1
|
Weis J, Jafar M, Liss P. Phosphorus MRS of healthy human spleen. NMR IN BIOMEDICINE 2022; 35:e4779. [PMID: 35642280 PMCID: PMC9540626 DOI: 10.1002/nbm.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (31 P-) MRS in vivo enables detection and quantification of important phosphorus-containing metabolites in biological tissues. 31 P-MRS of the normal spleen is challenging due to the relatively small volume and the larger distance between the spleen and surface coil. However, reference spectra of the healthy spleen are invaluable in studies of splenic malignancies and benign causes of splenomegaly, as well as in the study of its physiology. The purpose of this work was to investigate the feasibility of localized 31 P-MRS of healthy spleen in situ in a clinically acceptable measurement time using a clinical 3 T MR scanner. In this work, 31 P spectra of five healthy volunteers were measured using single-voxel image-selected in vivo spectroscopy (ISIS). The measurement sequence was augmented by broadband proton decoupling and nuclear Overhauser effect enhancement. It is demonstrated that localized 31 P-MRS of the spleen in situ using single-voxel ISIS is feasible on a clinical 3 T scanner in a clinically acceptable acquisition time. However, results have to be corrected for the transmitter excitation profile, and chemical shift displacement errors need to be taken into consideration during placement of the volume of interest. Results presented here could be used as a reference in future studies of splenomegaly caused by haematological malignancies.
Collapse
Affiliation(s)
- Jan Weis
- Department of Medical PhysicsUppsala University HospitalUppsalaSweden
| | | | - Per Liss
- Section of Radiology, Department of Surgical SciencesUniversity HospitalUppsalaSweden
| |
Collapse
|
2
|
Riemann LT, Aigner CS, Ellison SLR, Brühl R, Mekle R, Schmitter S, Speck O, Rose G, Ittermann B, Fillmer A. Assessment of measurement precision in single-voxel spectroscopy at 7 T: Toward minimal detectable changes of metabolite concentrations in the human brain in vivo. Magn Reson Med 2021; 87:1119-1135. [PMID: 34783376 DOI: 10.1002/mrm.29034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. METHODS An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin-echo, full-intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér-Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland-Altman analysis and a restricted maximum-likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland-Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. RESULTS For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient-modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day-to-day variations throughout different sessions. CONCLUSION A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.
Collapse
Affiliation(s)
| | | | | | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Oliver Speck
- Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany.,Research Campus STIMULATE, Magdeburg, Germany
| | - Georg Rose
- Research Campus STIMULATE, Magdeburg, Germany.,Institut für Medizintechnik, Otto-von-Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
| | - Ariane Fillmer
- Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
| |
Collapse
|
3
|
Dorst J, Ruhm L, Avdievich N, Bogner W, Henning A. Comparison of four 31P single-voxel MRS sequences in the human brain at 9.4 T. Magn Reson Med 2021; 85:3010-3026. [PMID: 33427322 DOI: 10.1002/mrm.28658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including β-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Santos-Díaz A, Noseworthy MD. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Bashir A, Zhang J, Denney TS. Creatine kinase rate constant in the human heart at 7T with 1D-ISIS/2D CSI localization. PLoS One 2020; 15:e0229933. [PMID: 32191723 PMCID: PMC7081998 DOI: 10.1371/journal.pone.0229933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Creatine Kinase (CK) reaction plays an important role in energy metabolism and estimate of its reaction rate constant in heart provides important insight into cardiac energetics. Fast saturation transfer method ([Formula: see text] nominal) to measure CK reaction rate constant (kf) was previously demonstrated in open chest swine hearts. The goal of this work is to further develop this method for measuring the kf in human myocardium at 7T. [Formula: see text] approach is combined with 1D-ISIS/2D-CSI for in vivo spatial localization and myocardial CK forward rate constant was then measured in 7 volunteers at 7T. METHODS [Formula: see text] method uses two partially relaxed saturation transfer (ST) spectra and correction factor to determine CK rate constant. Correction factor is determined by numerical simulation of Bloch McConnell equations using known spin and experimental parameters. Optimal parameters and error estimate in calculation of CK reaction rate constant were determined by simulations. The technique was validated in calf muscles by direct comparison with saturation transfer measurements. [Formula: see text] pulse sequence was incorporated with 1D-image selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging (1D-ISIS/2D-CSI) for studies in heart. The myocardial CK reaction rate constant was then measured in 7 volunteers. RESULTS Skeletal muscle kf determined by conventional approach and [Formula: see text] approach were the same 0.31 ± 0.02 s-1 and 0.30 ± 0.04 s-1 demonstrating the validity of the technique. Results are reported as mean ± SD. Myocardial CK reaction rate constant was 0.29 ± 0.05 s-1, consistent with previously reported studies. CONCLUSION [Formula: see text] method enables acquisition of 31P saturation transfer MRS under partially relaxed conditions and enables 2D-CSI of kf in myocardium. This work enables applications for in vivo CSI imaging of energetics in heart and other organs in clinically relevant acquisition time.
Collapse
Affiliation(s)
- Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas S. Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
6
|
Vidya Shankar R, Chang JC, Hu HH, Kodibagkar VD. Fast data acquisition techniques in magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2019; 32:e4046. [PMID: 30637822 DOI: 10.1002/nbm.4046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is an important technique for assessing the spatial variation of metabolites in vivo. The long scan times in MRSI limit clinical applicability due to patient discomfort, increased costs, motion artifacts, and limited protocol flexibility. Faster acquisition strategies can address these limitations and could potentially facilitate increased adoption of MRSI into routine clinical protocols with minimal addition to the current anatomical and functional acquisition protocols in terms of imaging time. Not surprisingly, a lot of effort has been devoted to the development of faster MRSI techniques that aim to capture the same underlying metabolic information (relative metabolite peak areas and spatial distribution) as obtained by conventional MRSI, in greatly reduced time. The gain in imaging time results, in some cases, in a loss of signal-to-noise ratio and/or in spatial and spectral blurring. This review examines the current techniques and advances in fast MRSI in two and three spatial dimensions and their applications. This review categorizes the acceleration techniques according to their strategy for acquisition of the k-space. Techniques such as fast/turbo-spin echo MRSI, echo-planar spectroscopic imaging, and non-Cartesian MRSI effectively cover the full k-space in a more efficient manner per TR . On the other hand, techniques such as parallel imaging and compressed sensing acquire fewer k-space points and employ advanced reconstruction algorithms to recreate the spatial-spectral information, which maintains statistical fidelity in test conditions (ie no statistically significant differences on voxel-wise comparisions) with the fully sampled data. The advantages and limitations of each state-of-the-art technique are reviewed in detail, concluding with a note on future directions and challenges in the field of fast spectroscopic imaging.
Collapse
Affiliation(s)
- Rohini Vidya Shankar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - John C Chang
- Banner M D Anderson Cancer Center, Gilbert, AZ, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Houchun H Hu
- Department of Radiology and Medical Imaging, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
7
|
Santos-Díaz A, Harasym D, Noseworthy MD. Dynamic 31 P spectroscopic imaging of skeletal muscles combining flyback echo-planar spectroscopic imaging and compressed sensing. Magn Reson Med 2019; 81:3453-3461. [PMID: 30737840 DOI: 10.1002/mrm.27682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE Dynamic phosphorus MR spectroscopic imaging (31 P-MRSI) experiments require temporal resolution on the order of seconds to concurrently assess different muscle groups. A highly accelerated pulse sequence combining flyback echo-planar spectroscopic imaging (EPSI) and compressed sensing was developed and tested in a phantom and healthy humans during an exercise-recovery challenge of the lower leg muscles, using a clinical 3T MRI. METHODS A flyback EPSI readout designed to achieve 2.25 × 2.25 cm2 resolution over a 18 × 18 cm2 field of view (i.e., 8 × 8 matrix) was combined with compressed sensing through the inclusion of pseudorandom gradient blips to sub-sample the ky-kt dimensions by a factor of 2.7×, achieving a temporal resolution of 9 s. The sequence was first tested in a phantom to assess performance compared to fully sampled EPSI (fidEPSI) and phase encoded chemical shift imaging (fidCSI). Then, tests were performed in 11 healthy volunteers during an exercise-recovery challenge of the lower leg muscles. Voxels containing tissue from different muscle groups were evaluated measuring percentage phosphocreatine (%PCr) depletion, time constant of PCr recovery (τPCr) and intracellular pH at rest and following exercise. RESULTS The sequence was capable to track the dynamic PCr response of multiple muscles simultaneously. No statistical differences were found in the metabolite ratio, pH or linewidth when compared with fidEPSI and fidCSI in the phantom study. Dynamic experiments showed differences in PCr depletion when comparing soleus with gastrocnemius muscles. Intracellular pH, τPCr and %PCr decrease were consistent with reported values. CONCLUSION Highly accelerated 31 P-MRSI combining flyback EPSI and compressed sensing is capable of assessing concurrent energy metabolism in multiple muscle groups using a clinical 3T MR system.
Collapse
Affiliation(s)
- Alejandro Santos-Díaz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.,Imaging Research Center, St. Joseph's Healthcare, Hamilton, Ontario, Canada.,Electrical and Computing Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
9
|
Abdurrachim D, Prompers JJ. Evaluation of cardiac energetics by non-invasive 31P magnetic resonance spectroscopy. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1939-1948. [PMID: 29175056 DOI: 10.1016/j.bbadis.2017.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 01/10/2023]
Abstract
Alterations in myocardial energy metabolism have been implicated in the pathophysiology of cardiac diseases such as heart failure and diabetic cardiomyopathy. 31P magnetic resonance spectroscopy (MRS) is a powerful tool to investigate cardiac energetics non-invasively in vivo, by detecting phosphorus (31P)-containing metabolites involved in energy supply and buffering. In this article, we review the historical development of cardiac 31P MRS, the readouts used to assess cardiac energetics from 31P MRS, and how 31P MRS studies have contributed to the understanding of cardiac energy metabolism in heart failure and diabetes. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Functional Metabolism Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Traussnigg S, Kienbacher C, Gajdošík M, Valkovič L, Halilbasic E, Stift J, Rechling C, Hofer H, Steindl‐Munda P, Ferenci P, Wrba F, Trattnig S, Krššák M, Trauner M. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis. Liver Int 2017; 37:1544-1553. [PMID: 28544208 PMCID: PMC5638103 DOI: 10.1111/liv.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) non-invasive tools obtaining pathomechanistic insights to improve risk stratification are urgently needed. We therefore explored high- and ultra-high-field magnetic resonance spectroscopy (MRS) to obtain novel mechanistic and diagnostic insights into alterations of hepatic lipid, cell membrane and energy metabolism across the spectrum of NAFLD. METHODS MRS and liver biopsy were performed in 30 NAFLD patients with NAFL (n=8) or NASH (n=22). Hepatic lipid content and composition were measured using 3-Tesla proton (1 H)-MRS. 7-Tesla phosphorus (31 P)-MRS was applied to determine phosphomonoester (PME) including phosphoethanolamine (PE), phosphodiester (PDE) including glycerophosphocholine (GPC), phosphocreatine (PCr), nicotinamide adenine dinucleotide phosphate (NADPH), inorganic phosphate (Pi), γ-ATP and total phosphorus (TP). Saturation transfer technique was used to quantify hepatic ATP flux. RESULTS Hepatic steatosis in 1 H-MRS highly correlated with histology (P<.001) showing higher values in NASH than NAFL (P<.001) without differences in saturated or unsaturated fatty acid indices. PE/TP ratio increased with advanced fibrosis (F3/4) (P=.002) whereas GPC/PME+PDE decreased (P=.05) compared to no/mild fibrosis (F0-2). γ-ATP/TP was lower in advanced fibrosis (P=.049), while PCr/TP increased (P=.01). NADPH/TP increased with higher grades of ballooning (P=.02). Pi-to-ATP exchange rate constant (P=.003) and ATP flux (P=.001) were lower in NASH than NAFL. CONCLUSIONS Ultra-high-field MRS, especially saturation transfer technique uncovers changes in energy metabolism including dynamic ATP flux in inflammation and fibrosis in NASH. Non-invasive profiling by MRS appears feasible and may assist further mechanistic and therapeutic studies in NAFLD/NASH.
Collapse
Affiliation(s)
- Stefan Traussnigg
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Kienbacher
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Martin Gajdošík
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Ladislav Valkovič
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Department of Imaging MethodsInstitute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
| | - Emina Halilbasic
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Judith Stift
- Department of Clinical PathologyMedical University of ViennaViennaAustria
| | - Christian Rechling
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Harald Hofer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Petra Steindl‐Munda
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Peter Ferenci
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Fritz Wrba
- Department of Clinical PathologyMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Martin Krššák
- High‐Field MR CenterDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Abstract
PURPOSE Conventional 31 P chemical shift imaging is time-consuming and yields only limited spatial resolution. The purpose of this study was to demonstrate feasibility of 31 P echo-planar spectroscopic imaging (EPSI) in vivo at 7T. METHODS A 3D 31 P EPSI sequence with trapezoidal-shaped gradient pulses was implemented on a 7T MR scanner. To increase spectral width with reduced demand on gradient performance, a multishot approach was chosen. Acquisition weighting and 31 P-{1 H} double resonance for nuclear Overhauser signal enhancement were applied to increase sensitivity. RESULTS 3D 31 P-{1 H} EPSI data from model solution and from human calf muscle and brain were obtained from voxels with effective sizes of 4.1 to 16.2 cm3 in measurement times of approximately 10 min. Individual spectra showed well-resolved resonances of endogenous 31 P-metabolites without artifacts. Volumetric high-resolution 31 P-metabolite maps in vivo showed metabolic heterogeneity of different tissues. CONCLUSION In vivo 31 P EPSI at 7T yields high-quality metabolic images. The proposed multishot EPSI technique reduces the measurement times for acquisition of volumetric high-resolution maps of 31 P-metabolites or intracellular pH in human studies. Magn Reson Med 79:1251-1259, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andreas Korzowski
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| |
Collapse
|
12
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Valkovič L, Chmelík M, Meyerspeer M, Gagoski B, Rodgers CT, Krššák M, Andronesi OC, Trattnig S, Bogner W. Dynamic 31 P-MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T. NMR IN BIOMEDICINE 2016; 29:1825-1834. [PMID: 27862510 PMCID: PMC5132121 DOI: 10.1002/nbm.3662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 05/06/2023]
Abstract
Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scanner using an MR-compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral-encoded MRSI provided 16-25 times faster mapping with a better point spread function than elliptical phase-encoded MRSI with the same matrix size. The inevitable trade-off for the increased temporal resolution was a reduced signal-to-noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral-encoded 31 P-MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
- Department of Imaging Methods, Institute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Marek Chmelík
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Martin Meyerspeer
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science CenterBoston Children's HospitalBostonMassachusettsUSA
| | - Christopher T. Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Martin Krššák
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Siegfried Trattnig
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Wolfgang Bogner
- High‐Field MR CentreMedical University of ViennaViennaAustria
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| |
Collapse
|
14
|
Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K. (31)P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:579-89. [PMID: 26811174 DOI: 10.1007/s10334-016-0524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigation of the feasibility and performance of phosphorus ((31)P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a three-layered phosphorus/proton coil in human normal brain tissue and tumor. MATERIALS AND METHODS A multi-channel (31)P coil was designed to enable MRSI of the entire human brain. The performance of the coil was evaluated by means of electromagnetic field simulations and actual measurements. A 3D chemical shift imaging approach with a variable repetition time and flip angle was used to increase the achievable signal-to-noise ratio of the acquired (31)P spectra. The impact of the resulting k-space modulation was investigated by simulations. Three tumor patients and three healthy volunteers were scanned and differences between spectra from healthy and cancerous tissue were evaluated qualitatively. RESULTS The high sensitivity provided by the 27-channel (31)P coil allowed acquiring CSI data in 22 min with a nominal voxel size of 15 × 15 × 15 mm(3). Shimming and anatomical localization could be performed with the integrated four-channel proton dipole array. The amplitudes of the phosphodiesters and phosphoethanolamine appeared reduced in tumorous tissue for all three patients. A neutral or slightly alkaline pH was measured within the brain lesions. CONCLUSION These initial results demonstrate that (31)P 3D CSI is feasible at 9.4 T and could be performed successfully in healthy subjects and tumor patients in under 30 min.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany. .,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany.
| | - Gunamony Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Grzegorz Chadzynski
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
15
|
van de Bank BL, Orzada S, Smits F, Lagemaat MW, Rodgers CT, Bitz AK, Scheenen TWJ. Optimized (31)P MRS in the human brain at 7 T with a dedicated RF coil setup. NMR IN BIOMEDICINE 2015; 28:1570-8. [PMID: 26492089 PMCID: PMC4744789 DOI: 10.1002/nbm.3422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 05/03/2023]
Abstract
The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3) voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min).
Collapse
Affiliation(s)
- Bart L van de Bank
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Orzada
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
| | - Frits Smits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam W Lagemaat
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andreas K Bitz
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Erwin L. Hahn Institute, University Hospital Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Schmid AI, Meyerspeer M, Robinson SD, Goluch S, Wolzt M, Fiedler GB, Bogner W, Laistler E, Krššák M, Moser E, Trattnig S, Valkovič L. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using (31) P gradient-Echo MRI at 7 Tesla. Magn Reson Med 2015; 75:2324-31. [PMID: 26115021 DOI: 10.1002/mrm.25822] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE Simultaneous acquisition of spatially resolved (31) P-MRI data for evaluation of muscle specific energy metabolism, i.e., PCr and pH kinetics. METHODS A three-dimensional (3D) gradient-echo sequence for multiple frequency-selective excitations of the PCr and Pi signals in an interleaved sampling scheme was developed and tested at 7 Tesla (T). The pH values were derived from the chemical shift-induced phase difference between the resonances. The achieved spatial resolution was ∼2 mL with image acquisition time below 6 s. Ten healthy volunteers were studied performing plantar flexions during the delay between (31) P-MRI acquisitions, yielding a temporal resolution of 9-10 s. RESULTS Signal from anatomically matched regions of interest had sufficient signal-to-noise ratio to allow single-acquisition PCr and pH quantification. The Pi signal was clearly detected in voxels of actively exercising muscles. The PCr depletions were in gastrocnemius 42 ± 14% (medialis), 48 ± 17% (lateralis) and in soleus 20 ± 11%. The end exercise pH values were 6.74 ± 0.18 and 6.65 ± 0.27 for gastrocnemius medialis and lateralis, respectively, and 6.96 ± 0.12 for soleus muscle. CONCLUSION Simultaneous acquisition of PCr and Pi images with high temporal resolution, suitable for measuring PCr and pH kinetics in exercise-recovery experiments, was demonstrated at 7T. This study presents a fast alternative to MRS for quantifying energy metabolism of posterior muscle groups of the lower leg. Magn Reson Med 75:2324-2331, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albrecht Ingo Schmid
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Simon Daniel Robinson
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Sigrun Goluch
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michael Wolzt
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg Bernd Fiedler
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Elmar Laistler
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Ladislav Valkovič
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
17
|
Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, Tušek Jelenc M, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. NMR IN BIOMEDICINE 2014; 27:1346-1352. [PMID: 25199902 DOI: 10.1002/nbm.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/04/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Dynamic (31) P-MRS with sufficiently high temporal resolution enables the non-invasive evaluation of oxidative muscle metabolism through the measurement of phosphocreatine (PCr) recovery after exercise. Recently, single-voxel localized (31) P-MRS was compared with surface coil localization in a dynamic fashion, and was shown to provide higher anatomical and physiological specificity. However, the relatively long TE needed for the single-voxel localization scheme with adiabatic pulses limits the quantification of J-coupled spin systems [e.g. adenosine triphosphate (ATP)]. Therefore, the aim of this study was to evaluate depth-resolved surface coil MRS (DRESS) as an alternative localization method capable of free induction decay (FID) acquisition for dynamic (31) P-MRS at 7 T. The localization performance of the DRESS sequence was tested in a phantom. Subsequently, two dynamic examinations of plantar flexions at 25% of maximum voluntary contraction were conducted in 10 volunteers, one examination with and one without spatial localization. The DRESS slab was positioned obliquely over the gastrocnemius medialis muscle, avoiding other calf muscles. Under the same load, significant differences in PCr signal drop (31.2 ± 16.0% versus 43.3 ± 23.4%), end exercise pH (7.06 ± 0.02 versus 6.96 ± 0.11), initial recovery rate (0.24 ± 0.13 mm/s versus 0.35 ± 0.18 mm/s) and maximum oxidative flux (0.41 ± 0.14 mm/s versus 0.54 ± 0.16 mm/s) were found between the non-localized and DRESS-localized data, respectively. Splitting of the inorganic phosphate (Pi) signal was observed in several non-localized datasets, but in none of the DRESS-localized datasets. Our results suggest that the application of the DRESS localization scheme yielded good spatial selection, and provided muscle-specific insight into oxidative metabolism, even at a relatively low exercise load. In addition, the non-echo-based FID acquisition allowed for reliable detection of ATP resonances, and therefore calculation of the specific maximum oxidative flux, in the gastrocnemius medialis using standard assumptions about resting ATP concentration in skeletal muscle.
Collapse
Affiliation(s)
- Ladislav Valkovič
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; High Field MR Center, Medical University of Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krššák M. Novel labeling approaches for the assessment of human hepatic metabolism by in vivo magnetic resonance spectroscopy. Hepatology 2014; 59:2077-9. [PMID: 24700320 DOI: 10.1002/hep.27091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/19/2014] [Indexed: 12/07/2022]
Affiliation(s)
- Martin Krššák
- From the Division of Endocrinology and Metabolism, Department of Internal Medicine III, and High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Valkovič L, Gajdošík M, Traussnigg S, Wolf P, Chmelík M, Kienbacher C, Bogner W, Krebs M, Trauner M, Trattnig S, Krššák M. Application of localized ³¹P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease. Eur Radiol 2014; 24:1602-9. [PMID: 24647824 DOI: 10.1007/s00330-014-3141-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/10/2014] [Accepted: 02/27/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Saturation transfer (ST) phosphorus MR spectroscopy ((31)P MRS) enables in vivo insight into energy metabolism and thus could identify liver conditions currently diagnosed only by biopsy. This study assesses the reproducibility of the localized (31)P MRS ST in liver at 7 T and tests its potential for noninvasive differentiation of non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS After the ethics committee approval, reproducibility of the localized (31)P MRS ST at 7 T and the biological variation of acquired hepato-metabolic parameters were assessed in healthy volunteers. Subsequently, 16 suspected NAFL/NASH patients underwent MRS measurements and diagnostic liver biopsy. The Pi-to-ATP exchange parameters were compared between the groups by a Mann-Whitney U test and related to the liver fat content estimated by a single-voxel proton ((1)H) MRS, measured at 3 T. RESULTS The mean exchange rate constant (k) in healthy volunteers was 0.31 ± 0.03 s(-1) with a coefficient of variation of 9.0 %. Significantly lower exchange rates (p < 0.01) were found in NASH patients (k = 0.17 ± 0.04 s(-1)) when compared to healthy volunteers, and NAFL patients (k = 0.30 ± 0.05 s(-1)). Significant correlation was found between the k value and the liver fat content (r = 0.824, p < 0.01). CONCLUSIONS Our data suggest that the (31)P MRS ST technique provides a tool for gaining insight into hepatic ATP metabolism and could contribute to the differentiation of NAFL and NASH. KEY POINTS • 1D localized (31) P MRS saturation transfer in the liver is reproducible at 7 T • NASH patients have decreased hepatic Pi-to-ATP exchange rate • In this study, hepatic metabolic activity correlates with liver fat content.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME. MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 2014; 41:13-33. [PMID: 24478137 DOI: 10.1002/jmri.24573] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 12/29/2022] Open
Abstract
With more than 40 installed MR systems worldwide operating at 7 Tesla or higher, ultra-high-field (UHF) imaging has been established as a platform for clinically oriented research in recent years. Along with technical developments that, in part, have also been successfully transferred to lower field strengths, MR imaging and spectroscopy at UHF have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. In terms of applications, this overview article focuses on already achieved advantages for in vivo imaging, i.e., in imaging the brain and joints of the musculoskeletal system, but also considers developments in body imaging, which is particularly challenging. Furthermore, new applications for clinical diagnostics such as X-nuclei imaging and spectroscopy, which only really become feasible at ultra-high magnetic fields, will be presented.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
21
|
Valkovič L, Bogner W, Gajdošík M, Považan M, Kukurová IJ, Krššák M, Gruber S, Frollo I, Trattnig S, Chmelík M. One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T. Magn Reson Med 2014; 72:1509-15. [PMID: 24470429 DOI: 10.1002/mrm.25058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the feasibility of a one-dimensional image-selected in vivo spectroscopy (1D-ISIS) saturation transfer (ST) sequence at 7T for localized in vivo measurements of energy metabolism in different tissues in clinically reasonable examination times. METHODS The performance of a gradient offset independent adiabacity-based 1D-ISIS localization was tested on phantom and the localized ST sequence was compared with the nonlocalized version in vivo. We performed localized measurements of basal metabolism of human liver and different muscle groups of the calf. Localized ST experiments took 15-25 minutes. RESULTS The selectivity of the 1D-ISIS sequence was 81.63% and the outer volume suppression was 97.57%. The ST parameters acquired with the 1D-ISIS sequence and with the nonlocalized acquisition in the muscle were not statistically different. The forward rate constants for phosphocreatine (PCr)-adenosine triphosphate (ATP) and inorganic phosphate (Pi)-ATP exchange reactions were measured in the soleus (kCK = 0.30 ± 0.06 s(-1) and kATP = 0.11 ± 0.02 s(-1) , respectively) and in the medial gastrocnemius (kCK = 0.27 ± 0.06 s(-1) and kATP = 0.09 ± 0.03s(-1) , respectively) in 15 minutes per muscle group. The corresponding fluxes were FCK = 6.26 ± 1.28 μmol/g/s, FATP = 0.22 ± 0.05 μmol/g/s and FCK = 6.29 ± 1.66 μmol/g/s, FATP = 0.21 ± 0.07 μmol/g/s, for soleus and gastrocnemius, respectively. The hepatic ATP synthesis measurement was feasible in 24 minutes. CONCLUSION The fast assessment of PCr-ATP and Pi-ATP exchange rates at 7T makes the 1D-ISIS ST sequence a promising tool for examining local resting-state metabolism in clinically acceptable measurement times.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gajdošík M, Chmelík M, Just-Kukurová I, Bogner W, Valkovič L, Trattnig S, Krššák M. In vivo relaxation behavior of liver compounds at 7 Tesla, measured by single-voxel proton MR spectroscopy. J Magn Reson Imaging 2013; 40:1365-74. [PMID: 24222653 DOI: 10.1002/jmri.24489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/01/2013] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To assess the proton T1 and T2 relaxation of in vivo hepatic water, choline and lipid resonances with possible J-coupling behavior of lipids in healthy volunteers at 7 Tesla (T). MATERIALS AND METHODS Relaxation measurements were conducted on corn oil phantoms and on the hepatic tissue of 11 healthy volunteers at 7 T using a surface coil and a STEAM sequence. T1 's were determined by monoexponential fitting, and T2 's by both monoexponential and enhanced-exponential fitting (empirically designed to consider J-coupling of lipid resonances). RESULTS In vivo T1 's at 7 T were estimated as follows: water (4.70 ppm), 1362 ± 83 ms; methyl- (0.90 ppm), 1026 ± 162 ms; methylene- (1.30 ppm), 514 ± 25 ms; α-olefinic- (2.02 ppm), 488 ± 220 ms; α-carboxyl- (2.24 ppm), 476 ± 89 ms; diacyl- (2.77 ppm), 479 ± 260 ms group of lipid chains; and choline compounds (3.22 ppm), 1084 ± 52 ms. The T2 's calculated with enhanced fitting were as follows: water, 15 ± 2 ms; methyl-, 34 ± 10 ms; methylene-, 41 ± 8 ms; α-olefinic-, 44 ± 19 ms; α-carboxyl-, 39 ± 15 ms; diacyl-, 44 ± 5 ms group of lipid chains; and choline compounds, 32 ± 9 ms. CONCLUSION An accurate knowledge of in vivo relaxation and J-coupling behavior will significantly improve the quantification of an extended number of resolved liver metabolites at 7 T.
Collapse
Affiliation(s)
- Martin Gajdošík
- MR Center of Excellence Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Chmelík M, Považan M, Jírů F, Just Kukurová I, Dezortová M, Krššák M, Bogner W, Hájek M, Trattnig S, Valkovič L. Flip-angle mapping of 31P coils by steady-state MR spectroscopic imaging. J Magn Reson Imaging 2013; 40:391-7. [PMID: 24925600 DOI: 10.1002/jmri.24401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/05/2013] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Phosphorus ((31)P) MR spectroscopic imaging (MRSI) is primarily applied with sensitive, surface radiofrequency (RF) coils that provide inhomogeneous excitation RF field (B1(+)) and rough localization due to their B1(+) and sensitivity (B1(-)) profiles. A careful and time-consuming pulse adjustment and an accurate knowledge of flip angle (FA) are mandatory for quantification corrections. MATERIALS AND METHODS In this study, a simple, fast, and universal (31)P B1(+) mapping method is proposed, which requires fast steady-state MRSI (typically one sixth of normal measurement time) in addition to the typical MRSI acquired within the examination protocol. The FA maps are calculated from the ratio of the signal intensities acquired by these two measurements and were used to correct for the influence of B1(+) on the metabolite maps. RESULTS In vitro tests were performed on two scanners (3 and 7 Tesla) using a surface and a volume coil. The calculated FA maps were in good agreement with adjusted nominal FAs and the theoretical calculation using the Biot-Savart law. The method was successfully tested in vivo in the calf muscle and the brain of healthy volunteers (n = 4). The corrected metabolite maps show higher homogeneity compared with their noncorrected versions. CONCLUSION The calculated FA maps helped with B1(+) inhomogeneity corrections of acquired in vivo data, and should also be useful with optimization and testing of pulse performances, or with the construction quality tests of new dual-channel (1)H/(31)P coils.
Collapse
Affiliation(s)
- Marek Chmelík
- MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 2012; 22:2338-46. [DOI: 10.1007/s00330-012-2508-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/16/2022]
|