were segmented from the normal brain, ventricles, edema, viable tumor, tumor rim, and tumor core regions. Longitudinal changes in conductivity and mean diffusivity (MD) values were compared in these regions. A correlation analysis was also performed between conductivity and mean diffusivity values. RESULTS The conductivity of ventricles, edematous area and tumor regions (tumor rim, viable tumor, tumor core) was significantly higher (P < .01) compared to the contralateral cortex. The conductivity of the tumor increased over time while MD from the tumor did not change. A marginal positive correlation was noted between conductivity and MD values for tumor rim and viable tumor, whereas this correlation was negative for the tumor core. CONCLUSION We demonstrate a novel contrast mechanism based on ionic concentration and mobility, which may aid in providing complementary information to water diffusion in probing the microenvironment of brain tumors.
Collapse
Affiliation(s)
- Clémentine Lesbats
- Centre for Preclinical ImagingDepartment of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Nitish Katoch
- Department of Biomedical EngineeringKyung Hee UniversitySeoulSouth Korea
| | - Atul Singh Minhas
- Centre for Preclinical ImagingDepartment of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
- School of EngineeringMacquarie UniversitySydneyNSWAustralia
| | - Arthur Taylor
- Centre for Preclinical ImagingDepartment of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Hyung Joong Kim
- Department of Biomedical EngineeringKyung Hee UniversitySeoulSouth Korea
| | - Eung Je Woo
- Department of Biomedical EngineeringKyung Hee UniversitySeoulSouth Korea
| | - Harish Poptani
- Centre for Preclinical ImagingDepartment of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
19
|
Jung KJ, Mandija S, Kim JH, Ryu K, Jung S, Cui C, Kim SY, Park M, van den Berg CAT, Kim DH. Improving phase-based conductivity reconstruction by means of deep learning-based denoising of B 1 + phase data for 3T MRI. Magn Reson Med 2021; 86:2084-2094. [PMID: 33949721 DOI: 10.1002/mrm.28826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To denoise B 1 + phase using a deep learning method for phase-based in vivo electrical conductivity reconstruction in a 3T MR system. METHODS For B 1 + phase deep-learning denoising, a convolutional neural network (U-net) was chosen. Training was performed on data sets from 10 healthy volunteers. Input data were the real and imaginary components of single averaged spin-echo data (SNR = 45), which was used to approximate the B 1 + phase. For label data, multiple signal-averaged spin-echo data (SNR = 128) were used. Testing was performed on in silico and in vivo data. Reconstructed conductivity maps were derived using phase-based conductivity reconstructions. Additionally, we investigated the usability of the network to various SNR levels, imaging contrasts, and anatomical sites (ie, T1 , T2 , and proton density-weighted brain images and proton density-weighted breast images. In addition, conductivity reconstructions from deep learning-based denoised data were compared with conventional image filters, which were used for data denoising in electrical properties tomography (ie, the Gaussian filtering and the Savitzky-Golay filtering). RESULTS The proposed deep learning-based denoising approach showed improvement for B 1 + phase for both in silico and in vivo experiments with reduced quantitative error measures compared with other methods. Subsequently, this resulted in an improvement of reconstructed conductivity maps from the denoised B 1 + phase with deep learning. CONCLUSION The results suggest that the proposed approach can be used as an alternative preprocessing method to denoise B 1 + maps for phase-based conductivity reconstruction without relying on image filters or signal averaging.
Collapse
Affiliation(s)
- Kyu-Jin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Stefano Mandija
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kanghyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Soozy Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR Diagnostic & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Stijnman PRS, Stefano Mandija, Fuchs PS, van den Berg CAT, Remis RF. Transceive phase corrected 2D contrast source inversion-electrical properties tomography. Magn Reson Med 2021; 85:2856-2868. [PMID: 33280166 PMCID: PMC7898605 DOI: 10.1002/mrm.28619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE To remove the necessity of the tranceive phase assumption for CSI-EPT and show electrical properties maps reconstructed from measured data obtained using a standard 3T birdcage body coil setup. METHODS The existing CSI-EPT algorithm is reformulated to use the transceive phase rather than relying on the transceive phase assumption. Furthermore, the radio frequency (RF)-shield is numerically implemented to accurately model the RF fields inside the MRI scanner. We verify that the reformulated two-dimensional (2D) CSI-EPT algorithm can reconstruct electrical properties maps given 2D electromagnetic simulations. Afterward, the algorithm is tested with three-dimensional (3D) FDTD simulations to investigate if the 2D CSI-EPT can retrieve the electrical properties for 3D RF fields. Finally, an MR experiment at 3T with a phantom is performed. RESULTS From the results of the 2D simulations, it is seen that CSI-EPT can reconstruct the electrical properties using MRI accessible quantities. For 3D simulations, it is observed that the electrical properties are underestimated, nonetheless, CSI-EPT has a lower standard deviation than the standard Helmholtz based methods. Finally, the first CSI-EPT reconstructions based on measured data are presented showing comparable accuracy and precision to reconstructions based on simulated data, and demonstrating the feasibility of CSI-EPT. CONCLUSIONS The CSI-EPT algorithm was rewritten to use MRI accessible quantities. This allows for CSI-EPT to fully exploit the benefits of the higher static magnetic field strengths with a standard quadrature birdcage coil setup.
Collapse
Affiliation(s)
- Peter R. S. Stijnman
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Stefano Mandija
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Patrick S. Fuchs
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MRI Diagnostics and TherapyCentre for Image Sciences UMC UtrechtUtrechtThe Netherlands
| | - Rob F. Remis
- Circuit & Systems Group of the Electrical EngineeringDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
21
|
Leijsen R, Brink W, van den Berg C, Webb A, Remis R. Electrical Properties Tomography: A Methodological Review. Diagnostics (Basel) 2021; 11:176. [PMID: 33530587 PMCID: PMC7910937 DOI: 10.3390/diagnostics11020176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
Electrical properties tomography (EPT) is an imaging method that uses a magnetic resonance (MR) system to non-invasively determine the spatial distribution of the conductivity and permittivity of the imaged object. This manuscript starts by providing clear definitions about the data required for, and acquired in, EPT, followed by comprehensively formulating the physical equations underlying a large number of analytical EPT techniques. This thorough mathematical overview of EPT harmonizes several EPT techniques in a single type of formulation and gives insight into how they act on the data and what their data requirements are. Furthermore, the review describes machine learning-based algorithms. Matlab code of several differential and iterative integral methods is available upon request.
Collapse
Affiliation(s)
- Reijer Leijsen
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Cornelis van den Berg
- Computational Imaging Group for MRI Diagnostics and Therapy, Centre for Image Sciences, University Medical Centre Utrecht, 3508GA Utrecht, The Netherlands;
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Rob Remis
- Circuits and Systems Group, Faculty of Electrical Engineering, Mathematics and Computes Science, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
22
|
Han J, Gao Y, Nan X, Yu X, Liu F, Xin SX. Effect of radiofrequency inhomogeneity on water-content based electrical properties tomography and its correction by flip angle maps. Magn Reson Imaging 2021; 78:25-34. [PMID: 33450296 DOI: 10.1016/j.mri.2020.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Water-content based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water-content maps. B1+ field information is not involved in the traditional magnetic resonance electrical properties tomography approach. wEPT can be performed through conventional MR scanning, such as T1-weighted spin-echo imaging, which provides convenient access to multiple clinical applications. However, the inhomogeneous radiofrequency (RF) field induced by RF coils would cause inaccuracy in wEPT reconstructions during MR scanning. We conducted a detailed investigation to evaluate the effect of inhomogeneous RF field on wEPT reconstructions to guarantee that EP mapping is desired for clinical practice. Two important considerations are involved, namely, multiple typical coil configurations and various flip angles (FAs). We proposed a correction scheme with actual FA mapping to calibrate the RF inhomogeneity and finally validated it by using human imaging at 3 T. This study illustrates a detailed evaluation for wEPT under imperfect RF homogeneity and further provides a feasible correction procedure to mitigate it. The profound knowledge of wEPT provided in our work will benefit its performance in clinical applications.
Collapse
Affiliation(s)
- Jijun Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Nan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefei Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Liu C, Guo L, Li M, Chen H, Jin J, Chen W, Liu F, Crozier S. Divergence-Based Magnetic Resonance Electrical Properties Tomography. IEEE Trans Biomed Eng 2021; 68:192-203. [DOI: 10.1109/tbme.2020.3003460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Iyyakkunnel S, Schäper J, Bieri O. Configuration-based electrical properties tomography. Magn Reson Med 2020; 85:1855-1864. [PMID: 33107082 DOI: 10.1002/mrm.28542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE To introduce phase-based conductivity mapping from a configuration space analysis. METHODS The frequency response function of balanced SSFP (bSSFP) is used to perform a configuration space analysis. It is shown that the transceive phase for conductivity mapping can be directly obtained by a simple fast Fourier transform of a series of phase-cycled bSSFP scans. For validation, transceive phase and off-resonance mapping with fast Fourier transform is compared with phase estimation using a recently proposed method, termed PLANET. Experiments were performed in phantoms and for in vivo brain imaging at 3 T using a quadrature head coil. RESULTS For fast Fourier transform, aliasing can lead to systematic phase errors. This bias, however, decreases rapidly with increasing sampling points. Interestingly, Monte Carlo simulations revealed a lower uncertainty for the transceive phase and the off-resonance using fast Fourier transform as compared with PLANET. Both methods, however, essentially retrieve the same phase information from a set of phase-cycled bSSFP scans. As a result, configuration-based conductivity mapping was successfully performed using eight phase-cycled bSSFP scans in the phantoms and for brain tissues. Overall, the retrieved values were in good agreement with expectations. Conductivity estimation and mapping of the field inhomogeneities can therefore be performed in conjunction with the estimation of other quantitative parameters, such as relaxation, using configuration theory. CONCLUSIONS Phase-based conductivity mapping can be estimated directly from a simple Fourier analysis, such as in conjunction with relaxometry, using a series of phase-cycled bSSFP scans.
Collapse
Affiliation(s)
- Santhosh Iyyakkunnel
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jessica Schäper
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Jahng GH, Lee MB, Kim HJ, Je Woo E, Kwon OI. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current. Neuroimage 2020; 225:117466. [PMID: 33075557 DOI: 10.1016/j.neuroimage.2020.117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022] Open
Abstract
Diffusion weighted imaging based on random Brownian motion of water molecules within a voxel provides information on the micro-structure of biological tissues through water molecule diffusivity. As the electrical conductivity is primarily determined by the concentration and mobility of ionic charge carriers, the macroscopic electrical conductivity of biological tissues is also related to the diffusion of electrical ions. This paper aims to investigate the low-frequency electrical conductivity by relying on a pre-defined biological model that separates the brain into the intracellular (restricted) and extracellular (hindered) compartments. The proposed method uses B1 mapping technique, which provides a high-frequency conductivity distribution at Larmor frequency, and the spherical mean technique, which directly estimates the microscopic tissue structure based on the water molecule diffusivity and neurite orientation distribution. The total extracellular ion concentration, which is separated from the high-frequency conductivity, is recovered using the estimated diffusivity parameters and volume fraction in each compartment. We propose a method to reconstruct the low-frequency dominant conductivity tensor by taking into consideration the extracted extracellular diffusion tensor map and the reconstructed electrical parameters. To demonstrate the reliability of the proposed method, we conducted two phantom experiments. The first one used a cylindrical acrylic cage filled with an agar in the background region and four anomalies for the effect of ion concentration on the electrical conductivity. The other experiment, in which the effect of ion mobility on the conductivity was verified, used cell-like materials with thin insulating membranes suspended in an electrolyte. Animal and human brain experiments were conducted to visualize the low-frequency dominant conductivity tensor images. The proposed method using a conventional MRI scanner can predict the internal current density map in the brain without directly injected external currents.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Mun Bae Lee
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Oh-In Kwon
- Department of Mathematics, Konkuk University, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
26
|
Gavazzi S, van den Berg CAT, Savenije MHF, Kok HP, de Boer P, Stalpers LJA, Lagendijk JJW, Crezee H, van Lier ALHMW. Deep learning-based reconstruction of in vivo pelvis conductivity with a 3D patch-based convolutional neural network trained on simulated MR data. Magn Reson Med 2020; 84:2772-2787. [PMID: 32314825 PMCID: PMC7402024 DOI: 10.1002/mrm.28285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To demonstrate that mapping pelvis conductivity at 3T with deep learning (DL) is feasible. METHODS 210 dielectric pelvic models were generated based on CT scans of 42 cervical cancer patients. For all dielectric models, electromagnetic and MR simulations with realistic accuracy and precision were performed to obtain B 1 + and transceive phase (ϕ± ). Simulated B 1 + and ϕ± served as input to a 3D patch-based convolutional neural network, which was trained in a supervised fashion to retrieve the conductivity. The same network architecture was retrained using only ϕ± in input. Both network configurations were tested on simulated MR data and their conductivity reconstruction accuracy and precision were assessed. Furthermore, both network configurations were used to reconstruct conductivity maps from a healthy volunteer and two cervical cancer patients. DL-based conductivity was compared in vivo and in silico to Helmholtz-based (H-EPT) conductivity. RESULTS Conductivity maps obtained from both network configurations were comparable. Accuracy was assessed by mean error (ME) with respect to ground truth conductivity. On average, ME < 0.1 Sm-1 for all tissues. Maximum MEs were 0.2 Sm-1 for muscle and tumour, and 0.4 Sm-1 for bladder. Precision was indicated with the difference between 90th and 10th conductivity percentiles, and was below 0.1 Sm-1 for fat, bone and muscle, 0.2 Sm-1 for tumour and 0.3 Sm-1 for bladder. In vivo, DL-based conductivity had median values in agreement with H-EPT values, but a higher precision. CONCLUSION Anatomically detailed, noise-robust 3D conductivity maps with good sensitivity to tissue conductivity variations were reconstructed in the pelvis with DL.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics and therapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H F Savenije
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Computational Imaging Group for MR diagnostics and therapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Peter de Boer
- Radiotherapy Institute Friesland, Leeuwarden, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Tokaya JP, Raaijmakers AJ, Luijten PR, Sbrizzi A, van den Berg CA. MRI-based transfer function determination through the transfer matrix by jointly fitting the incident and scattered B1+ field. Magn Reson Med 2020; 83:1081-1095. [PMID: 31631400 PMCID: PMC6899904 DOI: 10.1002/mrm.27974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022]
Abstract
PURPOSE A purely experimental method for MRI-based transfer function (TF) determination is presented. A TF characterizes the potential for radiofrequency heating of a linear implant by relating the incident tangential electric field to a scattered electric field at its tip. We utilize the previously introduced transfer matrix (TM) to determine transfer functions solely from the MR measurable quantities, that is, the B 1 + and transceive phase distributions. This technique can extend the current practice of phantom-based TF assessment with dedicated experimental setup toward MR-based methods that have the potential to assess the TF in more realistic situations. THEORY AND METHODS An analytical description of the B 1 + magnitude and transceive phase distribution around a wire-like implant was derived based on the TM. In this model, the background field is described using a superposition of spherical and cylindrical harmonics while the transfer matrix is parameterized using a previously introduced attenuated wave model. This analytical description can be used to estimate the transfer matrix and transfer function based on the measured B 1 + distribution. RESULTS The TF was successfully determined for 2 mock-up implants: a 20-cm bare copper wire and a 20-cm insulated copper wire with 10 mm of insulation stripped at both endings in respectively 4 and 3 different trajectories. The measured TFs show a strong correlation with a reference determined from simulations and between the separate experiments with correlation coefficients above 0.96 between all TFs. Compared to the simulated TF, the maximum deviation in the estimated tip field is 9.4% and 12.2% for the bare and insulated wire, respectively. CONCLUSIONS A method has been developed to measure the TF of medical implants using MRI experiments. Jointly fitting the incident and scattered B 1 + distributions with an analytical description based on the transfer matrix enables accurate determination of the TF of 2 test implants. The presented method no longer needs input from simulated data and can therefore, in principle, be used to measure TF's in test animals or corpses.
Collapse
Affiliation(s)
- Janot P. Tokaya
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alexander J.E. Raaijmakers
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alessandro Sbrizzi
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cornelis A.T. van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Computational Imaging Group for MR Diagnostics & TherapyCenter for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
28
|
Amouzandeh G, Mentink-Vigier F, Helsper S, Bagdasarian FA, Rosenberg JT, Grant SC. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia. Phys Med Biol 2020; 65:055007. [PMID: 31307020 PMCID: PMC7223161 DOI: 10.1088/1361-6560/ab3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical properties (EP), namely conductivity and permittivity, can provide endogenous contrast for tissue characterization. Using electrical property tomography (EPT), maps of EP can be generated from conventional MRI data. This report investigates the feasibility and accuracy of EPT at 21.1 T for multiple RF coils and modes of operation using phantoms. Additionally, it demonstrates the EP of the in vivo rat brain with and without ischemia. Helmholtz-based EPT was implemented in its Full-form, which demands the complex [Formula: see text] field, and a simplified form requiring either just the [Formula: see text] field phase for conductivity or the [Formula: see text] field magnitude for permittivity. Experiments were conducted at 21.1 T using birdcage and saddle coils operated in linear or quadrature transceive mode, respectively. EPT approaches were evaluated using a phantom, ex and in vivo Sprague-Dawley rats under naïve conditions and ischemic stroke via transient middle cerebral artery occlusion. Different conductivity reconstruction approaches applied to the phantom displayed average errors of 12%-73% to the target acquired from dielectric probe measurements. Permittivity reconstructions showed higher agreement and an average 3%-8% error to the target depending on reconstruction approach. Conductivity and permittivity of ex and in vivo rodent brain were measured. Elevated EP in the ischemia region correlated with the increased sodium content and the influx of water intracellularly following ischemia in the lesion were detected. The Full-form technique generated from the linear birdcage provided the best accuracy for EP of the phantom. Phase-based conductivity and magnitude-based permittivity mapping provided reasonable estimates but also demonstrated the limitations of Helmholtz-based EPT at 21.1 T. Permittivity reconstruction was improved significantly over lower fields, suggesting a novel metric for in vivo brain studies. EPT applied to ischemic rat brain proved sensitivity to physiological changes, motivating the future application of more advanced reconstruction approaches.
Collapse
Affiliation(s)
- Ghoncheh Amouzandeh
- Department of Physics, Florida State University, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - F. Andrew Bagdasarian
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jens T. Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Samuel C. Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
29
|
Duan S, Zhu Y, Liu F, Xin SX. Numerical Experiments on the Contrast Capability of Magnetic Resonance Electrical Property Tomography. Magn Reson Med Sci 2020; 19:77-85. [PMID: 31019159 PMCID: PMC7067912 DOI: 10.2463/mrms.mp.2018-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: Magnetic resonance electrical property tomography (MR EPT) is a technique for non-invasively obtaining the electric property (EP) distribution of biological tissues, with a promising potential for application in the early detection of tumors. However, the contrast capability (CC) of this technique has not been fully studied. This work aims to theoretically explore the CC for detecting the variation of EP values and the size of the imaging region. Methods: A simulation scheme was specifically designed to evaluate the CC of MR EPT. The simulation study has the advantage that the magnetic field can be accurately obtained. EP maps of the designed phantom embedded with target regions of designated various sizes and EPs were reconstructed using the homogeneous Helmholtz equation based on B1+ with different signal-to-noise ratios (SNRs). The CC was estimated by determining the smallest detectable EP contrast when the target region size was as large as the Laplacian kernel and the smallest detectable target region size when the EP contrast was the same as the difference between healthy and malignant tissues in the brain, based on the reconstructed EP maps. Results: Using noise free B1+, the smallest detectable contrastσ and contrastεr were 1% and 3%, respectively, and the smallest detectable target region size was 1 mesh unit (the base unit size used in the simulation) for conductivity and relative permittivity. The smallest detectable EP contrast and target region size were decreased as the B1+ SNR increased. Conclusion: The CC of MR EPT was related with the SNR of the magnetic field. A small EP contrast and size were necessary for detection at a high-SNR magnetic field. Obtaining a high-SNR magnetic field is important for improving the CC of MR EPT.
Collapse
Affiliation(s)
- Song Duan
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yurong Zhu
- Department of Biomedical Engineering, Southern Medical University
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland
| | - Sherman Xuegang Xin
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre
| |
Collapse
|
30
|
Mohammadi M, Silletta EV, Ilott AJ, Jerschow A. Diagnosing current distributions in batteries with magnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106601. [PMID: 31574355 DOI: 10.1016/j.jmr.2019.106601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Batteries and their defects are notoriously difficult to analyze non-destructively, and consequently, many defects and failures remain little noticed and characterized until they cause grave damage. The measurement of the current density distributions inside a battery could reveal information about deviations from ideal cell behavior, and could thus provide early signs of deterioration or failures. Here, we describe methodology for fast nondestructive assessment and visualization of the effects of current distributions inside Li-ion pouch cells. The technique, based on magnetic resonance imaging (MRI), allows measuring magnetic field maps during charging/discharging. Marked changes in the distributions are observed as a function of the state of charge, and also upon sustaining damage. In particular, it is shown that nonlinearities and asymmetries of current distributions could be mapped at different charge states. Furthermore, hotspots of current flow are also shown to correlate with hotspots in charge storage. This technique could potentially be of great utility in diagnosing the health of cells and their behavior under different charging or environmental conditions.
Collapse
Affiliation(s)
- Mohaddese Mohammadi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Emilia V Silletta
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Andrew J Ilott
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
31
|
Park JA, Kang KJ, Ko IO, Lee KC, Choi BK, Katoch N, Kim JW, Kim HJ, Kwon OI, Woo EJ. In Vivo Measurement of Brain Tissue Response After Irradiation: Comparison of T2 Relaxation, Apparent Diffusion Coefficient, and Electrical Conductivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2779-2784. [PMID: 31034410 DOI: 10.1109/tmi.2019.2913766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation therapy (RT) has been widely used as a powerful treatment tool to address cancerous tissues because of its ability to control cell growth. Its ionizing radiation damages the DNA of cancerous tissues, leading to cell death. Medical imaging, however, still has limitations regarding the reliability of its assessment of tissue response and in predicting the treatment effect because of its inability to provide contrast information on the gradual, minute tissue changes after RT. A recently developed magnetic resonance (MR)-based conductivity imaging method may provide direct, highly sensitive information on this tissue response because its contrast mechanism is based on the concentration and mobility of ions in intracellular and extracellular spaces. In this feasibility study, we applied T2-weighted, diffusion-weighted, and electrical conductivity imaging to mouse brain, thus, using the MR imaging to map the tissue response after radiation exposure. To evaluate the degree of response, we measured the T2 relaxation, apparent diffusion coefficient (ADC), and electrical conductivity of brain tissues before and after irradiation. The conductivity images, which showed significantly higher sensitivity than other MR imaging methods, indicated that the contrast is distinguishable in different ways at different areas of the brain. Future studies will focus on verifying these results and the long-term evaluation of conductivity changes using various irradiation methods for clinical applications.
Collapse
|
32
|
Gavazzi S, Shcherbakova Y, Bartels LW, Stalpers LJA, Lagendijk JJW, Crezee H, van den Berg CAT, van Lier ALHMW. Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain. Magn Reson Med 2019; 83:590-607. [PMID: 31483520 PMCID: PMC6900152 DOI: 10.1002/mrm.27958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Purpose To demonstrate feasibility of transceive phase mapping with the PLANET method and its application for conductivity reconstruction in the brain. Methods Accuracy and precision of transceive phase (ϕ±) estimation with PLANET, an ellipse fitting approach to phase‐cycled balanced steady state free precession (bSSFP) data, were assessed with simulations and measurements and compared to standard bSSFP. Measurements were conducted on a homogeneous phantom and in the brain of healthy volunteers at 3 tesla. Conductivity maps were reconstructed with Helmholtz‐based electrical properties tomography. In measurements, PLANET was also compared to a reference technique for transceive phase mapping, i.e., spin echo. Results Accuracy and precision of ϕ± estimated with PLANET depended on the chosen flip angle and TR. PLANET‐based ϕ± was less sensitive to perturbations induced by off‐resonance effects and partial volume (e.g., white matter + myelin) than bSSFP‐based ϕ±. For flip angle = 25° and TR = 4.6 ms, PLANET showed an accuracy comparable to that of reference spin echo but a higher precision than bSSFP and spin echo (factor of 2 and 3, respectively). The acquisition time for PLANET was ~5 min; 2 min faster than spin echo and 8 times slower than bSSFP. However, PLANET simultaneously reconstructed T1, T2, B0 maps besides mapping ϕ±. In the phantom, PLANET‐based conductivity matched the true value and had the smallest spread of the three methods. In vivo, PLANET‐based conductivity was similar to spin echo‐based conductivity. Conclusion Provided that appropriate sequence parameters are used, PLANET delivers accurate and precise ϕ± maps, which can be used to reconstruct brain tissue conductivity while simultaneously recovering T1, T2, and B0 maps.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yulia Shcherbakova
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
33
|
Automated gradient-based electrical properties tomography in the human brain using 7 Tesla MRI. Magn Reson Imaging 2019; 63:258-266. [PMID: 31425805 DOI: 10.1016/j.mri.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Electrical properties of the brain tissues may yield useful biomarkers for neurological disorders and diseases, as well as contribute to safety assurance of ultra-high-field MRI. It has been reported that using B1 maps from a multi-channel RF coil, the spatial variation of the electrical properties can be robustly retrieved. The absolute electrical property values can then be obtained by spatial integration, given that an integration seed point is assigned. In this study, we propose to exploit automatically detected seed points based on tissue piece-wise homogeneity (Helmholtz equation) for spatial integration. Numerical simulations of a numerical brain model and experiments involving 12 healthy volunteers were performed to demonstrate its feasibility and robustness in various noisy conditions and head positions. For in vivo imaging, we consistently observed higher conductivity and permittivity values in the white and gray matter compared to tabulated ex vivo probe measurement results found in the literature, a discrepancy that may be attributed to ex vivo experimental constraints. Our results suggest that the proposed technique produces consistent brain electrical properties in vivo that may contribute to improving diagnostic and therapeutic decisions.
Collapse
|
34
|
Mandija S, Meliadò EF, Huttinga NRF, Luijten PR, van den Berg CAT. Opening a new window on MR-based Electrical Properties Tomography with deep learning. Sci Rep 2019; 9:8895. [PMID: 31222055 PMCID: PMC6586684 DOI: 10.1038/s41598-019-45382-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
In the radiofrequency (RF) range, the electrical properties of tissues (EPs: conductivity and permittivity) are modulated by the ionic and water content, which change for pathological conditions. Information on tissues EPs can be used e.g. in oncology as a biomarker. The inability of MR-Electrical Properties Tomography techniques (MR-EPT) to accurately reconstruct tissue EPs by relating MR measurements of the transmit RF field to the EPs limits their clinical applicability. Instead of employing electromagnetic models posing strict requirements on the measured MRI quantities, we propose a data driven approach where the electrical properties reconstruction problem can be casted as a supervised deep learning task (DL-EPT). DL-EPT reconstructions for simulations and MR measurements at 3 Tesla on phantoms and human brains using a conditional generative adversarial network demonstrate high quality EPs reconstructions and greatly improved precision compared to conventional MR-EPT. The supervised learning approach leverages the strength of electromagnetic simulations, allowing circumvention of inaccessible MR electromagnetic quantities. Since DL-EPT is more noise-robust than MR-EPT, the requirements for MR acquisitions can be relaxed. This could be a major step forward to turn electrical properties tomography into a reliable biomarker where pathological conditions can be revealed and characterized by abnormalities in tissue electrical properties.
Collapse
Affiliation(s)
- Stefano Mandija
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Ettore F Meliadò
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Niek R F Huttinga
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Cornelis A T van den Berg
- Computational Imaging Group for MR diagnostic & therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
35
|
Serralles JEC, Giannakopoulos II, Zhang B, Ianniello C, Cloos MA, Polimeridis AG, White JK, Sodickson DK, Daniel L, Lattanzi R. Noninvasive Estimation of Electrical Properties From Magnetic Resonance Measurements via Global Maxwell Tomography and Match Regularization. IEEE Trans Biomed Eng 2019; 67:3-15. [PMID: 30908189 DOI: 10.1109/tbme.2019.2907442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In this paper, we introduce global Maxwell tomography (GMT), a novel volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. METHODS GMT relies on a fast volume integral equation solver, MARIE, for the forward path, and a novel regularization method, match regularization, designed specifically for electrical property estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7 T using an eight-channel coil and a uniform phantom. RESULTS We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the graphics processing unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. CONCLUSION This work demonstrated the feasibility of GMT with match regularization, suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does not rely on any symmetry assumption for the electromagnetic field, and can be generalized to estimate also the spin magnetization, at the expense of increased computational complexity. SIGNIFICANCE GMT could provide insight into the distribution of electromagnetic fields inside the body, which represents one of the key ongoing challenges for various diagnostic and therapeutic applications.
Collapse
|
36
|
Gavazzi S, van den Berg CAT, Sbrizzi A, Kok HP, Stalpers LJA, Lagendijk JJW, Crezee H, van Lier ALHMW. Accuracy and precision of electrical permittivity mapping at 3T: the impact of three B 1 + mapping techniques. Magn Reson Med 2019; 81:3628-3642. [PMID: 30737816 PMCID: PMC6593818 DOI: 10.1002/mrm.27675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
Abstract
Purpose To investigate the sequence‐specific impact of B1+ amplitude mapping on the accuracy and precision of permittivity reconstruction at 3T in the pelvic region. Methods B1+ maps obtained with actual flip angle imaging (AFI), Bloch–Siegert (BS), and dual refocusing echo acquisition mode (DREAM) sequences, set to a clinically feasible scan time of 5 minutes, were compared in terms of accuracy and precision with electromagnetic and Bloch simulations and MR measurements. Permittivity maps were reconstructed based on these B1+ maps with Helmholtz‐based electrical properties tomography. Accuracy and precision in permittivity were assessed. A 2‐compartment phantom with properties and size similar to the human pelvis was used for both simulations and measurements. Measurements were also performed on a female volunteer’s pelvis. Results Accuracy was evaluated with noiseless simulations on the phantom. The maximum B1+ bias relative to the true B1+ distribution was 1% for AFI and BS and 6% to 15% for DREAM. This caused an average permittivity bias relative to the true permittivity of 7% to 20% for AFI and BS and 12% to 35% for DREAM. Precision was assessed in MR experiments. The lowest standard deviation in permittivity, found in the phantom for BS, measured 22.4 relative units and corresponded to a standard deviation in B1+ of 0.2% of the B1+ average value. As regards B1+ precision, in vivo and phantom measurements were comparable. Conclusions Our simulation framework quantitatively predicts the different impact of B1+ mapping techniques on permittivity reconstruction and shows high sensitivity of permittivity reconstructions to sequence‐specific bias and noise perturbation in the B1+ map. These findings are supported by the experimental results.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Developments in Electrical-Property Tomography Based on the Contrast-Source Inversion Method. J Imaging 2019; 5:jimaging5020025. [PMID: 34460473 PMCID: PMC8320903 DOI: 10.3390/jimaging5020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
The main objective of electrical-property tomography (EPT) is to retrieve dielectric tissue parameters from B ^ 1 + data as measured by a magnetic-resonance (MR) scanner. This is a so-called hybrid inverse problem in which data are defined inside the reconstruction domain of interest. In this paper, we discuss recent and new developments in EPT based on the contrast-source inversion (CSI) method. After a short review of the basics of this method, two- and three-dimensional implementations of CSI-EPT are presented along with a very efficient variant of 2D CSI-EPT called first-order induced current EPT (foIC-EPT). Practical implementation issues that arise when applying the method to measured data are addressed as well, and the limitations of a two-dimensional approach are extensively discussed. Tissue-parameter reconstructions of an anatomically correct male head model illustrate the performance of two- and three-dimensional CSI-EPT. We show that 2D implementation only produces reliable reconstructions under very special circumstances, while accurate reconstructions can be obtained with 3D CSI-EPT.
Collapse
|
38
|
Yildiz G, Ider YZ. Use of dielectric padding to eliminate low convective field artifact in cr-MREPT conductivity images. Magn Reson Med 2019; 81:3168-3184. [PMID: 30693565 DOI: 10.1002/mrm.27648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/07/2022]
Abstract
PURPOSE Convection-reaction equation-based magnetic resonance electrical properties tomography (cr-MREPT) provides conductivity images that are boundary artifact-free and robust against noise. However, these images suffer from the low convective field (LCF) artifact. We propose to use dielectric pads to alter the transmit magnetic field (B1 + ), shift the LCF region, and eliminate the LCF artifact. METHODS Computer simulations were conducted to analyze the effects of pad electrical properties, pad thickness, pad height, arc angle, and thickness of the pad-object gap. In 3T MR experiments, water pads and BaTiO3 pads were used with agar-saline phantoms. Two data sets (e.g., with the pad located on the left or on the right of the object [phantom]) were acquired, and the corresponding linear systems were simultaneously solved to get LCF artifact-free conductivity images. RESULTS A pad needed to have 180° arc angle and the same height with the phantom for maximum benefit. Increasing the pad thickness and/or the relative permittivity of the pad increased the LCF shift, whereas excessive amounts of these parameters caused errors in conductivity reconstructions because the effect of neglected Bz terms became noticeable. Conductivity of the pad, on the other hand, had minimal effect on elimination of the LCF artifact. Combining 2 data sets (i.e., with 2 different dielectric pad positions) resulted in more accurate conductivity maps (low L2 -errors) as opposed to no pad or single pad cases in experiments and simulations. CONCLUSIONS Using the proposed technique, LCF artifact is significantly removed, and the reconstructed conductivity values are improved.
Collapse
Affiliation(s)
- Gulsah Yildiz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Yusuf Ziya Ider
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| |
Collapse
|
39
|
Liao Y, Oros-Peusquens AM, Lindemeyer J, Lechea N, Weiß-Lucas C, Langen KJ, Shah NJ. An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR-PET scanner. Sci Rep 2019; 9:88. [PMID: 30643159 PMCID: PMC6331621 DOI: 10.1038/s41598-018-36435-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Approaches for the quantitative mapping of water content, electrical conductivity and susceptibility have been developed independently. The purpose of this study is to develop a method for simultaneously acquiring quantitative water content, electrical conductivity and susceptibility maps based on a 2D multi-echo gradient echo sequence. Another purpose is to investigate the changes in these properties caused by brain tumours. This was done using a 3T hybrid magnetic resonance imaging and positron emission tomography (MR-PET) scanner. Water content maps were derived after performing T2* and transmit-receive field bias corrections to magnitude images essentially reflecting only the H2O content contrast. Phase evolution during the multi-echo train was used to generate field maps and derive quantitative susceptibility, while the conductivity maps were retrieved from the phase value at zero echo time. Performance of the method is demonstrated on phantoms and two healthy volunteers. In addition, the method was applied to three patients with brain tumours and a comparison to maps obtained from PET using O-(2-[18 F]fluoroethyl)-L-tyrosine and clinical MR images is presented. The combined information of the water content, conductivity and susceptibility may provide additional information about the tissue viability. Future studies can benefit from the evaluation of these contrasts with shortened acquisition times.
Collapse
Affiliation(s)
- Yupeng Liao
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany
| | | | - Johannes Lindemeyer
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany
| | - Nazim Lechea
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany
| | - Carolin Weiß-Lucas
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
40
|
Ariturk G, Ider YZ. $B_1^+$ phase retrieval for non-quadrature radio frequency excitation and its preliminary application in MR-EPT. ACTA ACUST UNITED AC 2019; 64:02NT02. [DOI: 10.1088/1361-6560/aaf7be] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Wang Y, Shao Q, Van de Moortele PF, Racila E, Liu J, Bischof J, He B. Mapping electrical properties heterogeneity of tumor using boundary informed electrical properties tomography (BIEPT) at 7T. Magn Reson Med 2019; 81:393-409. [PMID: 30230603 PMCID: PMC6258314 DOI: 10.1002/mrm.27414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022]
Abstract
PURPOSES To develop and evaluate a boundary informed electrical properties tomography (BIEPT) technique for high-resolution imaging of tumor electrical properties (EPs) heterogeneity on a rodent tumor xenograft model. METHODS Tumor EP distributions were inferred from a reference area external to the tumor, as well as internal EP spatial variations derived from a plurality of relative transmit B1 measurements at 7T. Edge sparsity constraint was enforced to enhance numerical stability. Phantom experiments were performed to determine the imaging accuracy and sensitivity for structures of various EP values, as well as geometrical sizes down to 1.5 mm. Numerical simulation of a realistic rodent model was used to quantify the algorithm performance in the presence of noise. Eleven athymic rats with human breast cancer xenograft were imaged in vivo, and representative pathological samples were acquired for comparison. RESULTS Reconstructed EPs of the phantoms correspond well to the ground truth acquired from dielectric probe measurements, with the smallest structure reliably detectable being 3 mm. EPs heterogeneity inside a tumor is successfully retrieved in both simulated and experimental cases. In vivo tumor imaging results demonstrate similar local features and spatial patterns to anatomical MRI and pathological slides. The imaged conductivity of necrotic tissue is higher than that of viable tissues, which agrees with our expectation. CONCLUSION BIEPT enables robust detection of tumor EPs heterogeneity with high accuracy and sensitivity to small structures. The retrieved quantitative EPs reflect tumor pathological features (e.g., necrosis). These results provide strong rationale to further expand BIEPT studies toward pathological conditions where EPs may yield valuable, non-invasive biomarkers.
Collapse
Affiliation(s)
- Yicun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | | | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Jiaen Liu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Biomedical Engineering, Carnegie Mellon University, PA 15213, USA
| |
Collapse
|
42
|
Guo L, Jin J, Li M, Wang Y, Liu CY, Liu F, Crozier S. Reference-Based Integral MR-EPT:Simulation and Experiment Studies on the 9.4T MRI. IEEE Trans Biomed Eng 2018; 66:1832-1843. [PMID: 30403619 DOI: 10.1109/tbme.2018.2879667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current integral-equation (IE) based MR electrical properties tomography (EPT) methods utilize simulated incident radio-frequency (RF) fields, which are inaccurate and lead to reconstruction errors. To improve the accuracy and practicability of IE-based MR-EPT methods, a new approach is presented that obtains the incident fields using reference subjects and RF field mapping techniques. The Incident field approximation (IFA) is first demonstrated in this paper. This approximation assumes that two imaged subjects with similar coil/subject interactions will have similar incident RF fields, thus one can feed the estimation of the incident fields within the imaged subject into the calculation of those within a homogeneous subject (reference subject). This is done by measuring the total RF fields ( field) of the reference using field mapping techniques, using the known EPs of the reference subject and by rearranging Ampere's Law and the integral equations. The calculated incident RF fields are then used to reconstruct the EPs' distribution with a three-dimensional (3D) integral-based MR-EPT method. Numerical simulation results indicated that the incident RF fields obtained from the reference subject provide accurate 3D reconstruction of EPs with less than 16% root mean square error (RMSE) in noise-free scenario while the conventional IE method had more than 28% RMSE. The phantom-based experiments at 9.4T MRI system have also been conducted to evaluate the performance of the proposed method and the results indicated that the proposed method achieved desirable robustness against the noise in practical scenario with less than 21% RMSE while the conventional differential equation-based method showed worse than 37% RMSE.
Collapse
|
43
|
Ozdemir S, Ider YZ. bSSFP phase correction and its use in magnetic resonance electrical properties tomography. Magn Reson Med 2018; 81:934-946. [PMID: 30357891 DOI: 10.1002/mrm.27446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 11/05/2022]
Abstract
PURPOSE Balanced steady-state free precession (bSSFP) sequence is widely used because of its high SNR and high speed. However, bSSFP images suffer from "banding artifact" caused by B0 inhomogeneity. In this article, we propose a method to remove this artifact in bSSFP phase images and investigate the usage of the corrected phase images in phase-based magnetic resonance electrical properties tomography (MREPT). THEORY AND METHODS Two bSSFP phase images, obtained with different excitation frequencies, are collaged to get rid of the regions containing banding artifacts. Phase of the collaged bSSFP image is the sum of the transceive phase of the RF system and an error term that depends on B0 and T2 . By using B0 and T2 maps, this error is eliminated from bSSFP phase images by using pixel-wise corrections. Conductivity maps are obtained from the uncorrected and the corrected phase images using the phase-based cr-MREPT method. RESULTS Phantom and human experiment results of the proposed method are illustrated for both phase images and conductivity maps. It is shown that uncorrected phase images yield unacceptable conductivity images. When only B0 information is used for phase correction conductivity, reconstructions are substantially improved, and yet T2 information is still needed to fully recover accurate and undistorted conductivity images. CONCLUSIONS With the proposed technique, B0 sensitivity of the bSSFP phase images can be removed by using B0 and T2 maps. It is also shown that corrected bSSFP phase images are of sufficient quality to be used in conductivity imaging.
Collapse
Affiliation(s)
- Safa Ozdemir
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Yusuf Ziya Ider
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| |
Collapse
|
44
|
Hancu I, Liu J, Hua Y, Lee SK. Electrical properties tomography: Available contrast and reconstruction capabilities. Magn Reson Med 2018; 81:803-810. [PMID: 30325052 DOI: 10.1002/mrm.27453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/29/2022]
Abstract
MR-based electrical properties tomography converts the MRI transmit/receive RF field measurements to tissue electrical property maps through dedicated reconstruction algorithms. Recent reports showed that despite limitations, electrical properties tomography holds promise for generating additional contrast for tumor detection and patient-specific modeling of tissue-RF field interactions. This review summarizes the available tissue electrical property contrasts and compares them with the capabilities of the most commonly used electrical properties tomography reconstruction method. Future directions and prospects of clinical translation are discussed.
Collapse
Affiliation(s)
| | - Jiaen Liu
- National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Yihe Hua
- GE Global Research, Niskayuna, New York
| | - Seung-Kyun Lee
- IBS Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
45
|
Shin J, Kim JH, Kim DH. Redesign of the Laplacian kernel for improvements in conductivity imaging using MRI. Magn Reson Med 2018; 81:2167-2175. [PMID: 30298524 DOI: 10.1002/mrm.27528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop an electrical property tomography reconstruction method that achieves improvements over standard method by redesigning the Laplacian kernel. THEORY AND METHODS A decomposition property of the governing PET equation shows the possibility of redesigning the Laplacian kernel for conductivity reconstruction. Hence, the discrete Laplacian operator used for electrical property tomography reconstruction is redesigned to have a Gaussian-like envelope, which enables manipulation of the spatial and spectral response. The characteristics of the proposed kernel are investigated through numerical simulations and in vivo brain experiments. RESULTS The proposed method reduces textured noise, which hampers observing features of the conductivity image. Furthermore, the proposed scheme can mitigate the propagation of local phase error such as flow-induced phase. By doing so, the proposed method can recover feature information in conductivity (or resistivity) images. Lastly, the proposed kernel can be extended to other electrical property tomography reconstructions, improving the quality of images. CONCLUSION An alternative design of the Laplacian kernel for conductivity imaging has been developed to mitigate the textured noise and the propagation of local phase artifact.
Collapse
Affiliation(s)
- Jaewook Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Hampe N, Herrmann M, Amthor T, Findeklee C, Doneva M, Katscher U. Dictionary-based electric properties tomography. Magn Reson Med 2018; 81:342-349. [PMID: 30246342 DOI: 10.1002/mrm.27401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop and validate a new algorithm called "dictionary-based electric properties tomography" (dbEPT) for deriving tissue electric properties from measured B1 maps. METHODS Inspired by Magnetic Resonance fingerprinting, dbEPT uses a dictionary of local patterns ("atoms") of B1 maps and corresponding electric properties distributions, derived from electromagnetic field simulations. For reconstruction, a pattern from a measured B1 map is compared with the B1 atoms of the dictionary. The B1 atom showing the best match with the measured B1 pattern yields the optimum electric properties pattern that is chosen for reconstruction. Matching was performed through machine learning algorithms. Two dictionaries, using transmit and transceive phases, were evaluated. The spatial distribution of local matching distance between optimal atom and measured pattern yielded a reconstruction reliability map. The method was applied to reconstruct conductivity of 4 volunteers' brains. A conventional, Helmholtz-based Electric properties tomography (EPT) reconstruction was performed for reference. Noise performance was studied through phantom simulations. RESULTS Quantitative values of conductivity agree with literature values. Results of the 2 dictionaries exhibit only minor differences. Somewhat larger differences are visible between dbEPT and Helmholtz-based EPT. Quantified by the correlation between conductivity and anatomic images, dbEPT depicts brain details more clearly than Helmholtz-based EPT. Matching distance is minimal in homogeneous brain ventricles and increases with tissue heterogeneity. Central processing unit time was approximately 2 minutes per dictionary training and 3 minutes per brain conductivity reconstruction using standard hardware equipment. CONCLUSION A new, dictionary-based approach for reconstructing electric properties is presented. Its conductivity reconstruction is able to overcome the EPT transceive-phase problem.
Collapse
Affiliation(s)
| | - Max Herrmann
- University of Applied Sciences, Hamburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Leijsen RL, Brink WM, van den Berg CAT, Webb AG, Remis RF. 3-D Contrast Source Inversion-Electrical Properties Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2080-2089. [PMID: 29994520 DOI: 10.1109/tmi.2018.2816125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Contrast source inversion-electrical properties tomography (CSI-EPT) is an iterative reconstruction method to retrieve the electrical properties (EPs) of tissues from magnetic resonance data. The method is based on integral representations of the electromagnetic field and has been shown to allow EP reconstructions of small structures as well as tissue boundaries with compelling accuracy. However, to date, the CSI-EPT has been implemented for 2-D configurations only, which limits its applicability. In this paper, a full 3-D extension of the CSI-EPT method is presented, to enable CSI-EPT to be applied to realistic 3-D scenarios. Here, we demonstrate a proof-of-principle of 3-D CSI-EPT and present the reconstructions of a 3-D abdominal body section and a 3-D head model using different settings of the transmit coil. Numerical results show that the full 3-D approach yields accurate reconstructions of the EPs, even at tissue boundaries and is most accurate in regions where the absolute value of the electric field is highest.
Collapse
|
48
|
Sajib SZK, Kwon OI, Kim HJ, Woo EJ. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments. Biomed Eng Lett 2018; 8:273-282. [PMID: 30603211 PMCID: PMC6208539 DOI: 10.1007/s13534-018-0066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022] Open
Abstract
The electrical conductivity is a passive material property primarily determined by concentrations of charge carriers and their mobility. The macroscopic conductivity of a biological tissue at low frequency may exhibit anisotropy related with its structural directionality. When expressed as a tensor and properly quantified, the conductivity tensor can provide diagnostic information of numerous diseases. Imaging conductivity distributions inside the human body requires probing it by externally injecting conduction currents or inducing eddy currents. At low frequency, the Faraday induction is negligible and it has been necessary in most practical cases to inject currents through surface electrodes. Here we report a novel method to reconstruct conductivity tensor images using an MRI scanner without current injection. This electrodeless method of conductivity tensor imaging (CTI) utilizes B1 mapping to recover a high-frequency isotropic conductivity image which is influenced by contents in both extracellular and intracellular spaces. Multi-b diffusion weighted imaging is then utilized to extract the effects of the extracellular space and incorporate its directional structural property. Implementing the novel CTI method in a clinical MRI scanner, we reconstructed in vivo conductivity tensor images of canine brains. Depending on the details of the implementation, it may produce conductivity contrast images for conductivity weighted imaging (CWI). Clinical applications of CTI and CWI may include imaging of tumor, ischemia, inflammation, cirrhosis, and other diseases. CTI can provide patient-specific models for source imaging, transcranial dc stimulation, deep brain stimulation, and electroporation.
Collapse
Affiliation(s)
- Saurav Z. K. Sajib
- Department of Biomedical Engineering, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Korea
| | - Oh In Kwon
- Department of Mathematics, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 05029 Korea
| | - Hyung Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Korea
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Korea
| |
Collapse
|
49
|
Ryu K, Shin J, Lee H, Kim JH, Kim DH. Multi-echo GRE-based conductivity imaging using Kalman phase estimation method. Magn Reson Med 2018; 81:702-710. [DOI: 10.1002/mrm.27376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Kanghyun Ryu
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Jaewook Shin
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Hongpyo Lee
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| |
Collapse
|
50
|
Liu C, Jin J, Guo L, Li M, Tesiram Y, Chen H, Liu F, Xin X, Crozier S. MR-based electrical property tomography using a modified finite difference scheme. Phys Med Biol 2018; 63:145013. [PMID: 29897046 DOI: 10.1088/1361-6560/aacc35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance electrical property tomography (MR-EPT) reconstructs electrical properties (EPs) from measured magnetic fields in magnetic resonance imaging (MRI) systems. In this study, an MR-EPT method was proposed that utilized a new finite difference approximation of the involved differential wave equation. Compared with existing MR-EPT approaches, the construction of the system matrix involves applying the first derivative twice based on a larger number of neighbouring finite-difference grids, which is different from a standard Laplacian operator on a regular grid structure, leading to a better conditioned linear inverse problem. With improved noise robustness, more faithful EPs can be obtained by the proposed method, particularly at tissue boundaries and regions with a poorly measured magnetic field (low signal-to-noise ratio). Numerical simulations with a specially designed multi-slice phantom and an anatomically accurate head model (Duke) have demonstrated that the proposed method can provide a more faithful reconstruction of EPs compared to existing methods, which usually offer unreliable solutions associated with traditional finite difference approximation of the central wave equation and unrealistic assumptions. Experiments on a 9.4 T MRI system have been conducted to validate the simulations.
Collapse
Affiliation(s)
- Chunyi Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|