1
|
Bøgh N, Grist JT, Rasmussen CW, Bertelsen LB, Hansen ESS, Blicher JU, Tyler DJ, Laustsen C. Lactate saturation limits bicarbonate detection in hyperpolarized 13 C-pyruvate MRI of the brain. Magn Reson Med 2022; 88:1170-1179. [PMID: 35533254 PMCID: PMC9322338 DOI: 10.1002/mrm.29290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the potential effects of [1-13 C]lactate RF saturation pulses on [13 C]bicarbonate detection in hyperpolarized [1-13 C]pyruvate MRI of the brain. METHODS Thirteen healthy rats underwent MRI with hyperpolarized [1-13 C]pyruvate of either the brain (n = 8) or the kidneys, heart, and liver (n = 5). Dynamic, metabolite-selective imaging was used in a cross-over experiment in which [1-13 C]lactate was excited with either 0° or 90° flip angles. The [13 C]bicarbonate SNR and apparent [1-13 C]pyruvate-to-[13 C]bicarbonate conversion (kPB ) were determined. Furthermore, simulations were performed to identify the SNR optimal flip-angle scheme for detection of [1-13 C]lactate and [13 C]bicarbonate. RESULTS In the brain, the [13 C]bicarbonate SNR was 64% higher when [1-13 C]lactate was not excited (5.8 ± 1.5 vs 3.6 ± 1.3; 1.2 to 3.3-point increase; p = 0.0027). The apparent kPB decreased 25% with [1-13 C]lactate saturation (0.0047 ± 0.0008 s-1 vs 0.0034 ± 0.0006 s-1 ; 95% confidence interval, 0.0006-0.0019 s-1 increase; p = 0.0049). These effects were not present in the kidneys, heart, or liver. Simulations suggest that the optimal [13 C]bicarbonate SNR with a TR of 1 s in the brain is obtained with [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]pyruvate flip angles of 60°, 15°, and 10°, respectively. CONCLUSIONS Radiofrequency saturation pulses on [1-13 C]lactate limit [13 C]bicarbonate detection in the brain specifically, which could be due to shuttling of lactate from astrocytes to neurons. Our results have important implications for experimental design in studies in which [13 C]bicarbonate detection is warranted.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - James T. Grist
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Oxford Center for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
- Department of RadiologyOxford University HospitalsOxfordUK
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Camilla W. Rasmussen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lotte B. Bertelsen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Esben S. S. Hansen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jakob U. Blicher
- Center for Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeurologyAalborg University HospitalAalborgDenmark
| | - Damian J. Tyler
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Oxford Center for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
2
|
Ros S, Wright AJ, Bruna A, Caldas C, Brindle KM. Metabolic imaging with hyperpolarized [1- 13C] pyruvate in patient-derived preclinical mouse models of breast cancer. STAR Protoc 2021; 2:100608. [PMID: 34189473 PMCID: PMC8220404 DOI: 10.1016/j.xpro.2021.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
13C nuclear spin hyperpolarization can increase the sensitivity of detection in an MRI experiment by more than 10,000-fold. 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool can be used clinically to assess tumor grade and response to treatment. We describe here an experimental protocol for using this technique in patient-derived and established cell line xenograft models of breast cancer in the mouse. For complete details on the use and execution of this protocol, please refer to Ros et al. (2020).
Collapse
Affiliation(s)
- Susana Ros
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alan J. Wright
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Rao Y, Gammon ST, Sutton MN, Zacharias NM, Bhattacharya P, Piwnica-Worms D. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. J Biol Chem 2021; 297:100775. [PMID: 34022218 PMCID: PMC8233206 DOI: 10.1016/j.jbc.2021.100775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.
Collapse
Affiliation(s)
- Yi Rao
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Seth T Gammon
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Margie N Sutton
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Niki M Zacharias
- Department of Urology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pratip Bhattacharya
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - David Piwnica-Worms
- Department of Cancer System Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
4
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
5
|
Kishimoto S, Oshima N, Krishna MC, Gillies RJ. Direct and indirect assessment of cancer metabolism explored by MRI. NMR IN BIOMEDICINE 2019; 32:e3966. [PMID: 30169896 DOI: 10.1002/nbm.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance-based approaches to obtain metabolic information on cancer have been explored for decades. Electron paramagnetic resonance (EPR) has been developed to pursue metabolic profiling and successfully used to monitor several physiologic parameters such as pO2 , pH, and redox status. All these parameters are associated with pathophysiology of various diseases. Especially in oncology, cancer hypoxia has been intensively studied because of its relationship with metabolic alterations, acquiring treatment resistance, or a malignant phenotype. Thus, pO2 imaging leads to an indirect metabolic assessment in this regard. Proton electron double-resonance imaging (PEDRI) is an imaging technique to visualize EPR by using the Overhauser effect. Most biological parameters assessed in EPR can be visualized using PEDRI. However, EPR and PEDRI have not been evaluated sufficiently for clinical application due to limitations such as toxicity of the probes or high specific absorption rate. Hyperpolarized (HP) 13 C MRI is a novel imaging technique that can directly visualize the metabolic profile. Production of metabolites of the HP 13 C probe delivered to target tissue are evaluated in this modality. Unlike EPR or PEDRI, which require the injection of radical probes, 13 C MRI requires a probe that can be physiologically metabolized and efficiently hyperpolarized. Among several methods for hyperpolarizing probes, dissolution dynamic nuclear hyperpolarization is a widely used technique for in vivo imaging. Pyruvate is the most suitable probe for HP 13 C MRI because it is part of the glycolytic pathway and the high efficiency of pyruvate-to-lactate conversion is a distinguishing feature of cancer. Its clinical applicability also makes it a promising metabolic imaging modality. Here, we summarize the applications of these indirect and direct MR-based metabolic assessments focusing on pO2 and pyruvate-to-lactate conversion. The two parameters are strongly associated with each other, hence the acquired information is potentially interchangeable when evaluating treatment response to oxygen-dependent cancer therapies.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Nobu Oshima
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
6
|
Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J, Devasahayam N, Mitchell JB, Krishna MC. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget 2018; 9:25089-25100. [PMID: 29861855 PMCID: PMC5982751 DOI: 10.18632/oncotarget.25317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
To examine the relationship between local oxygen partial pressure and energy metabolism in the tumor, electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) with hyperpolarized [1-13C] pyruvate were performed. SCCVII and HT29 solid tumors implanted in the mouse leg were imaged by EPRI using OX063, a paramagnetic probe and 13C-MRI using hyperpolarized [1-13C] pyruvate. Local partial oxygen pressure and pyruvate metabolism in the two tumor implants were examined. The effect of a single dose of 5-Gy irradiation on the pO2 and metabolism was also investigated by sequential imaging of EPRI and 13C-MRI in HT29 tumors. A phantom study using tubes filled with different concentration of [1-13C] pyruvate, [1-13C] lactate, and OX063 at different levels of oxygen confirmed the validity of this sequential imaging of EPRI and hyperpolarized 13C-MRI. In vivo studies revealed SCCVII tumor had a significantly larger hypoxic fraction (pO2 < 8 mmHg) compared to HT29 tumor. The flux of pyruvate-to-lactate conversion was also higher in SCCVII than HT29. The lactate-to-pyruvate ratio in hypoxic regions (pO2 < 8 mmHg) 24 hours after 5-Gy irradiation was significantly higher than those without irradiation (0.76 vs. 0.36) in HT29 tumor. The in vitro study showed an increase in extracellular acidification rate after irradiation. In conclusion, co-imaging of pO2 and pyruvate-to-lactate conversion kinetics successfully showed the local metabolic changes especially in hypoxic area induced by radiation therapy.
Collapse
Affiliation(s)
- Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tatsuya Kawai
- Radiation Oncology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE. Hyperpolarized [1- 13C]-Pyruvate Magnetic Resonance Spectroscopic Imaging of Prostate Cancer In Vivo Predicts Efficacy of Targeting the Warburg Effect. Clin Cancer Res 2018; 24:3137-3148. [PMID: 29599412 DOI: 10.1158/1078-0432.ccr-17-1957] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Purpose: To evaluate the potential of hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging (MRSI) of prostate cancer as a predictive biomarker for targeting the Warburg effect.Experimental Design: Two human prostate cancer cell lines (DU145 and PC3) were grown as xenografts. The conversion of pyruvate to lactate in xenografts was measured with hyperpolarized [1-13C]-pyruvate MRSI after systemic delivery of [1-13C] pyruvic acid. Steady-state metabolomic analysis of xenograft tumors was performed with mass spectrometry and steady-state lactate concentrations were measured with proton (1H) MRS. Perfusion and oxygenation of xenografts were measured with electron paramagnetic resonance (EPR) imaging with OX063. Tumor growth was assessed after lactate dehydrogenase (LDH) inhibition with FX-11 (42 μg/mouse/day for 5 days × 2 weekly cycles). Lactate production, pyruvate uptake, extracellular acidification rates, and oxygen consumption of the prostate cancer cell lines were analyzed in vitro LDH activity was assessed in tumor homogenates.Results: DU145 tumors demonstrated an enhanced conversion of pyruvate to lactate with hyperpolarized [1-13C]-pyruvate MRSI compared with PC3 and a corresponding greater sensitivity to LDH inhibition. No difference was observed between PC3 and DU145 xenografts in steady-state measures of pyruvate fermentation, oxygenation, or perfusion. The two cell lines exhibited similar sensitivity to FX-11 in vitro LDH activity correlated to FX-11 sensitivity.Conclusions: Hyperpolarized [1-13C]-pyruvate MRSI of prostate cancer predicts efficacy of targeting the Warburg effect. Clin Cancer Res; 24(13); 3137-48. ©2018 AACR.
Collapse
Affiliation(s)
- Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jeeva P Munasinghe
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vivian Diaz
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Ichikawa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
8
|
Takakusagi Y, Kishimoto S, Naz S, Matsumoto S, Saito K, Hart CP, Mitchell JB, Krishna MC. Radiotherapy Synergizes with the Hypoxia-Activated Prodrug Evofosfamide: In Vitro and In Vivo Studies. Antioxid Redox Signal 2018; 28:131-140. [PMID: 28741367 PMCID: PMC5725636 DOI: 10.1089/ars.2017.7106] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Evofosfamide (TH-302) is a hypoxia-activated prodrug (HAP) that releases the DNA-damaging bromo-isophosphoramide mustard (Br-IPM) moiety selectively under hypoxic conditions. Since solid tumors are known to have hypoxic regions, HAPs in combination with chemotherapy or radiotherapy (XRT) will be beneficial. We tested the oxygen dependence of release kinetics of Br-IPM using electron paramagnetic resonance (EPR) with spin trapping by monitoring redox cycling of the nitroimidazole moiety of TH-302, and oxygen dependence of TH-302 on in vitro cytotoxicity at different levels of hypoxia was also examined. Two tumor implants (SCCVII and HT29) in mice were studied. RESULTS TH-302 fragmentation to release Br-IPM was noticed at oxygen levels <76 mmHg, which increased with higher levels of hypoxia. Enhanced cellular cytotoxicity was also observed at oxygen levels <76 mmHg. In vivo pO2 imaging in the two tumor implants showed that the SCCVII tumor implant had higher level of hypoxia compared with the HT29 xenograft. TH-302 as a monotherapy in vivo showed modest effects in SCCVII implants and minimal effects in HT29 xenografts, whereas TH-302 in combination with ionizing radiation showed significant benefit in both tumor models. INNOVATION We examined the kinetics of redox cycling versus fragmentation of TH-302. The combination of oxygen-dependent XRT with TH-302 is effective even in tumors with significant hypoxia. CONCLUSIONS Imaging studies identifying the magnitude of hypoxia in tumors indicated that the responsiveness to TH-302 and the antitumor effect of TH-302 were enhanced by combining with XRT in both the TH-302-sensitive SCCVII tumor and -resistant HT29 tumor. Antioxid. Redox Signal. 28, 131-140.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland.,2 National Institutes for Quantum and Radiological Science and Technology , Chiba, Japan
| | - Shun Kishimoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Sarwat Naz
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Shingo Matsumoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland.,3 Graduate School of Information Science and Technology, Hokkaido University , Sapporo, Japan
| | - Keita Saito
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Charles P Hart
- 4 Threshold Pharmaceuticals, Inc. , South San Francisco, California
| | - James B Mitchell
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Murali C Krishna
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| |
Collapse
|
9
|
Epel B, Kotecha M, Halpern HJ. In vivo preclinical cancer and tissue engineering applications of absolute oxygen imaging using pulse EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:149-157. [PMID: 28552587 DOI: 10.1016/j.jmr.2017.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
The value of any measurement and a fortiori any measurement technology is defined by the reproducibility and the accuracy of the measurements. This implies a relative freedom of the measurement from factors confounding its accuracy. In the past, one of the reasons for the loss of focus on the importance of imaging oxygen in vivo was the difficulty in obtaining reproducible oxygen or pO2 images free from confounding variation. This review will briefly consider principles of electron paramagnetic oxygen imaging and describe how it achieves absolute oxygen measurements. We will provide a summary review of the progress in biomedical EPR imaging, predominantly in cancer biology research, discuss EPR oxygen imaging for cancer treatment and tissue graft assessment for regenerative medicine applications.
Collapse
Affiliation(s)
- Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States
| | - Mrignayani Kotecha
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago IL 60607, United States
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States; Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
10
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
11
|
De Souza R, Spence T, Huang H, Allen C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J Control Release 2015; 219:313-330. [PMID: 26409122 DOI: 10.1016/j.jconrel.2015.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.
Collapse
Affiliation(s)
- Raquel De Souza
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Tara Spence
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Huang Huang
- DLVR Therapeutics, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
12
|
Iversen AB, Ringgaard S, Laustsen C, Stødkilde-Jørgensen H, Bentzen L, Busk M, Horsman MR. Hyperpolarized magnetic resonance spectroscopy for assessing tumor hypoxia. Acta Oncol 2015; 54:1393-8. [PMID: 26340044 DOI: 10.3109/0284186x.2015.1070964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Hypoxic tumor cells are radioresistant, therefore, identification of hypoxia is crucial. Hyperpolarized magnetic resonance spectroscopy (HPMRS) allows real time measurements of the conversion of pyruvate to lactate, the final step of anaerobic energy production, and may thus allow non-invasive identification of hypoxia or treatment-induced changes in oxygenation. The aim of the study was to investigate the usefulness of HPMRS as a means to assess tumor hypoxia and its dynamics during intervention. MATERIAL AND METHODS C3H mammary carcinomas grown in CDF1 mice were used. To manipulate with tumor oxygenation, non-anaesthetized mice were gassed with air, 10% or 100% oxygen prior to administration of hyperpolarized [1-¹³C]pyruvate and HPMRS analysis. A direct assessment of tumor oxygen partial pressure (pO2) distributions were made using the Eppendorf oxygen electrode in a separate, but similarly treated, group of mice. RESULTS Even though breathing 100% oxygen improved tumor oxygenation as evidenced by pO2 measurements, the mean (with 1 S.E.) [1-¹³C]lactate/[1-¹³C]pyruvate ratio was unaffected by this intervention, being 34 (30-37) in mice breathing air and 37 (33-42) in mice breathing 100% oxygen. In contrast, and in accordance with pO2 measurements, a significant increase in the [1-¹³C]lactate/[1-¹³C]pyruvate ratio was seen in 10% oxygen-breathing mice with a ratio of 46 (42-50). CONCLUSIONS Although, no metabolic change was observed during 100% O2 breathing using HPMRS, the significant increase in the [1-¹³C]lactate/[1-¹³C]pyruvate ratio during 10% oxygen breathing suggests, that HPMRS can detect hypoxia-driven changes in the metabolic fate of pyruvate. To what extent and for what purposes HPMRS may best supplement or complement established techniques like hypoxia PET needs to be unraveled in future research.
Collapse
Affiliation(s)
- Ane B Iversen
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - Steffen Ringgaard
- b Institute for Clinical Medicine, The MR Research Centre , Aarhus N , Denmark
| | | | | | - Lise Bentzen
- c Department of Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - Morten Busk
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - Michael R Horsman
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus C , Denmark
| |
Collapse
|
13
|
Bluff JE, Reynolds S, Metcalf S, Alizadeh T, Kazan SM, Bucur A, Wholey EG, Bibby BAS, Williams L, Paley MN, Tozer GM. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate. Radiother Oncol 2015; 116:392-9. [PMID: 25824978 PMCID: PMC4612449 DOI: 10.1016/j.radonc.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/11/2022]
Abstract
Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation.
Collapse
Affiliation(s)
- Joanne E Bluff
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK.
| | - Stephen Metcalf
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Tooba Alizadeh
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Samira M Kazan
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Adriana Bucur
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Emily G Wholey
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Becky A S Bibby
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Leigh Williams
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Cardiovascular Science, University of Sheffield, UK
| | - Gillian M Tozer
- Tumour Microcirculation Group, Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, UK
| |
Collapse
|
14
|
Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302. Cancer Metab 2015; 3:2. [PMID: 25635223 PMCID: PMC4310189 DOI: 10.1186/s40170-014-0026-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Results Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized 13C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Conclusions Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to pyruvate + TH-302 combination therapy. The results of this study support the concept that acute increases in tumor hypoxia can be beneficial for improving the clinical efficacy of HAPs and can positively impact the future treatment of PDAC and other cancers. Electronic supplementary material The online version of this article (doi:10.1186/s40170-014-0026-z) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Bailey KM, Cornnell HH, Ibrahim-Hashim A, Wojtkowiak JW, Hart CP, Zhang X, Leos R, Martinez GV, Baker AF, Gillies RJ. Evaluation of the "steal" phenomenon on the efficacy of hypoxia activated prodrug TH-302 in pancreatic cancer. PLoS One 2014; 9:e113586. [PMID: 25532146 PMCID: PMC4273999 DOI: 10.1371/journal.pone.0113586] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/26/2014] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the "steal" phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a "steal" effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA) immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia.
Collapse
Affiliation(s)
- Kate M. Bailey
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612, United States of America
| | - Heather H. Cornnell
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Jonathan W. Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Charles P. Hart
- Threshold Pharmaceuticals, South San Francisco, California 94080, United States of America
| | - Xiaomeng Zhang
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Rafael Leos
- Arizona Cancer Center, Hematology/Oncology Section, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States of America
| | - Gary V. Martinez
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
| | - Amanda F. Baker
- Arizona Cancer Center, Hematology/Oncology Section, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States of America
| | - Robert J. Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States of America
- * E-mail:
| |
Collapse
|
16
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Takakusagi Y, Matsumoto S, Saito K, Matsuo M, Kishimoto S, Wojtkowiak JW, DeGraff W, Kesarwala AH, Choudhuri R, Devasahayam N, Subramanian S, Munasinghe JP, Gillies RJ, Mitchell JB, Hart CP, Krishna MC. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302. PLoS One 2014; 9:e107995. [PMID: 25254649 PMCID: PMC4177858 DOI: 10.1371/journal.pone.0107995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. Methodology/Results The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and invivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500–1500 mm3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼550 mm3), significantly delayed tumor growth. Conclusions/Significance Our invitro and invivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jonathan W. Wojtkowiak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - William DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sankaran Subramanian
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeeva P. Munasinghe
- National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, United States of America
| | - Robert J. Gillies
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Charles P. Hart
- Threshold Pharmaceuticals, South San Francisco, California, United States of America
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sandulache VC, Chen Y, Lee J, Rubinstein A, Ramirez MS, Skinner HD, Walker CM, Williams MD, Tailor R, Court LE, Bankson JA, Lai SY. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS One 2014; 9:e87031. [PMID: 24475215 PMCID: PMC3903593 DOI: 10.1371/journal.pone.0087031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/18/2013] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-13C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.
Collapse
Affiliation(s)
- Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jaehyuk Lee
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ashley Rubinstein
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marc S. Ramirez
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Heath D. Skinner
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Christopher M. Walker
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michelle D. Williams
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ramesh Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James A. Bankson
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Xing Y, Reed GD, Pauly JM, Kerr AB, Larson PEZ. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:75-81. [PMID: 23845910 PMCID: PMC3765634 DOI: 10.1016/j.jmr.2013.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 05/22/2023]
Abstract
In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-(13)C]lactate generated from [1-(13)C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.
Collapse
Affiliation(s)
- Yan Xing
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Galen D. Reed
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - John M. Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| | - Adam B. Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| |
Collapse
|
20
|
Witte C, Schröder L. NMR of hyperpolarised probes. NMR IN BIOMEDICINE 2013; 26:788-802. [PMID: 23033215 DOI: 10.1002/nbm.2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Increasing the sensitivity of NMR experiments is an ongoing field of research to help realise the exquisite molecular specificity of this technique. Hyperpolarisation of various nuclei is a powerful approach that enables the use of NMR for molecular and cellular imaging. Substantial progress has been achieved over recent years in terms of both tracer preparation and detection schemes. This review summarises recent developments in probe design and optimised signal encoding, and promising results in sensitive disease detection and efficient therapeutic monitoring. The different methods have great potential to provide molecular specificity not available by other diagnostic modalities.
Collapse
Affiliation(s)
- Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
21
|
Larson PEZ, Kerr AB, Swisher CL, Pauly JM, Vigneron DB. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 225:71-80. [PMID: 23143011 PMCID: PMC3531583 DOI: 10.1016/j.jmr.2012.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.
Collapse
Affiliation(s)
- Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 1700 4th St, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
23
|
Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ. Targeting the metabolic microenvironment of tumors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:63-107. [PMID: 22959024 DOI: 10.1016/b978-0-12-397927-8.00004-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The observation of aerobic glycolysis by tumor cells in 1924 by Otto Warburg, and subsequent innovation of imaging glucose uptake by tumors in patients with PET-CT, has incited a renewed interest in the altered metabolism of tumors. As tumors grow in situ, a fraction of it is further away from their blood supply, leading to decreased oxygen concentrations (hypoxia), which induces the hypoxia response pathways of HIF1α, mTOR, and UPR. In normal tissues, these responses mitigate hypoxic stress and induce neoangiogenesis. In tumors, these pathways are dysregulated and lead to decreased perfusion and exacerbation of hypoxia as a result of immature and chaotic blood vessels. Hypoxia selects for a glycolytic phenotype and resultant acidification of the tumor microenvironment, facilitated by upregulation of proton transporters. Acidification selects for enhanced metastatic potential and reduced drug efficacy through ion trapping. In this review, we provide a comprehensive summary of preclinical and clinical drugs under development for targeting aerobic glycolysis, acidosis, hypoxia and hypoxia response pathways. Hypoxia and acidosis can be manipulated, providing further therapeutic benefit for cancers that feature these common phenotypes.
Collapse
Affiliation(s)
- Kate M Bailey
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | |
Collapse
|