1
|
Doran E, Naim I, Bowtell R, Gowland PA, Glover PM, Bawden S. The impact of variations in subject geometry, respiration and coil repositioning on the specific absorption rate in parallel transmit abdominal imaging at 7 T. NMR IN BIOMEDICINE 2024; 37:e5032. [PMID: 37654051 DOI: 10.1002/nbm.5032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.
Collapse
Affiliation(s)
- Emma Doran
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Iyad Naim
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Terekhov M, Elabyad IA, Lohr D, Reiter T, Kögler C, Lanz T, Schreiber LM. Complementary analysis of specific absorption rate safety for an 8Tx/16Rx array with central symmetry of elements for magnetic resonance imaging of the human heart and abdominopelvic organs at 7 T. NMR IN BIOMEDICINE 2023; 36:e5023. [PMID: 37620002 DOI: 10.1002/nbm.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A complementary safety assessment of the specific absorption rate (SAR) of the electromagnetic energy was performed in a prototype 8Tx/16Rx RF array for cardiac magnetic resonance imaging (MRI) at 7 T. The study aimed to address two critical aspects of 7-T SAR safety not always explicitly examined by coil vendors: (i) the influence of an RF-array position on a peak SAR value, and (ii) the risk of exceeding the permitted maximal SAR in the tissue surrounding conductive passive implants. The full-wave 3D electromagnetic simulations for the thorax with shifted array position and the whole-body volume in the presence of a dental retainer, an intrauterine contraceptive device (IUD), and a hip joint implant, were performed for two human voxel models. The effect of the array displacement on the SAR was simulated for seven array locations on the thorax shifted from the central position in different directions on 50 mm. The peak SAR values for both models were analyzed for the three phase-only transmit vectors optimized for B1 + homogeneity and transmit efficiency. Peak SAR values due to the shifts of the array position increase up to ≈50%. The worst-case peak SAR value for a dental retainer was found to be in the range of 10% of the maximal SAR in the tissue within the array's borders. For the IUD and artificial hip joint implants the effect was found to be negligible (peak SAR < 1% of the SAR within array borders). In addition to simulations for cardiac MRI, we performed a preliminary B1 + shimming and SAR-safety analysis for the same RF-array at various positions lower on the body trunk to assess a potential application in imaging abdominopelvic organs (prostate, kidney, and liver). The most promising target for an ad hoc alternative application of the array was found to be the prostate.
Collapse
Affiliation(s)
- Maxim Terekhov
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Ibrahim A Elabyad
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I/Cardiology, University Hospital Würzburg (UKW), Würzburg, Germany
| | | | | | - Laura M Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| |
Collapse
|
3
|
Saha N, Kuehne A, Millward JM, Eigentler TW, Starke L, Waiczies S, Niendorf T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers (Basel) 2023; 15:cancers15082303. [PMID: 37190232 DOI: 10.3390/cancers15082303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andre Kuehne
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Brightmind.AI GmbH, 1010 Vienna, Austria
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
4
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Nurzed B, Kuehne A, Aigner CS, Schmitter S, Niendorf T, Eigentler TW. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. MAGMA (NEW YORK, N.Y.) 2023; 36:257-277. [PMID: 36920549 PMCID: PMC10140016 DOI: 10.1007/s10334-023-01075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 μT/√kW (SGBT), 0.73 μT/√kW (BT), and 0.56 μT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
| | | | | | | | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany.
- MRI.TOOLS GmbH, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Terekhov M, Elabyad IA, Lohr D, Hofmann U, Schreiber LM. High-resolution imaging of the excised porcine heart at a whole-body 7 T MRI system using an 8Tx/16Rx pTx coil. MAGMA (NEW YORK, N.Y.) 2023; 36:279-293. [PMID: 37027119 PMCID: PMC10140105 DOI: 10.1007/s10334-023-01077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.
Collapse
Affiliation(s)
- Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I / Cardiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
7
|
Lu M, Zhang X, Chai S, Yan X. Improving Specific Absorption Rate Efficiency and Coil Robustness of Self-Decoupled Transmit/Receive Coils by Elevating Feed and Mode Conductors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1800. [PMID: 36850397 PMCID: PMC9960379 DOI: 10.3390/s23041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.
Collapse
Affiliation(s)
- Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyang Zhang
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
9
|
Yang C, Liao X, Zhang L, Zhang M, Liu Q. Virtual coil augmentation for MR coil extrapoltion via deep learning. Magn Reson Imaging 2023; 95:1-11. [PMID: 36241031 DOI: 10.1016/j.mri.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) is a widely used medical imaging modality. However, due to the limitations in hardware, scan time, and throughput, it is often clinically challenging to obtain high-quality MR images. In this article, we propose a method of using artificial intelligence to expand the coils to achieve the goal of generating the virtual coils. The main characteristic of our work is utilizing dummy variable technology to expand/extrapolate the receive coils in both image and k-space domains. The high-dimensional information formed by coil expansion is used as the prior information to improve the reconstruction performance of parallel imaging. Two main components are incorporated into the network design, namely variable augmentation technology and sum of squares (SOS) objective function. Variable augmentation provides the network with more high-dimensional prior information, which is helpful for the network to extract the deep feature information of the data. The SOS objective function is employed to solve the deficiency of k-space data training while speeding up convergence. Experimental results demonstrated its great potentials in accelerating parallel imaging reconstruction.
Collapse
Affiliation(s)
- Cailian Yang
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| | - Xianghao Liao
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| | - Liu Zhang
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| | - Minghui Zhang
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
10
|
Elabyad IA, Terekhov M, Lohr D, Bille M, Hock M, Schreiber LM. A novel antisymmetric 16-element transceiver dipole antenna array for parallel transmit cardiac MRI in pigs at 7 T. NMR IN BIOMEDICINE 2022; 35:e4726. [PMID: 35277907 DOI: 10.1002/nbm.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Zhu Y, Lu M, Yan X. Resistor-free and one-board-fits-all ratio adjustable power splitter for add-on RF shimming in high field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107194. [PMID: 35316747 PMCID: PMC9050946 DOI: 10.1016/j.jmr.2022.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 05/03/2023]
Abstract
Ratio adjustable power splitter (RAPS) circuits were recently proposed for add-on RF shimming. Previous RAPSs split the input RF signal with a Wilkinson splitter or 50-Ω-terminated hybrid coupler into two branches, delay these two signals with cable/microstrip line phase shifters, and recombine them with another hybrid coupler. They require resistors to provide high output isolation and a cable/microstrip line library to realize desired splitting ratios. Here we propose a novel resistor-free RAPS circuit in which the Wilkinson splitter/50-Ω-terminated hybrid is replaced with a resistor-free T-junction splitter. A novel sliding mechanism was employed to further combine the T-junction's output arms with subsequent phase shifters and realize a one-board-fits-all design. The resistor-free RAPS was theoretically analyzed, simulated, and validated on workbench and MRI experiments. The resistor-free RAPS's splitting ratio has a tan/cot dependence on the phase/length difference between the T-junction output arms. The ratio can be continuously adjusted to any value by sliding the input arm without additional cable/microstrip libraries, largely saving time and effort when determining the best RF weights in practice. The fabricated resistor-free RAPS has a compact size, excellent input impedance matching, and a low insertion loss. Potential safety concerns caused by unwanted power dissipation on RF resistors are eliminated. The simulation and MRI experiments demonstrated that the resistor-free RAPS functions well on a widely-used Tx coil.
Collapse
Affiliation(s)
- Yue Zhu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming Lu
- College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
13
|
Terekhov M, Elabyad IA, Schreiber LM. Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI. PLoS One 2021; 16:e0255341. [PMID: 34358243 PMCID: PMC8346258 DOI: 10.1371/journal.pone.0255341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
The development of novel multiple-element transmit-receive arrays is an essential factor for improving B1+ field homogeneity in cardiac MRI at ultra-high magnetic field strength (B0 > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B1+-field that is achievable without (or before) subject-specific B1+-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B1+-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B1+-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.
Collapse
Affiliation(s)
- Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Ibrahim A. Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M. Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
14
|
Steensma BR, Meliadò EF, Luijten P, Klomp DWJ, van den Berg CAT, Raaijmakers AJE. SAR and temperature distributions in a database of realistic human models for 7 T cardiac imaging. NMR IN BIOMEDICINE 2021; 34:e4525. [PMID: 33955061 PMCID: PMC8244032 DOI: 10.1002/nbm.4525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE To investigate inter-subject variability of B1+ , SAR and temperature rise in a database of human models using a local transmit array for 7 T cardiac imaging. METHODS Dixon images were acquired of 14 subjects and segmented in dielectric models with an eight-channel local transmit array positioned around the torso for cardiac imaging. EM simulations were done to calculate SAR distributions. Based on the SAR distributions, temperature simulations were performed for exposure times of 6 min and 30 min. Peak local SAR and temperature rise levels were calculated for different RF shim settings. A statistical analysis of the resulting peak local SAR and temperature rise levels was performed to arrive at safe power limits. RESULTS For RF shim vectors with random phase and uniformly distributed power, a safe average power limit of 35.7 W was determined (first level controlled mode). When RF amplitude and phase shimming was performed on the heart, a safe average power limit of 35.0 W was found. According to Pennes' model, our numerical study suggests a very low probability of exceeding the absolute local temperature limit of 40 °C for a total exposure time of 6 min and a peak local SAR of 20 W/kg. For a 30 min exposure time at 20 W/kg, it was shown that the absolute temperature limit can be exceeded in the case where perfusion does not change with temperature. CONCLUSION Safe power constraints were found for 7 T cardiac imaging with an eight-channel local transmit array, while considering the inter-subject variability of B1+ , SAR and temperature rise.
Collapse
Affiliation(s)
- Bart R Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ettore F Meliadò
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Tesla Dynamic Coils, Zaltbommel, The Netherlands
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Ibrahim ESH, Arpinar VE, Muftuler LT, Stojanovska J, Nencka AS, Koch KM. Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities. World J Radiol 2020; 12:231-246. [PMID: 33240463 PMCID: PMC7653183 DOI: 10.4329/wjr.v12.i10.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 7T cardiac magnetic resonance imaging (MRI) introduces several advantages, as well as some limitations, compared to lower-field imaging. The capabilities of ultra-high field (UHF) MRI have not been fully exploited in cardiac functional imaging.
AIM To optimize 7T cardiac MRI functional imaging without the need for conducting B1 shimming or subject-specific tuning, which improves scan efficiency. In this study, we provide results from phantom and in vivo scans using a multi-channel transceiver modular coil.
METHODS We investigated the effects of adding a dielectric pad at different locations next to the imaged region of interest on improving image quality in subjects with different body habitus. We also investigated the effects of adjusting the imaging flip angle in cine and tagging sequences on improving image quality, B1 field homogeneity, signal-to-noise ratio (SNR), blood-myocardium contrast-to-noise ratio (CNR), and tagging persistence throughout the cardiac cycle.
RESULTS The results showed the capability of achieving improved image quality with high spatial resolution (0.75 mm × 0.75 mm × 2 mm), high temporal resolution (20 ms), and increased tagging persistence (for up to 1200 ms cardiac cycle duration) at 7T cardiac MRI after adjusting scan set-up and imaging parameters. Adjusting the imaging flip angle was essential for achieving optimal SNR and myocardium-to-blood CNR. Placing a dielectric pad at the anterior left position of the chest resulted in improved B1 homogeneity compared to other positions, especially in subjects with small chest size.
CONCLUSION Improved regional and global cardiac functional imaging can be achieved at 7T MRI through simple scan set-up adjustment and imaging parameter optimization, which would allow for more streamlined and efficient UHF cardiac MRI.
Collapse
Affiliation(s)
- El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - V Emre Arpinar
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jadranka Stojanovska
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
17
|
Ibrahim ESH, Arpinar VE, Muftuler LT, Stojanovska J, Nencka AS, Koch KM. Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities. World J Radiol 2020. [DOI: 10.4329/wjr.v12.i10.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Delgado PR, Kuehne A, Periquito JS, Millward JM, Pohlmann A, Waiczies S, Niendorf T. B 1 inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magn Reson Med 2020; 84:2684-2701. [PMID: 32447779 DOI: 10.1002/mrm.28307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B 1 + ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.
Collapse
Affiliation(s)
- Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - João S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
19
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Ruytenberg T, Webb A, Zivkovic I. Shielded-coaxial-cable coils as receive and transceive array elements for 7T human MRI. Magn Reson Med 2020; 83:1135-1146. [PMID: 31483530 PMCID: PMC6899981 DOI: 10.1002/mrm.27964] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the use of shielded-coaxial-cable (SCC) coils as elements for multi-channel receive-only and transceive arrays for 7T human MRI and to compare their performance with equivalently sized conventional loop coils. METHODS The SCC coil element consists of a coaxial loop with interrupted central conductor at the feed-point side and an interrupted shield at the opposite point. Inter-element decoupling, transmit efficiency, and sample heating were compared with results from conventional capacitively segmented loop coils. Three multichannel arrays (a 4-channel receive-only array and 8- and 5-channel transceive arrays) were constructed. Their inter-element decoupling was characterized via measured noise correlation matrices and additionally under different flexing conditions of the coils. Thermal measurements were performed and in vivo images were acquired. RESULTS The measured and simulated B 1 + maps of both SCC and conventional loops were very similar. For all the arrays constructed, the inter-element decoupling was much greater for the SCC elements than the conventional ones. Even under high degrees of flexion, the coupling coefficients were lower than -10 dB, with a much smaller frequency shift than for the conventional coils. CONCLUSION Arrays constructed from SCC elements are mechanically flexible and much less sensitive to changes of the coil shape from circular to elongated than arrays constructed from conventional loop coils, which makes them suitable for construction of size adjustable arrays.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T. Sci Rep 2020; 10:3117. [PMID: 32080274 PMCID: PMC7033245 DOI: 10.1038/s41598-020-59949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
Collapse
|
22
|
De Marchi D, Flori A, Martini N, Giovannetti G. Artifacts by Misalignment of Cardiac Magnetic Resonance Phased-array Coil Elements: From Simulation to In vivo Test. Curr Med Imaging 2020; 15:301-307. [PMID: 31989881 DOI: 10.2174/1573405613666171024150250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiac magnetic resonance evaluations generally require a radiofrequency coil setup comprising a transmit whole-body coil and a receive coil. In particular, radiofrequency phased-array coils are employed to pick up the signals emitted by the nuclei with high signal-tonoise ratio and a large region of sensitivity. METHODS Literature discussed different technical issues on how to minimize interactions between array elements and how to combine data from such elements to yield optimum Signal-to-Noise Ratio images. However, image quality strongly depends upon the correct coil position over the heart and of one array coil portion with respect to the other. RESULTS In particular, simple errors in coil positioning could cause artifacts carrying to an inaccurate interpretation of cardiac magnetic resonance images. CONCLUSION This paper describes the effect of array elements misalignment, starting from coil simulation to cardiac magnetic resonance acquisitions with a 1.5 T scanner. Phased-array coil simulation was performed using the magnetostatic approach; moreover, phantom and in vivo experiments with a commercial 8-elements cardiac phased-array receiver coil permitted to estimate signal-to-noise ratio and B1 mapping for aligned and shifted coil.
Collapse
Affiliation(s)
- Daniele De Marchi
- Fondazione G. Monasterio CNR - Regione Toscana, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Alessandra Flori
- Fondazione G. Monasterio CNR - Regione Toscana, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Nicola Martini
- Fondazione G. Monasterio CNR - Regione Toscana, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Giulio Giovannetti
- Fondazione G. Monasterio CNR - Regione Toscana, via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
23
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Yao A, Zastrow E, Cabot E, Lloyd B, Schneider B, Kainz W, Kuster N. Anatomical Model Uncertainty for RF Safety Evaluation of Metallic Implants Under MRI Exposure. Bioelectromagnetics 2019; 40:458-471. [PMID: 31396987 DOI: 10.1002/bem.22206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/18/2019] [Indexed: 11/11/2022]
Abstract
The Virtual Population (ViP) phantoms have been used in many dosimetry studies, yet, to date, anatomical phantom uncertainty in radiofrequency (RF) research has largely been neglected. The objective of this study is to gain insight, for the first time, regarding the uncertainty in RF-induced fields during magnetic resonance imaging associated with tissue assignment and segmentation quality and consistency in anatomical phantoms by evaluating the differences between two generations of ViP phantoms, ViP1.x and ViP3.0. The RF-induced 10g-average electric (E-) fields, tangential E-fields distribution along active implantable medical devices (AIMD) routings, and estimated AIMD heating were compared for five phantoms that are part of both ViP1.x and ViP3.0. The results demonstrated that differences exceeded 3 dB (-29%, +41%) for local quantities and 1 dB (±12% for field, ±25% for power) for integrated and volume-averaged quantities (e.g., estimated AIMD-heating and 10 g-average E-fields), while the variation across different ViP phantoms of the same generation can exceed 10 dB (-68% and +217% for field, -90% and +900% for power). In conclusion, the anatomical phantom uncertainty associated with tissue assignment and segmentation quality/consistency is larger than previously assumed, i.e., 0.6 dB or ±15% (k = 1) for AIMD heating. Further, multiple phantoms based on different volunteers covering the target population are required for quantitative analysis of dosimetric endpoints, e.g., AIMD heating, which depend on patient anatomy. Phantoms with the highest fidelity in tissue assignment and segmentation should be used, as these ensure the lowest uncertainty and possible underestimation of exposure. To verify that the uncertainty decreases monotonically with improved phantom quality, the evaluation of differences between phantom generations should be repeated for any improvement in segmentation. Bioelectromagnetics. 2019;40:458-471. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aiping Yao
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Earl Zastrow
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Eugenia Cabot
- Federal Office of Communications (OFCOM), Biel, Switzerland
| | - Bryn Lloyd
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | | | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:195-208. [PMID: 31306985 DOI: 10.1016/j.jmr.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 05/12/2023]
Abstract
The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany; Department of Electronics and Communications Engineering, Thebes Higher Institute of Engineering, Cairo, Egypt.
| | - M Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - D Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M Fischer
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - L M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
26
|
Zivkovic I, de Castro CA, Webb A. Design and characterization of an eight-element passively fed meander-dipole array with improved specific absorption rate efficiency for 7 T body imaging. NMR IN BIOMEDICINE 2019; 32:e4106. [PMID: 31131944 PMCID: PMC6771742 DOI: 10.1002/nbm.4106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the transmit efficiency and specific absorption rate (SAR) efficiency of a new eight-element passively fed meander-dipole antenna array designed for body MRI at 7 T, and to compare these values with a conventional directly fed meander-dipole array. METHODS The main radiating element of the passively fed dipole is printed on one side of a dielectric substrate and is capacitively coupled to a shorter feeding element (connected to the coaxial cable) printed on the opposite side of the substrate. The transmit (B1+ ) field and SAR were simulated on a phantom and on a human voxel model for both a passively fed and a directly fed single element. Two eight-channel arrays containing, respectively, directly and passively fed meander dipoles were then simulated, and experimental B1+ maps and T2 -weighted spin echo images of the prostate were obtained in vivo for four healthy volunteers. RESULTS In simulations, the mean transmit efficiency (B1+ per square root input power) value in the prostate was ~ 12.5% lower, and the maximum 10 g average SAR was 44% lower for the array containing passively fed dipoles, resulting in ~ 15% higher SAR efficiency for the passively fed array. In vivo RF-shimmed turbo spin echo images were acquired from both arrays, and showed image SNRs within 5% of one another. CONCLUSION A passive-feeding network for meander-dipole antennas has been shown to be a simple method to increase the SAR efficiency of a multi-element array used for body imaging at high fields. We hypothesize that the main reason for the increase in SAR efficiency is the storage of the strong conservative electric field in the dielectric between the feeding element and the radiating element of the dipole. The passive-feeding approach can be generalized to other dipole geometries and configurations.
Collapse
Affiliation(s)
- Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
27
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
28
|
Abstract
Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
29
|
Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R. High Field Cardiac Magnetic Resonance Imaging: A Case for Ultrahigh Field Cardiac Magnetic Resonance. Circ Cardiovasc Imaging 2019; 10:CIRCIMAGING.116.005460. [PMID: 28611118 DOI: 10.1161/circimaging.116.005460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Thoralf Niendorf
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.).
| | - Jeanette Schulz-Menger
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Katharina Paul
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Till Huelnhagen
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Victor A Ferrari
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| | - Russell Hodge
- From the Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (T.N., K.P., T.H., R.H.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (T.N., J.S.-M.); Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.S.-M.); Department for Cardiology and Nephrology, HELIOS Clinic Berlin-Buch, Germany (J.S.-M.); and Division of Cardiovascular Medicine and Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (V.A.F.)
| |
Collapse
|
30
|
Yeh JNT, Lin JFL. A Flexible and Modular Receiver Coil Array for Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:824-833. [PMID: 30295617 DOI: 10.1109/tmi.2018.2873317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a flexible form-fittingMRI receiver coil array assembledby individualcoilmodules. This design targetsMRI applications requiring a receiver array conforming to the anatomy of various shapes or sizes. Coil modules in our proposed array were arranged with gaps between them. Each coil module had a circumferential shielding structure stacked on top of the coil. Together they achieve robust decoupling when the array was bent differently. Two types of the circumferential shielding structure were investigatedby using full-wave electromagnetic simulations and imaging experiments. Results showed that our flexible coil array had good decoupling between coils whether they were on a flat or curved surface with the S21 magnitude ranged between -18.1 dB and -19.9 dB in simulations, and with the average of off-diagonal entries of the noise correlationmatrix less than 0.047 in experimentalmeasurements. Anatomical images of human brain, calf, and knee were acquired by our seven-channel prototype on a 3T MRI system. The maximal and the average SNR within 50 mm from our array surpassed those from the commercial 32-channel head and 4-channel flexible coil arrays by 2.63/1.35-fold and 3.89/1.50-fold, respectively.
Collapse
|
31
|
Hosseinnezhadian S, Frass-Kriegl R, Goluch-Roat S, Pichler M, Sieg J, Vít M, Poirier-Quinot M, Darrasse L, Moser E, Ginefri JC, Laistler E. A flexible 12-channel transceiver array of transmission line resonators for 7 T MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:47-59. [PMID: 30205313 DOI: 10.1016/j.jmr.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.
Collapse
Affiliation(s)
- Sajad Hosseinnezhadian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria; IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Roberta Frass-Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Sigrun Goluch-Roat
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Michael Pichler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jürgen Sieg
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Martin Vít
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria; IKEM (Institute for Clinical and Experimental Medicine), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Marie Poirier-Quinot
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Luc Darrasse
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jean-Christophe Ginefri
- IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Bât 220, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Goebel J, Nensa F, Schemuth HP, Maderwald S, Schlosser T, Orzada S, Rietsch S, Quick HH, Nassenstein K. Feasibility of aortic valve planimetry at 7 T ultrahigh field MRI: Comparison to aortic valve MRI at 3 T and 1.5 T. Eur J Radiol Open 2018; 5:159-164. [PMID: 30225274 PMCID: PMC6138940 DOI: 10.1016/j.ejro.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction This study examined the feasibility of aortic valve planimetry at 7 T ultrahigh field MRI in intraindividual comparison to 3 T and 1.5 T MRI. Material and methods Aortic valves of eleven healthy volunteers (mean age, 26.4 years) were examined on a 7 T, 3 T, and 1.5 T MR system using FLASH and TrueFISP sequences. Two experienced radiologists evaluated overall image quality, the presence of artefacts, tissue contrast ratios, identifiability, and image details of the aortic valve opening area (AVOA). Furthermore, AVOA was quantified twice by reader 1 and once by reader 2. Correlation analysis between artefact severity and employed magnetic field strength was performed by modified Fisher’s exact-test. Paired t-test was used to analyse for AVOA differences, and Bland-Altman plots were used to analyse AVOA intra-rater and inter-rater variability. Results Aortic valve imaging at 7 T, 3 T, and 1.5 T with using FLASH was less hampered by artefacts than TrueFISP imaging at 3 T and 1.5 T. Tissue contrast and image details were rated best at 7 T. AVOA was measured slightly smaller at 7 T compared to 3 T (TrueFISP, p-value = 0.057; FLASH, p-value = 0.016) and 1.5 T (TrueFISP, p-value = 0.029; FLASH, p-value = 0.018). Intra-rater and inter-rater variability of AVOA tended to be slightly smaller at 7 T than at 3 T and 1.5 T. Conclusion Aortic valve planimetry at 7 T ultrahigh field MRI is technically feasible and in healthy volunteers offers an improved tissue contrast and a slightly better reproducibility than MR planimetry at 1.5 T and 3 T.
Collapse
Affiliation(s)
- Juliane Goebel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Haemi P Schemuth
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Thomas Schlosser
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Stefan Rietsch
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
33
|
Steensma BR, Voogt I, van der Werf AJ, van den Berg CA, Luijten PR, Klomp DW, Raaijmakers AJ. Design of a forward view antenna for prostate imaging at 7 T. NMR IN BIOMEDICINE 2018; 31:e3993. [PMID: 30022543 PMCID: PMC6175442 DOI: 10.1002/nbm.3993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 05/19/2023]
Abstract
PURPOSE To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array. MATERIALS AND METHODS The forward view antenna is realized by placing a cross-dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross-dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T. RESULTS Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal-to-noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight-channel dipole array in vivo. CONCLUSIONS A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.
Collapse
Affiliation(s)
| | - Ingmar Voogt
- University Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Rietsch SHG, Orzada S, Maderwald S, Brunheim S, Philips BWJ, Scheenen TWJ, Ladd ME, Quick HH. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. Med Phys 2018; 45:2978-2990. [PMID: 29679498 DOI: 10.1002/mp.12931] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/20/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this work, a combined body coil array with eight transmit/receive (Tx/Rx) meander elements and with 24 receive-only (Rx) loops (8Tx/32Rx) was developed and evaluated in comparison with an 8-channel transmit/receive body array (8Tx/Rx) based on meander elements serving as the reference standard. METHODS Systematic evaluation of the RF array was performed on a body-sized phantom. Body imaging at 7T was performed in six volunteers in the body regions pelvis, abdomen, and heart. Coil characteristics such as signal-to-noise ratio, acceleration capability, g-factors, S-parameters, noise correlation, and B1+ maps were assessed. Safety was ensured by numerical simulations using a coil model validated by dosimetric field measurements. RESULTS Meander elements and loops are intrinsically well decoupled with a maximum coupling value of -20.5 dB. Safe use of the 8Tx/32Rx array could be demonstrated. High gain in signal-to-noise ratio (33% in the subject's center) could be shown for the 8Tx/32Rx array compared to the 8Tx/Rx array. Improvement in acceleration capability in all investigations could be demonstrated. For example, the 8Tx/32Rx array provides lower g-factors in the right-left and anterior-posterior directions with R = 3 undersampling as compared to the 8Tx/Rx array using R = 2. Both arrays are very similar regarding their RF transmit performance. Excellent image quality in the investigated body regions could be achieved with the 8Tx/32Rx array. CONCLUSION In this work, we show that a combination of eight meander elements and 24 loop receive elements is possible without impeding transmit performance. Improved SNR and g-factor performance compared to an RF array without these loops is demonstrated. Body MRI at 7T with the 8Tx/32Rx array could be accomplished in the heart, abdomen, and pelvis with excellent image quality.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Bart W J Philips
- Department of Radiology and Nuclear Medicine, Medical Center, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,Department of Radiology and Nuclear Medicine, Medical Center, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center, 69120, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, 45141, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
35
|
Brunheim S, Gratz M, Johst S, Bitz AK, Fiedler TM, Ladd ME, Quick HH, Orzada S. Fast and accurate multi-channel B1+ mapping based on the TIAMO technique for 7T UHF body MRI. Magn Reson Med 2018; 79:2652-2664. [PMID: 28994132 DOI: 10.1002/mrm.26925] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE Current methods for mitigation of transmit field B1+ inhomogeneities at ultrahigh field (UHF) MRI by multi-channel radiofrequency (RF) shimming rely on accurate B1+ mapping. This can be time consuming when many RF channels have to be mapped for in vivo body MRI, where the B1 maps should ideally be acquired within a single breath-hold. Therefore, a new B1+ mapping technique (B1TIAMO) is proposed. METHODS The performance of this technique is validated against an established method (DREAM) in phantom measurements for a cylindrical head phantom with an 8-channel transmit/receive (Tx/Rx) array. Furthermore, measurements for a 32-channel Tx/Rx remote array are conducted in a large body phantom and the |B1+| map reliability is validated against simulations of the transmit RF field distribution. Finally, in vivo results of this new mapping technique for human abdomen are presented. RESULTS For the head phantom (8-channel Tx/Rx coil), the single |B1+| comparison between B1 TIAMO, the direct DREAM measurements, and simulation data showed good agreement with 10-19% difference. For the large body phantom (32-channel Tx/Rx coil), B1TIAMO matched the RF field simulations well. CONCLUSION The results demonstrate the potential to acquire 32 accurate single-channel B1+ maps for large field-of-view body imaging within only a single breath-hold of 16 s at 7T UHF MRI. Magn Reson Med 79:2652-2664, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sascha Brunheim
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Sören Johst
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen-University of Applied Sciences, Aachen, Germany
| | - Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
36
|
Kording F, Ruprecht C, Schoennagel B, Fehrs K, Yamamura J, Adam G, Goebel J, Nassenstein K, Maderwald S, Quick H, Kraff O. Doppler ultrasound triggering for cardiac MRI at 7T. Magn Reson Med 2017; 80:239-247. [DOI: 10.1002/mrm.27032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Affiliation(s)
- F. Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - C. Ruprecht
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - B. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - K. Fehrs
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - J. Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - G. Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - J. Goebel
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital, University Duisburg-Essen; Essen Germany
| | - K. Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology; University Hospital, University Duisburg-Essen; Essen Germany
| | - S. Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| | - H.H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital, University Duisburg-Essen; Essen Germany
| | - O. Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging; University Duisburg-Essen; Essen Germany
| |
Collapse
|
37
|
An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:7-18. [PMID: 29177772 PMCID: PMC5813068 DOI: 10.1007/s10334-017-0665-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/23/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022]
Abstract
Objective To demonstrate imaging performance for cardiac MR imaging at 7 T using a coil array of 8 transmit/receive dipole antennas and 16 receive loops. Materials and methods An 8-channel dipole array was extended by adding 16 receive-only loops. Average power constraints were determined by electromagnetic simulations. Cine imaging was performed on eight healthy subjects. Geometrical factor (g-factor) maps were calculated to assess acceleration performance. Signal-to-noise ratio (SNR)-scaled images were reconstructed for different combinations of receive channels, to demonstrate the SNR benefits of combining loops and dipoles. Results The overall image quality of the cardiac functional images was rated a 2.6 on a 4-point scale by two experienced radiologists. Imaging results at different acceleration factors demonstrate that acceleration factors up to 6 could be obtained while keeping the average g-factor below 1.27. SNR maps demonstrate that combining loops and dipoles provides a more than 50% enhancement of the SNR in the heart, compared to a situation where only loops or dipoles are used. Conclusion This work demonstrates the performance of a combined loop/dipole array for cardiac imaging at 7 T. With this array, acceleration factors of 6 are possible without increasing the average g-factor in the heart beyond 1.27. Combining loops and dipoles in receive mode enhances the SNR compared to receiving with loops or dipoles only. Electronic supplementary material The online version of this article (10.1007/s10334-017-0665-5) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Han H, Moritz R, Oberacker E, Waiczies H, Niendorf T, Winter L. Open Source 3D Multipurpose Measurement System with Submillimetre Fidelity and First Application in Magnetic Resonance. Sci Rep 2017; 7:13452. [PMID: 29044156 PMCID: PMC5647334 DOI: 10.1038/s41598-017-13824-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the mainstay of diagnostic imaging, a versatile instrument for clinical science and the subject of intense research interest. Advancing clinical science, research and technology of MRI requires high fidelity measurements in quantity, location and time of the given physical property. To meet this goal a broad spectrum of commercial measurement systems has been made available. These instruments frequently share in common that they are costly and typically employ closed proprietary hardware and software. This shortcoming makes any adjustment for a specified application difficult if not prohibitive. Recognizing this limitation this work presents COSI Measure, an automated open source measurement system that provides submillimetre resolution, robust configuration and a large working volume to support a versatile range of applications. The submillimetre fidelity and reproducibility/backlash performance were evaluated experimentally. Magnetic field mapping of a single ring Halbach magnet, a 3.0 T and a 7.0 T MR scanner as well as temperature mapping of a radio frequency coil were successfully conducted. Due to its open source nature and versatile construction, the system can be easily modified for other applications. In a resource limited research setting, COSI Measure makes efficient use of laboratory space, financial resources and collaborative efforts.
Collapse
Affiliation(s)
- Haopeng Han
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Raphael Moritz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
39
|
Beqiri A, Price AN, Padormo F, Hajnal JV, Malik SJ. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart. NMR IN BIOMEDICINE 2017; 30:e3701. [PMID: 28195684 PMCID: PMC5484304 DOI: 10.1002/nbm.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 05/12/2023]
Abstract
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.
Collapse
Affiliation(s)
- Arian Beqiri
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Francesco Padormo
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Joseph V. Hajnal
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
40
|
Rietsch SHG, Orzada S, Bitz AK, Gratz M, Ladd ME, Quick HH. Parallel transmit capability of various RF transmit elements and arrays at 7T MRI. Magn Reson Med 2017; 79:1116-1126. [PMID: 28394080 DOI: 10.1002/mrm.26704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE In this work, 22 configurations for remote radiofrequency (RF) coil arrays consisting of different transmit element designs for 7 Tesla (T) ultrahigh-field MRI are compared by numerical simulations. METHODS Investigated transmit RF element types are rectangular loops, micro striplines, micro striplines with meanders, 250-mm shielded dipoles with meanders, and lambda over two dipoles with and without shield. These elements are combined in four different configurations of circumferential RF body arrays with four or eight transmit elements each. Comparisons included coupling behavior, degrees of freedom offered by the individual transmit patterns, and metrics like power and specific absorption rate efficiency. RESULTS Coupling between neighboring RF elements is elevated (up to -7 dB) for all arrays with eight elements, whereas it is below -25 dB for arrays with only four elements. The cumulative sum of singular values points out highest degrees of freedom for the central transversal, reduced values in the central coronal, and minimum values in the sagittal slice. Concerning power and SAR efficiency, eight lambda over two dipoles are most advantageous. CONCLUSIONS Among the investigated remote arrays and parameters, a combination of eight dipoles appears to be most favorable for potential use in 7T body MRI. Magn Reson Med 79:1116-1126, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, University of Applied Sciences Aachen, Aachen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
41
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
42
|
Hutton BF, Occhipinti M, Kuehne A, Máthé D, Kovács N, Waiczies H, Erlandsson K, Salvado D, Carminati M, Montagnani GL, Short SC, Ottobrini L, van Mullekom P, Piemonte C, Bukki T, Nyitrai Z, Papp Z, Nagy K, Niendorf T, de Francesco I, Fiorini C. Development of clinical simultaneous SPECT/MRI. Br J Radiol 2017; 91:20160690. [PMID: 28008775 PMCID: PMC5966197 DOI: 10.1259/bjr.20160690] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing clinical use of combined positron emission tomography and MRI, but to date there has been no clinical system developed capable of simultaneous single-photon emission computed tomography (SPECT) and MRI. There has been development of preclinical systems, but there are several challenges faced by researchers who are developing a clinical prototype including the need for the system to be compact and stationary with MRI-compatible components. The limited work in this area is described with specific reference to the Integrated SPECT/MRI for Enhanced stratification in Radio-chemo Therapy (INSERT) project, which is at an advanced stage of developing a clinical prototype. Issues of SPECT/MRI compatibility are outlined and the clinical appeal of such a system is discussed, especially in the management of brain tumour treatment.
Collapse
Affiliation(s)
- Brian F Hutton
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Michele Occhipinti
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | | | - Domokos Máthé
- 4 CROmed Ltd, Budapest, Hungary.,5 Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | - Kjell Erlandsson
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Debora Salvado
- 1 Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Marco Carminati
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | - Giovanni L Montagnani
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | - Susan C Short
- 6 Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Luisa Ottobrini
- 7 Department of Medical-Surgical Pathophysiology and Transplants, University of Milan, Italy.,8 Institute for Molecular Bioimaging and Physiology (IBFM), National Council of Research (CNR), Milan, Italy
| | | | | | | | | | | | | | | | - Irene de Francesco
- 12 Department of Oncology, University College London Hospitals NHS Foundation Trust, London
| | - Carlo Fiorini
- 2 Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano and Instituto Nacionale di Fisica Nucleare (INFN), Milan, Italy
| | | |
Collapse
|
43
|
Schmitter S, Moeller S, Wu X, Auerbach EJ, Metzger GJ, Van de Moortele PF, Uğurbil K. Simultaneous multislice imaging in dynamic cardiac MRI at 7T using parallel transmission. Magn Reson Med 2017; 77:1010-1020. [PMID: 26949107 DOI: 10.1002/mrm.26180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Cardiac MRI at 7T suffers from contrast heterogeneity that can be mitigated with parallel transmission (pTX) and, when performed during breath-hold, from a limited number of slices that can be multiplied with multiband (MB) radiofrequency pulses by simultaneous excitation of multiple slices (SMS). The goal of this study was to apply both approaches simultaneously. METHODS Using a 16-channel transmit/receive body coil, pTX SMS was applied with/without CAIPIRINHA with a modified gradient echo cine sequence. Different calibration schemes were investigated for the slice-GRAPPA reconstruction kernels as a function of the cardiac cycle. RESULTS Excellent slice separation for MB = 2 was achieved with CAIPIRINHA, with slice leakage values below 3% for 99% of all voxels. A critical finding of this study was the variation of the MB leakage factor in the heart by as much as 30% throughout the cardiac cycle, which was reduced greatly when reconstruction kernels were calibrated on multiple cardiac phases. Acceptable results were still obtained when applying further acceleration with MB = 3 in combination with in-plane GRAPPA. In one case, two-spoke pulses were compared with one-spoke pulses, resulting as expected in improved homogeneity. CONCLUSION pTX SMS imaging at 7T can address contrast heterogeneity while allowing larger slice coverage in cardiac MRI performed under breath-hold. Magn Reson Med 77:1010-1020, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sebastian Schmitter
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Steen Moeller
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Edward J Auerbach
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | | | - Kâmil Uğurbil
- University of Minnesota, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| |
Collapse
|
44
|
Weinberger O, Winter L, Dieringer MA, Els A, Oezerdem C, Rieger J, Kuehne A, Cassara AM, Pfeiffer H, Wetterling F, Niendorf T. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game? PLoS One 2016; 11:e0161863. [PMID: 27598923 PMCID: PMC5012568 DOI: 10.1371/journal.pone.0161863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Collapse
Affiliation(s)
- Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | | | | | - Antonino M. Cassara
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
45
|
Webb AG, Van de Moortele PF. The technological future of 7 T MRI hardware. NMR IN BIOMEDICINE 2016; 29:1305-1315. [PMID: 25974894 DOI: 10.1002/nbm.3315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/07/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
In this article we present our projections of future hardware developments on 7 T human MRI systems. These include compact cryogen-light magnets, improved gradient performance, integrated RF-receive and direct current shimming coil arrays, new RF technology with adaptive impedance matching, patient-specific specific absorption rate estimation and monitoring, and increased integration of physiological monitoring systems. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A G Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P F Van de Moortele
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
46
|
Stäb D, Roessler J, O'Brien K, Hamilton-Craig C, Barth M. ECG Triggering in Ultra-High Field Cardiovascular MRI. ACTA ACUST UNITED AC 2016; 2:167-174. [PMID: 30042961 PMCID: PMC6024401 DOI: 10.18383/j.tom.2016.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac magnetic resonance imaging at ultra-high field (B0 ≥ 7 T) potentially provides improved resolution and new opportunities for tissue characterization. Although an accurate synchronization of the acquisition to the cardiac cycle is essential, electrocardiogram (ECG) triggering at ultra-high field can be significantly impacted by the magnetohydrodynamic (MHD) effect. Blood flow within a static magnetic field induces a voltage, which superimposes the ECG and often affects the recognition of the R-wave. The MHD effect scales with B0 and is particularly pronounced at ultra-high field creating triggering-related image artifacts. Here, we investigated the performance of a conventional 3-lead ECG trigger device and a state-of-the-art trigger algorithm for cardiac ECG synchronization at 7 T. We show that by appropriate subject preparation and by including a learning phase for the R-wave detection outside of the magnetic field, reliable ECG triggering is feasible in healthy subjects at 7 T without additional equipment. Ultra-high field cardiac imaging was performed with the ECG signal and the trigger events recorded in 8 healthy subjects. Despite severe ECG signal distortions, synchronized imaging was successfully performed. Recorded ECG signals, vectorcardiograms, and large consistency in trigger event spacing indicate high accuracy for R-wave detection.
Collapse
Affiliation(s)
- Daniel Stäb
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | | | | | - Christian Hamilton-Craig
- Richard Slaughter Centre of Excellence in CVMRI, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Markus Barth
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Raaijmakers AJE, Luijten PR, van den Berg CAT. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR IN BIOMEDICINE 2016; 29:1122-1130. [PMID: 26278544 DOI: 10.1002/nbm.3356] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Although the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - P R Luijten
- UMC Utrecht, Department of Radiology, Utrecht, the Netherlands
| | | |
Collapse
|
48
|
Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T, Hezel F, Rieger J, Waiczies H, Frahm J, Nagel AM, Oberacker E, Winter L. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR IN BIOMEDICINE 2016; 29:1173-97. [PMID: 25706103 DOI: 10.1002/nbm.3268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/26/2014] [Accepted: 01/13/2015] [Indexed: 05/12/2023]
Abstract
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
49
|
Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:641-56. [PMID: 27097905 DOI: 10.1007/s10334-016-0559-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 (+) ) and RF power deposition of dipole antenna arrays for (1)H magnetic resonance of the human brain at 1 GHz (23.5 T). MATERIALS AND METHODS Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. RESULTS Our results demonstrate that transmission fields suitable for (1)H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 (+) in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. CONCLUSION The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system.
Collapse
|
50
|
Raaijmakers AJ, Italiaander M, Voogt IJ, Luijten PR, Hoogduin JM, Klomp DW, van den Berg CA. The fractionated dipole antenna: A new antenna for body imaging at 7
T
esla. Magn Reson Med 2016; 75:1366-74. [DOI: 10.1002/mrm.25596] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/11/2022]
|