1
|
Kamimura K, Tokuda T, Kamizono J, Nakano T, Hasegawa T, Nakajo M, Ejima F, Kanzaki F, Takumi K, Nakajo M, Fujio S, Hanaya R, Tanimoto A, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Time-dependent MR diffusion analysis of functioning and nonfunctioning pituitary adenomas/pituitary neuroendocrine tumors. J Neuroimaging 2025; 35:e13254. [PMID: 39636086 PMCID: PMC11619536 DOI: 10.1111/jon.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Differentiation between functioning and nonfunctioning pituitary adenomas/pituitary neuroendocrine tumors (PAs) is clinically relevant. The goal of this study was to determine the feasibility of using time-dependent diffusion MRI (dMRI) for microstructural characterization of PAs. METHODS The study included 54 participants, 24 with functioning PA and 30 with nonfunctioning PA. Time-dependent dMRI of the pituitary gland was performed using an inner field-of-view echo-planar imaging based on 2-dimensional-selective radiofrequency excitations with oscillating gradient and pulsed gradient preparation (effective diffusion time: 7.1 and 36.3 ms) at b-values of 0 and 1000 seconds/mm2. Each tumor had its apparent diffusion coefficients (ADCs) measured at two diffusion times (ADC7.1 ms and ADC36.3 ms), its ADC change (cADC), and relative ADC change. The mean values of diffusion parameters were compared between functioning and nonfunctioning PAs. We compared the diffusion parameters of nonfunctioning PAs with those of each type of hormone-producing PAs. The diagnostic performances of the diffusion parameters were assessed. RESULTS The cADC was significantly higher in functioning PAs than nonfunctioning PAs (p = .0124). The receiver operating characteristic (ROC) curve analysis revealed that cADC (area under the ROC curve [AUC] = .677, p = .017) is effective in distinguishing between functioning and nonfunctioning PAs. The cADC was significantly higher in growth hormone (GH)-producing PAs compared to nonfunctioning PAs (p = .006). The ROC curve analysis indicated that cADC (AUC = .771, p < .001) effectively distinguishes between GH-producing and nonfunctioning PAs. CONCLUSIONS The cADC derived from time-dependent dMRI could distinguish between functioning and nonfunctioning PAs, particularly those producing GH.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological ImagingKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Tomohiro Tokuda
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Junki Kamizono
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Tsubasa Nakano
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Tomohito Hasegawa
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Masanori Nakajo
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Fumitaka Ejima
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Fumiko Kanzaki
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Koji Takumi
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Masatoyo Nakajo
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Shingo Fujio
- Department of NeurosurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Ryosuke Hanaya
- Department of NeurosurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Akihide Tanimoto
- Department of PathologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Takashi Iwanaga
- Department of Radiological TechnologyKagoshima University HospitalKagoshimaJapan
| | | | | | - Takashi Yoshiura
- Department of Advanced Radiological ImagingKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
- Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|
2
|
Ma X, Seres P, Kinnaird A, Fung C, Feiweier T, Beaulieu C. Diffusion time effects over the adult lifespan indicates persistent zone-specific microstructural alterations in the human prostate with aging. Magn Reson Med 2024. [PMID: 39734280 DOI: 10.1002/mrm.30408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024]
Abstract
PURPOSE The purpose of this study was to investigate microstructural changes in the aging adult prostate by comparing the effects of varying diffusion times using diffusion MRI, and to provide an age-related benchmark for future prostate cancer studies. METHODS The prostates of normal male volunteers (n = 70, 19-69 years) were scanned at 3 T with an oscillating gradient spin echo (OGSE: 6 ms), pulsed gradient spin echo (PGSE: 40 ms) and pulsed gradient stimulated echo (PGSTE: 100 ms), and anatomical T2-weighted image. Volume and mean diffusivity (MD) were measured in the peripheral (PZ) and transition zones (TZ), which were assessed versus age. RESULTS PZ and TZ showed quadratic age trajectories for all diffusion scans, with MD decreasing from 19 years to a minimum ˜30-40 years followed by a greater increase at older ages. Short (OGSE) and medium (PGSE) diffusion time MD had similar age trajectories, whereas long diffusion time (PGSTE) MD was significantly lower, particularly in PZ (22%). MD difference (∆MD) of OGSE-PGSTE and PGSE-PGSTE showed significant positive linear correlations with age for both PZ (larger slope) and TZ, resulting in ˜3.3x (PZ) and 1.8x (TZ) greater ∆MD from 19 to 69 years. MD and ∆MD versus age relationships differed from volume, which conversely had greater proportional growth in TZ than PZ. CONCLUSION The diffusion time effects suggest age-related microstructural changes consistent with development of persistently larger cell dimensions mainly in the prostate peripheral zone over the adult lifespan. This normative data can be used for comparison to prostate cancer factoring in age.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Adam Kinnaird
- Division of Urology, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Fung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Lasič S, Chakwizira A, Lundell H, Westin CF, Nilsson M. Tuned exchange imaging: Can the filter exchange imaging pulse sequence be adapted for applications with thin slices and restricted diffusion? NMR IN BIOMEDICINE 2024; 37:e5208. [PMID: 38961745 DOI: 10.1002/nbm.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.
Collapse
Affiliation(s)
- Samo Lasič
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Arthur Chakwizira
- Department of Medical Radiation Physics, Lund, Lund University, Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- MR Section, DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Shi D, Liu F, Li S, Chen L, Jiang X, Gore JC, Zheng Q, Guo H, Xu J. Restriction-induced time-dependent transcytolemmal water exchange: Revisiting the Kӓrger exchange model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 367:107760. [PMID: 39241283 DOI: 10.1016/j.jmr.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The Kӓrger model and its derivatives have been widely used to incorporate transcytolemmal water exchange rate, an essential characteristic of living cells, into analyses of diffusion MRI (dMRI) signals from tissues. The Kӓrger model consists of two homogeneous exchanging components coupled by an exchange rate constant and assumes measurements are made with sufficiently long diffusion time and slow water exchange. Despite successful applications, it remains unclear whether these assumptions are generally valid for practical dMRI sequences and biological tissues. In particular, barrier-induced restrictions to diffusion produce inhomogeneous magnetization distributions in relatively large-sized compartments such as cancer cells, violating the above assumptions. The effects of this inhomogeneity are usually overlooked. We performed computer simulations to quantify how restriction effects, which in images produce edge enhancements at compartment boundaries, influence different variants of the Kӓrger-model. The results show that the edge enhancement effect will produce larger, time-dependent estimates of exchange rates in e.g., tumors with relatively large cell sizes (>10 μm), resulting in overestimations of water exchange as previously reported. Moreover, stronger diffusion gradients, longer diffusion gradient durations, and larger cell sizes, all cause more pronounced edge enhancement effects. This helps us to better understand the feasibility of the Kärger model in estimating water exchange in different tissue types and provides useful guidance on signal acquisition methods that may mitigate the edge enhancement effect. This work also indicates the need to correct the overestimated transcytolemmal water exchange rates obtained assuming the Kärger-model.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Li Chen
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
| | - Quanshui Zheng
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
5
|
Johansson J, Lagerstrand K, Björkman-Burtscher IM, Laesser M, Hebelka H, Maier SE. Normal Brain and Brain Tumor ADC: Changes Resulting From Variation of Diffusion Time and/or Echo Time in Pulsed-Gradient Spin Echo Diffusion Imaging. Invest Radiol 2024; 59:727-736. [PMID: 38587357 PMCID: PMC11460738 DOI: 10.1097/rli.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVES Increasing gradient performance on modern magnetic resonance imaging scanners has profoundly reduced the attainable diffusion and echo times for clinically available pulsed-gradient spin echo (PGSE) sequences. This study investigated how this may impact the measured apparent diffusion coefficient (ADC), which is considered an important diagnostic marker for differentiation between normal and abnormal brain tissue and for therapeutic follow-up. MATERIALS AND METHODS Diffusion time and echo time dependence of the ADC were evaluated on a high-performance 3 T magnetic resonance imaging scanner. Diffusion PGSE brain scans were performed in 10 healthy volunteers and in 10 brain tumor patients using diffusion times of 16, 40, and 70 ms, echo times of 60, 75, and 104 ms at 3 b-values (0, 100, and 1000 s/mm 2 ), and a maximum gradient amplitude of 68 mT/m. A low gradient performance system was also emulated by reducing the diffusion encoding gradient amplitude to 19 mT/m. In healthy subjects, the ADC was measured in 6 deep gray matter regions and in 6 white matter regions. In patients, the ADC was measured in the solid part of the tumor. RESULTS With increasing diffusion time, a small but significant ADC increase of up to 2.5% was observed for 6 aggregate deep gray matter structures. With increasing echo time or reduced gradient performance, a small but significant ADC decrease of up to 2.6% was observed for 6 aggregate white matter structures. In tumors, diffusion time-related ADC changes were inconsistent without clear trend. For tumors with diffusivity above 1.0 μm 2 /ms, with prolonged echo time, there was a pronounced ADC increase of up to 12%. Meanwhile, for tumors with diffusivity at or below 1.0 μm 2 /ms, no change or a reduction was observed. Similar results were observed for gradient performance reduction, with an increase of up to 21%. The coefficient of variation determined in repeat experiments was 2.4%. CONCLUSIONS For PGSE and the explored parameter range, normal tissue ADC changes seem negligible. Meanwhile, observed tumor ADC changes can be relevant if ADC is used as a quantitative biomarker and not merely assessed by visual inspection. This highlights the importance of reporting all pertinent timing parameters in ADC studies and of considering these effects when building scan protocols for use in multicenter investigations.
Collapse
|
6
|
Singh S, Sutkus L, Li Z, Baker S, Bear J, Dilger RN, Miller DJ. Standardization of a silver stain to reveal mesoscale myelin in histological preparations of the mammalian brain. J Neurosci Methods 2024; 407:110139. [PMID: 38626852 DOI: 10.1016/j.jneumeth.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The brain is built of neurons supported by myelin, a fatty substance that improves cellular communication. Noninvasive magnetic resonance imaging (MRI) is now able to measure brain structure like myelin and requires histological validation. NEW METHOD Here we present work in small and large biomedical model mammals to standardize a silver impregnation method as a high-throughput histological myelin visualization procedure. Specifically, we built a new staining well plate to increase batch size, and then systematically varied the staining and clearing cycles to describe the staining response curve across taxa and conditions. We compared tissues fixed by immersion or perfusion, mounted versus free-floating, and cut as thicker or thinner slices, with two-weeks of post-fixation. RESULTS The staining response curves show optimal staining with a single exposure across taxa when incubation and clearing epochs are held to within 3-9 min. We show that clearing was slower in mounted vs free-floating tissue, and that staining was faster and caused fracturing earlier in thinner sliced and smaller volumes of tissue. COMPARISON WITH EXISTING METHODS We developed a batch processing approach to increase throughput while ensuring reproducibility and demonstrate the optimal conditions for fine myelinated fiber morphology visualization with short cycles (<9 minutes). CONCLUSIONS We present our optimized protocol to reveal mesoscale neuroanatomical myelin content in histology across mammals. This standard staining procedure will facilitate multiscale analyses of myelin content across development as well as in the presence of injury or disease.
Collapse
Affiliation(s)
- S Singh
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - L Sutkus
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - Z Li
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - S Baker
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - J Bear
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - R N Dilger
- Department of Animal Sciences, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - D J Miller
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America.
| |
Collapse
|
7
|
Ejima F, Fukukura Y, Kamimura K, Nakajo M, Ayukawa T, Kanzaki F, Yanazume S, Kobayashi H, Kitazono I, Imai H, Feiweier T, Yoshiura T. Oscillating Gradient Diffusion-Weighted MRI for Risk Stratification of Uterine Endometrial Cancer. J Magn Reson Imaging 2024; 60:67-77. [PMID: 37886909 DOI: 10.1002/jmri.29106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Oscillating gradient diffusion-weighted imaging (DWI) enables elucidation of microstructural characteristics in cancers; however, there are limited data to evaluate its utility in patients with endometrial cancer. PURPOSE To investigate the utility of oscillating gradient DWI for risk stratification in patients with uterine endometrial cancer compared with conventional pulsed gradient DWI. STUDY TYPE Retrospective. SUBJECTS Sixty-three women (mean age: 58 [range: 32-85] years) with endometrial cancer. FIELD STRENGTH/SEQUENCE 3 T MRI including DWI using oscillating gradient spin-echo (OGSE) and pulsed gradient spin-echo (PGSE) research sequences. ASSESSMENT Mean value of the apparent diffusion coefficient (ADC) values for OGSE (ADCOGSE) and PGSE (ADCPGSE) as well as the ADC ratio (ADCOGSE/ADCPGSE) within endometrial cancer were measured using regions of interest. Prognostic factors (histological grade, deep myometrial invasion, lymphovascular invasion, International Federation of Gynecology and Obstetrics [FIGO] stage, and prognostic risk classification) were tabulated. STATISTICAL TESTS Interobserver agreement was analyzed by calculating the intraclass correlation coefficient. The associations of ADCOGSE, ADCPGSE, and ADCOGSE/ADCPGSE with prognostic factors were examined using the Kendall rank correlation coefficient, Mann-Whitney U test, and receiver operating characteristic (ROC) curve. A P value of <0.05 was statistically significant. RESULTS Compared with ADCOGSE and ADCPGSE, ADCOGSE/ADCPGSE was significantly and strongly correlated with histological grade (observer 1, τ = 0.563; observer 2, τ = 0.456), FIGO stage (observer 1, τ = 0.354; observer 2, τ = 0.324), and prognostic risk classification (observer 1, τ = 0.456; observer 2, τ = 0.385). The area under the ROC curves of ADCOGSE/ADCPGSE for histological grade (observer 1, 0.92, 95% confidence intervals [CIs]: 0.83-0.98; observer 2, 0.84, 95% CI: 0.73-0.92) and prognostic risk (observer 1, 0.80, 95% CI: 0.68-0.89; observer 2, 0.76, 95% CI: 0.63-0.86) were significantly higher than that of ADCOGSE and ADCPGSE. DATA CONCLUSION The ADC ratio obtained via oscillating gradient and pulsed gradient DWIs might be useful imaging biomarkers for risk stratification in patients with endometrial cancer. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumiko Kanzaki
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shintaro Yanazume
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kobayashi
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
8
|
Yeung K, Mózes FE, Grist JT. Editorial for "Oscillating Gradient Diffusion-Weighted MRI for Risk Stratification of Uterine Endometrial Cancer". J Magn Reson Imaging 2024; 60:78-79. [PMID: 37916675 DOI: 10.1002/jmri.29107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Kylie Yeung
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
9
|
Zhou M, Stobbe R, Szczepankiewicz F, Budde M, Buck B, Kate M, Lloret M, Fairall P, Butcher K, Shuaib A, Emery D, Nilsson M, Westin CF, Beaulieu C. Tensor-valued diffusion MRI of human acute stroke. Magn Reson Med 2024; 91:2126-2141. [PMID: 38156813 DOI: 10.1002/mrm.29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (μFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher μFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower μFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.
Collapse
Affiliation(s)
- Mi Zhou
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Stobbe
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew Budde
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian Buck
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahesh Kate
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mar Lloret
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Fairall
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Ken Butcher
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashfaq Shuaib
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Derek Emery
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Markus Nilsson
- Clinical Sciences Lund, Lund University, Lund, Scania, Sweden
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Beaulieu
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Johnson JTE, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. Hum Brain Mapp 2024; 45:e26697. [PMID: 38726888 PMCID: PMC11082920 DOI: 10.1002/hbm.26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency,ω $$ \omega $$ , in addition to the diffusion tensor,D $$ \mathbf{D} $$ , and relaxation,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , correlations. AD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on theirD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T. E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaMarylandUSA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan Martin
- Department of ChemistryLund UniversityLundSweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
11
|
Magdoom KN, Avram AV, Witzel TE, Huang SY, Basser PJ. Water Diffusion in the Live Human Brain is Gaussian at the Mesoscale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588939. [PMID: 38645264 PMCID: PMC11030434 DOI: 10.1101/2024.04.10.588939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Imaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity. This study explores the extension of the DTI model to mesoscopic length scales by use of the diffusion tensor distribution (DTD) model, which assumes a Gaussian diffusion process in each subvoxel. DTD MRI has shown promise in addressing some limitations of DTI, particularly in distinguishing among different types of brain cancers and elucidating multiple fiber populations within a voxel. However, its validity in live brain tissue has never been established. Here, multiple diffusion-encoded (MDE) data were acquired in the living human brain using a 3 Tesla MRI scanner with large diffusion weighting factors. Two different diffusion times (Δ = 37, 74 ms) were employed, with other scanning parameters fixed to assess signal decay differences. In vivo diffusion-weighted signals in gray and white matter were nearly identical at the two diffusion times. Fitting the signals to the DTD model yielded indistinguishable results, except in the cerebrospinal fluid (CSF)-filled voxels likely due to pulsatile flow. Overall, the study supports the time invariance of water diffusion at the mesoscopic scale in live brain parenchyma, extending the validity of the anisotropic Gaussian diffusion model in clinical brain imaging.
Collapse
|
12
|
Oshiro H, Hata J, Nakashima D, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study. Magn Reson Med Sci 2024; 23:136-145. [PMID: 36754420 PMCID: PMC11024708 DOI: 10.2463/mrms.mp.2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom. METHODS We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion. RESULTS The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws. CONCLUSION No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Yawara Haga
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Kei Hagiya
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
Oshiro H, Hata J, Nakashima D, Oshiro R, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Restricted diffusion characteristics in oscillating gradient spin echo with mesoscopic phantom. Heliyon 2024; 10:e26391. [PMID: 38434080 PMCID: PMC10906284 DOI: 10.1016/j.heliyon.2024.e26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
In diffusion magnetic resonance imaging, oscillating gradient spin echo (OGSE) has an extremely short diffusion time if motion probing gradient (MPG) is applied to the waveform. Further, it can detect microstructural specificity. OGSE changes sensitivity to spin displacement velocity based on the MPG phase. The current study aimed to investigate the restricted diffusion characteristics of each OGSE waveform using the capillary phantom with various b-values, frequencies, and MPG phases. We performed OGSE (b-value = 300, 500, 800, 1200, 1600, and 2000 s/mm2) for the sine and cosine waveforms using the capillary phantom (6, 12, 25, 50, and 100 μm and free water) with a 9.4-T experimental magnetic resonance imaging system and a solenoid coil. We evaluated the axial and radial diffusivity (AD, RD) of each structure size. The output current of the MPG was assessed with an oscilloscope and analyzed with the gradient modulation power spectra by fast Fourier transform. In sine, the sidelobe spectrum was enhanced with increasing frequency, and the central spectrum slightly increased. The difference in RD was detected at 6 and 12 μm; however, it did not depend on the structure scale at 50 or 100 μm and free water. In cosine, the diffusion spectrum was enhanced, whereas the central spectrum decreased with increasing frequency. Both AD and RD in cosine had a frequency dependence, and AD and RD increased with a higher frequency regardless of structure size. AD and RD in either sine or cosine had no evident b-value dependence. We evaluated the OGSE-restricted diffusion characteristics. The measurements obtained diffusion information similar to the pulsed gradient spin echo. Hence, the cosine measurements indicated that a higher frequency could capture faster diffusion within the diffusion phenomena.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Rintaro Oshiro
- Department of Physics, Faculty of Science and Technology, Keio University, Japan
| | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Yawara Haga
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| | - Kei Hagiya
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Kamimura K, Nakano T, Hasegawa T, Nakajo M, Yamada C, Kamimura Y, Akune K, Ejima F, Ayukawa T, Nagano H, Takumi K, Nakajo M, Higa N, Yonezawa H, Hanaya R, Kirishima M, Tanimoto A, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient. Cancer Imaging 2023; 23:114. [PMID: 38037172 PMCID: PMC10691025 DOI: 10.1186/s40644-023-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. METHODS A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δeff = 7.1 ms) and conventional pulsed gradient (Δeff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC7.1 ms and ADC44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. RESULTS In enhancing regions, the mean and fifth and 95th percentile values of ADC44.5 ms and ADC7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95th percentile of ADC44.5 ms, p = 0.04 for ADC7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC7.1 ms was significantly lower than that for ADC44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC44.5 ms, ADC7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. CONCLUSIONS Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Tsubasa Nakano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomohito Hasegawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chihiro Yamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiki Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Akune
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroshi Imai
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-Ku, Tokyo, 141-8644, Japan
| | | | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
15
|
Johnson JT, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561702. [PMID: 37987005 PMCID: PMC10659440 DOI: 10.1101/2023.10.10.561702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω , in addition to the diffusion tensor, D , and relaxation, R 1 , R 2 , correlations. A D ( ω ) - R 1 - R 2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ( ω ) - R 1 - R 2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T.E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Martin
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
16
|
Dai E, Zhu A, Yang GK, Quah K, Tan ET, Fiveland E, Foo TKF, McNab JA. Frequency-dependent diffusion kurtosis imaging in the human brain using an oscillating gradient spin echo sequence and a high-performance head-only gradient. Neuroimage 2023; 279:120328. [PMID: 37586445 PMCID: PMC10529993 DOI: 10.1016/j.neuroimage.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.
Collapse
Affiliation(s)
- Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Grant K Yang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kristin Quah
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
17
|
Kamimura K, Kamimura Y, Nakano T, Hasegawa T, Nakajo M, Yamada C, Akune K, Ejima F, Ayukawa T, Ito S, Nagano H, Takumi K, Nakajo M, Uchida H, Tabata K, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI. Cancer Imaging 2023; 23:75. [PMID: 37553578 PMCID: PMC10410879 DOI: 10.1186/s40644-023-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND This study was designed to investigate the use of time-dependent diffusion magnetic resonance imaging (MRI) parameters in distinguishing between glioblastomas and brain metastases. METHODS A retrospective study was conducted involving 65 patients with glioblastomas and 27 patients with metastases using a diffusion-weighted imaging sequence with oscillating gradient spin-echo (OGSE, 50 Hz) and a conventional pulsed gradient spin-echo (PGSE, 0 Hz) sequence. In addition to apparent diffusion coefficient (ADC) maps from two sequences (ADC50Hz and ADC0Hz), we generated maps of the ADC change (cADC): ADC50Hz - ADC0Hz and the relative ADC change (rcADC): (ADC50Hz - ADC0Hz)/ ADC0Hz × 100 (%). RESULTS The mean and the fifth and 95th percentile values of each parameter in enhancing and peritumoral regions were compared between glioblastomas and metastases. The area under the receiver operating characteristic curve (AUC) values of the best discriminating indices were compared. In enhancing regions, none of the indices of ADC0Hz and ADC50Hz showed significant differences between metastases and glioblastomas. The mean cADC and rcADC values of metastases were significantly higher than those of glioblastomas (0.24 ± 0.12 × 10-3mm2/s vs. 0.14 ± 0.03 × 10-3mm2/s and 23.3 ± 9.4% vs. 14.0 ± 4.7%; all p < 0.01). In peritumoral regions, no significant difference in all ADC indices was observed between metastases and glioblastomas. The AUC values for the mean cADC (0.877) and rcADC (0.819) values in enhancing regions were significantly higher than those for ADC0Hz5th (0.595; all p < 0.001). CONCLUSIONS The time-dependent diffusion MRI parameters may be useful for differentiating brain metastases from glioblastomas.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yoshiki Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tsubasa Nakano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomohito Hasegawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chihiro Yamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Akune
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroshi Imai
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-Ku, Tokyo, 141-8644, Japan
| | | | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
18
|
Rahman N, Xu K, Budde MD, Brown A, Baron CA. A longitudinal microstructural MRI dataset in healthy C57Bl/6 mice at 9.4 Tesla. Sci Data 2023; 10:94. [PMID: 36788251 PMCID: PMC9929084 DOI: 10.1038/s41597-023-01942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Multimodal microstructural MRI has shown increased sensitivity and specificity to changes in various brain disease and injury models in the preclinical setting. Here, we present an in vivo longitudinal dataset, including a subset of ex vivo data, acquired as control data and to investigate microstructural changes in the healthy mouse brain. The dataset consists of structural T2-weighted imaging, magnetization transfer ratio and saturation imaging, and advanced quantitative diffusion MRI (dMRI) methods. The dMRI methods include oscillating gradient spin echo (OGSE) dMRI and microscopic anisotropy (μA) dMRI, which provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The technical skills required to analyze microstructural MRI data are complex and include MRI sequence development, acquisition, and computational neuroimaging expertise. Here, we share unprocessed and preprocessed data, and scalar maps of quantitative MRI metrics. We envision utility of this dataset in the microstructural MRI field to develop and test biophysical models, methods that model temporal brain dynamics, and registration and preprocessing pipelines.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Li H, Zu T, Hsu YC, Zhao Z, Liu R, Zheng T, Li Q, Sun Y, Liu D, Zhang J, Zhang Y, Wu D. Inversion-Recovery-Prepared Oscillating Gradient Sequence Improves Diffusion-Time Dependency Measurements in the Human Brain. J Magn Reson Imaging 2023; 57:446-453. [PMID: 35723048 DOI: 10.1002/jmri.28311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oscillating gradient diffusion MRI (dMRI) enables measurements at a short diffusion-time (td ), but it is challenging for clinical systems. Particularly, the low b-value and low resolution may give rise to cerebrospinal fluid (CSF) contamination. PURPOSE To assess the effect of CSF partial volume on td -dMRI measurements and efficacy of inversion-recovery (IR) prepared oscillating and pulsed gradient dMRI sequence to improve td -dMRI measurements in the human brain. STUDY TYPE Prospective. SUBJECTS Ten normal volunteers and six glioma patients. FIELD STRENGTH/SEQUENCE A 3 T; three-dimensional (3D) IR-prepared oscillating gradient-prepared gradient spin-echo (GRASE) and two-dimensional (2D) IR-prepared oscillating gradient echo-planar imaging (EPI) sequences. ASSESSMENT We assessed the td -dependent patterns of apparent diffusion coefficient (ADC) in several gray and white matter structures, including the hippocampal subfields (head, body, and tail), cortical gray matter, thalamus, and posterior white matter in normal volunteers. Pulsed gradient (0 Hz) and oscillating gradients at frequencies of 20 Hz, 40 Hz, and 60 Hz dMRI were acquired with GRASE and EPI sequences with or without the IR module. We also tested the td -dependency patterns in glioma patients using the EPI sequence with or without the IR module. STATISTICAL TESTS The differences in ADC across the different td s were compared by one-way ANOVA followed by post hoc pairwise t-tests with Bonferroni correction. RESULTS In the healthy subjects, brain regions that were possibly contaminated by CSF signals, such as the hippocampus (head, body, and tail) and cortical gray matter, td -dependent ADC changes were only significant with the IR-prepared 2D and 3D sequences but not with the non-IR sequences. In brain glioblastomas patients, significantly higher td -dependence was observed in the tumor region with the IR module than that without IR (slope = 0.0196 μm2 /msec2 vs. 0.0034 μm2 /msec2 ). CONCLUSION The IR-prepared sequence effectively suppressed the CSF partial volume effect and significantly improved the td -dependent measurements in the human brain. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianshu Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Li
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Wang N, Wen Q. Editorial for "Inversion-Recovery-Prepared Oscillating Gradient Sequence Improves Diffusion-Time Dependency Measurements in the Human Brain". J Magn Reson Imaging 2023; 57:454-455. [PMID: 35962628 DOI: 10.1002/jmri.28395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
- Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Borsos KB, Tse DHY, Dubovan PI, Baron CA. Tuned bipolar oscillating gradients for mapping frequency dispersion of diffusion kurtosis in the human brain. Magn Reson Med 2023; 89:756-766. [PMID: 36198030 DOI: 10.1002/mrm.29473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Oscillating gradient spin-echo (OGSE) sequences have demonstrated an ability to probe time-dependent microstructural features, although they often suffer from low SNR due to increased TEs. In this work we introduce frequency-tuned bipolar (FTB) gradients as a variation of oscillating gradients with reduced TE and demonstrate their utility by mapping the frequency dispersion of kurtosis in human subjects. METHODS An FTB oscillating gradient waveform is presented that provides encoding of 1.5 net oscillation periods, thereby reducing the TE of the acquisition. Simulations were performed to determine an optimal protocol based on the SNR of kurtosis frequency dispersion-defined as the difference in kurtosis between pulsed and oscillating gradient acquisitions. Healthy human subjects were scanned at 7T using pulsed gradient and an optimized 23 Hz FTB protocol, which featured a maximum b-value of 2500 s/mm2 . In addition, to directly compare existing methods, measurements using traditional cosine OGSE were also acquired. RESULTS FTB oscillating gradients demonstrated equivalent frequency-dependent diffusion measurements compared with cosine-modulated OGSE while enabling a significant reduction in TE. Optimization and in vivo results suggest that FTB gradients provide increased SNR of kurtosis dispersion maps compared with traditional cosine OGSE. The optimized FTB gradient protocol demonstrated consistent reductions in apparent kurtosis values and increased diffusivity in generated frequency dispersion maps. CONCLUSIONS This work presents an alternative to traditional cosine OGSE sequences, enabling more time-efficient acquisitions of frequency-dependent diffusion quantities as demonstrated through in vivo kurtosis frequency dispersion maps.
Collapse
Affiliation(s)
- Kevin B Borsos
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Desmond H Y Tse
- Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Paul I Dubovan
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
22
|
Devan SP, Jiang X, Luo G, Xie J, Quirk JD, Engelbach JA, Harmsen H, McKinley ET, Cui J, Zu Z, Attia A, Garbow JR, Gore JC, McKnight CD, Kirschner AN, Xu J. Selective Cell Size MRI Differentiates Brain Tumors from Radiation Necrosis. Cancer Res 2022; 82:3603-3613. [PMID: 35877201 PMCID: PMC9532360 DOI: 10.1158/0008-5472.can-21-2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/05/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis is a common characteristic of late-stage lung cancers. High doses of targeted radiotherapy can control tumor growth in the brain but can also result in radiotherapy-induced necrosis. Current methods are limited for distinguishing whether new parenchymal lesions following radiotherapy are recurrent tumors or radiotherapy-induced necrosis, but the clinical management of these two classes of lesions differs significantly. Here, we developed, validated, and evaluated a new MRI technique termed selective size imaging using filters via diffusion times (SSIFT) to differentiate brain tumors from radiotherapy necrosis in the brain. This approach generates a signal filter that leverages diffusion time dependence to establish a cell size-weighted map. Computer simulations in silico, cultured cancer cells in vitro, and animals with brain tumors in vivo were used to comprehensively validate the specificity of SSIFT for detecting typical large cancer cells and the ability to differentiate brain tumors from radiotherapy necrosis. SSIFT was also implemented in patients with metastatic brain cancer and radiotherapy necrosis. SSIFT showed high correlation with mean cell sizes in the relevant range of less than 20 μm. The specificity of SSIFT for brain tumors and reduced contrast in other brain etiologies allowed SSIFT to differentiate brain tumors from peritumoral edema and radiotherapy necrosis. In conclusion, this new, cell size-based MRI method provides a unique contrast to differentiate brain tumors from other pathologies in the brain. SIGNIFICANCE This work introduces and provides preclinical validation of a new diffusion MRI method that exploits intrinsic differences in cell sizes to distinguish brain tumors and radiotherapy necrosis.
Collapse
Affiliation(s)
- Sean P Devan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiaoyu Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Guozhen Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - John A Engelbach
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Hannah Harmsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jing Cui
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
- Alvin J Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Austin N Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
24
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
25
|
Wu D, Jiang K, Li H, Zhang Z, Ba R, Zhang Y, Hsu YC, Sun Y, Zhang YD. Time-Dependent Diffusion MRI for Quantitative Microstructural Mapping of Prostate Cancer. Radiology 2022; 303:578-587. [PMID: 35258368 DOI: 10.1148/radiol.211180] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Recently developed time-dependent diffusion MRI has potential in characterizing cellular tissue microstructures; however, its value in imaging prostate cancer (PCa) remains unknown. Purpose To investigate the feasibility of time-dependent diffusion MRI-based microstructural mapping for noninvasively characterizing cellular properties of PCa and for discriminating between clinically significant PCa and clinically insignificant disease. Materials and Methods Men with a clinical suspicion of PCa were enrolled prospectively between October 2019 and August 2020. Time-dependent diffusion MRI data were acquired with pulsed and oscillating gradient diffusion MRI sequences at an equivalent diffusion time of 7.5-30 msec on a 3.0-T scanner. Time-dependent diffusion MRI-based microstructural parameters, including cell diameter, intracellular volume fraction, cellularity, and diffusivities, were estimated with a two-compartment model. These were compared for different International Society of Urological Pathology grade groups (GGs), and their performance in discriminating clinically significant PCa (GG >1) from clinically insignificant disease (benign and GG 1) was determined with a linear discriminant analysis. The fitted microstructural parameters were validated by means of correlation with histopathologic measurements. Results In the 48 enrolled men, the time-dependent diffusion MRI measurements showed that higher GG was correlated with higher intracellular volume fraction and higher cellularity (intracellular volume fraction = 0.22, 0.36, 0.34, 0.37, and 0.40 in GGs 1-5, respectively; P < .001 at one-way analysis of variance), while lower cell diameter was found at higher GGs (diameter = 23.4, 18.3, 19.2, 17.9, and 18.5 μm in GGs 1-5, respectively; P = .002). Among all measurements derived from time-dependent diffusion MRI, cellularity achieved the highest diagnostic performance, with an accuracy of 92% (44 of 48 participants) and area under the receiver operating characteristic curve of 0.96 (95% CI: 0.87, 0.99) in discriminating clinically significant PCa from clinically insignificant disease. Microstructural mapping was supported by positive correlations between time-dependent diffusion MRI-based and pathologic examination-based intracellular volume fraction (r = 0.83; P < .001). Conclusion Time-dependent diffusion MRI-based microstructural mapping correlates with pathologic findings and demonstrates promise for characterizing prostate cancer. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chatterjee and Oto in this issue.
Collapse
Affiliation(s)
- Dan Wu
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Kewen Jiang
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Hai Li
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Zelin Zhang
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Ruicheng Ba
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Yi Zhang
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Yi-Cheng Hsu
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Yi Sun
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| | - Yu-Dong Zhang
- From the Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China (D.W., Z.Z., R.B., Y.Z.); Departments of Radiology (K.J., Y.D.Z.) and Pathology (H.L.), the First Affiliated Hospital with Nanjing Medical University & AI Lab, Medical Imaging College, Nanjing Medical University, Nanjing 210009, China; and MR Collaboration, Siemens Healthcare, Shanghai, China (Y.C.H., Y.S.)
| |
Collapse
|
26
|
Michael ES, Hennel F, Pruessmann KP. Evaluating diffusion dispersion across an extended range of b-values and frequencies: Exploiting gap-filled OGSE shapes, strong gradients, and spiral readouts. Magn Reson Med 2022; 87:2710-2723. [PMID: 35049104 PMCID: PMC9306807 DOI: 10.1002/mrm.29161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Purpose To address the long echo times and relatively weak diffusion sensitization that typically limit oscillating gradient spin‐echo (OGSE) experiments, an OGSE implementation combining spiral readouts, gap‐filled oscillating gradient shapes providing stronger diffusion encoding, and a high‐performance gradient system is developed here and utilized to investigate the tradeoff between b‐value and maximum OGSE frequency in measurements of diffusion dispersion (i.e., the frequency dependence of diffusivity) in the in vivo human brain. In addition, to assess the effects of the marginal flow sensitivity introduced by these OGSE waveforms, flow‐compensated variants are devised for experimental comparison. Methods Using DTI sequences, OGSE acquisitions were performed on three volunteers at b‐values of 300, 500, and 1000 s/mm2 and frequencies up to 125, 100, and 75 Hz, respectively; scans were performed for gap‐filled oscillating gradient shapes with and without flow sensitivity. Pulsed gradient spin‐echo DTI acquisitions were also performed at each b‐value. Upon reconstruction, mean diffusivity (MD) maps and maps of the diffusion dispersion rate were computed. Results The power law diffusion dispersion model was found to fit best to MD measurements acquired at b = 1000 s/mm2 despite the associated reduction of the spectral range; this observation was consistent with Monte Carlo simulations. Furthermore, diffusion dispersion rates without flow sensitivity were slightly higher than flow‐sensitive measurements. Conclusion The presented OGSE implementation provided an improved depiction of diffusion dispersion and demonstrated the advantages of measuring dispersion at higher b‐values rather than higher frequencies within the regimes employed in this study.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nonparametric D-R 1-R 2 distribution MRI of the living human brain. Neuroimage 2021; 245:118753. [PMID: 34852278 DOI: 10.1016/j.neuroimage.2021.118753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Diffusion-relaxation correlation NMR can simultaneously characterize both the microstructure and the local chemical composition of complex samples that contain multiple populations of water. Recent developments on tensor-valued diffusion encoding and Monte Carlo inversion algorithms have made it possible to transfer diffusion-relaxation correlation NMR from small-bore scanners to clinical MRI systems. Initial studies on clinical MRI systems employed 5D D-R1 and D-R2 correlation to characterize healthy brain in vivo. However, these methods are subject to an inherent bias that originates from not including R2 or R1 in the analysis, respectively. This drawback can be remedied by extending the concept to 6D D-R1-R2 correlation. In this work, we present a sparse acquisition protocol that records all data necessary for in vivo 6D D-R1-R2 correlation MRI across 633 individual measurements within 25 min-a time frame comparable to previous lower-dimensional acquisition protocols. The data were processed with a Monte Carlo inversion algorithm to obtain nonparametric 6D D-R1-R2 distributions. We validated the reproducibility of the method in repeated measurements of healthy volunteers. For a post-therapy glioblastoma case featuring cysts, edema, and partially necrotic remains of tumor, we present representative single-voxel 6D distributions, parameter maps, and artificial contrasts over a wide range of diffusion-, R1-, and R2-weightings based on the rich information contained in the D-R1-R2 distributions.
Collapse
|
28
|
Valsamis JJ, Dubovan PI, Baron CA. Characterization and correction of time-varying eddy currents for diffusion MRI. Magn Reson Med 2021; 87:2209-2223. [PMID: 34894640 DOI: 10.1002/mrm.29124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop and test a method for reducing artifacts due to time-varying eddy currents in oscillating gradient spin-echo (OGSE) diffusion images. METHODS An in-house algorithm (TVEDDY), that for the first time retrospectively models eddy current decay, was tested on pulsed gradient spin echo and OGSE brain images acquired at 7 T. Image pairs were acquired using opposite polarity diffusion gradients. A three-parameter exponential decay model (two amplitudes and a time constant) was used to characterize and correct eddy current distortions by minimizing the intensity difference between image pairs. Correction performance was compared with conventional correction methods by evaluating the mean squared error (MSE) between diffusion-weighted images acquired with opposite polarity diffusion gradients. As a ground-truth comparison, images were corrected using field dynamics up to third order in space, measured using a field monitoring system. RESULTS Time-varying eddy currents were observed for OGSE, which introduced blurring that was not reduced using the traditional approach but was diminished considerably with TVEDDY and field monitoring-informed model-based reconstruction. No MSE difference was observed between the conventional approach and TVEDDY for pulsed gradient spin echo, but for OGSE TVEDDY resulted in significantly lower MSE than the conventional approach. The field-monitoring reconstruction had the lowest MSE for both pulsed gradient spin echo and OGSE. CONCLUSION This work establishes that it is possible to estimate time-varying eddy currents from the actual diffusion data, which provides substantial image-quality improvements for gradient-intensive diffusion MRI acquisitions like OGSE.
Collapse
Affiliation(s)
- Jake J Valsamis
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| | - Paul I Dubovan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| | - Corey A Baron
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
29
|
Rahman N, Xu K, Omer M, Budde MD, Brown A, Baron CA. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS One 2021; 16:e0255711. [PMID: 34739479 PMCID: PMC8570471 DOI: 10.1371/journal.pone.0255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microstructure imaging with advanced diffusion MRI (dMRI) techniques have shown increased sensitivity and specificity to microstructural changes in various disease and injury models. Oscillating gradient spin echo (OGSE) dMRI, implemented by varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI, implemented via tensor valued diffusion encoding, may provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The aims of this study were to characterize the test-retest reproducibility of in vivo OGSE and μA dMRI metrics in the mouse brain at 9.4 Tesla and provide estimates of required sample sizes for future investigations. METHODS Twelve adult C57Bl/6 mice were scanned twice (5 days apart). Each imaging session consisted of multifrequency OGSE and μA dMRI protocols. Metrics investigated included μA, linear diffusion kurtosis, isotropic diffusion kurtosis, and the diffusion dispersion rate (Λ), which explores the power-law frequency dependence of mean diffusivity. The dMRI metric maps were analyzed with mean region-of-interest (ROI) and whole brain voxel-wise analysis. Bland-Altman plots and coefficients of variation (CV) were used to assess the reproducibility of OGSE and μA metrics. Furthermore, we estimated sample sizes required to detect a variety of effect sizes. RESULTS Bland-Altman plots showed negligible biases between test and retest sessions. ROI-based CVs revealed high reproducibility for most metrics (CVs < 15%). Voxel-wise CV maps revealed high reproducibility for μA (CVs ~ 10%), but low reproducibility for OGSE metrics (CVs ~ 50%). CONCLUSION Most of the μA dMRI metrics are reproducible in both ROI-based and voxel-wise analysis, while the OGSE dMRI metrics are only reproducible in ROI-based analysis. Given feasible sample sizes (10-15), μA metrics and OGSE metrics may provide sensitivity to subtle microstructural changes (4-8%) and moderate changes (> 6%), respectively.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammad Omer
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A. Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Diffusion in Sephadex Gel Structures: Time Dependency Revealed by Multi-Sequence Acquisition over a Broad Diffusion Time Range. MATHEMATICS 2021; 9. [PMID: 34386373 PMCID: PMC8356480 DOI: 10.3390/math9141688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been increasingly reported that in biological tissues diffusion-weighted MRI signal attenuation deviates from mono-exponential decay, especially at high b-values. A number of diffusion models have been proposed to characterize this non-Gaussian diffusion behavior. One of these models is the continuous-time random-walk (CTRW) model, which introduces two new parameters: a fractional order time derivative α and a fractional order spatial derivative β. These new parameters have been linked to intravoxel diffusion heterogeneities in time and space, respectively, and are believed to depend on diffusion times. Studies on this time dependency are limited, largely because the diffusion time cannot vary over a board range in a conventional spin-echo echo-planar imaging sequence due to the accompanying T2 decays. In this study, we investigated the time-dependency of the CTRW model in Sephadex gel phantoms across a broad diffusion time range by employing oscillating-gradient spin-echo, pulsed-gradient spin-echo, and pulsed-gradient stimulated echo sequences. We also performed Monte Carlo simulations to help understand our experimental results. It was observed that the diffusion process fell into the Gaussian regime at extremely short diffusion times whereas it exhibited a strong time dependency in the CTRW parameters at longer diffusion times.
Collapse
|
31
|
Gao F, Shen X, Zhang H, Ba R, Ma X, Lai C, Zhang J, Zhang Y, Wu D. Feasibility of oscillating and pulsed gradient diffusion MRI to assess neonatal hypoxia-ischemia on clinical systems. J Cereb Blood Flow Metab 2021; 41:1240-1250. [PMID: 32811261 PMCID: PMC8142137 DOI: 10.1177/0271678x20944353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diffusion-time- (td) dependent diffusion MRI (dMRI) extends our ability to characterize brain microstructure by measuring dMRI signals at varying td. The use of oscillating gradient (OG) is essential for accessing short td but is technically challenging on clinical MRI systems. This study aims to investigate the clinical feasibility and value of td-dependent dMRI in neonatal hypoxic-ischemic encephalopathy (HIE). Eighteen HIE neonates and six normal term-born neonates were scanned on a 3 T scanner, with OG-dMRI at an oscillating frequency of 33 Hz (equivalent td ≈ 7.5 ms) and pulsed gradient (PG)-dMRI at a td of 82.8 ms and b-value of 700 s/mm2. The td-dependence, as quantified by the difference in apparent diffusivity coefficients between OG- and PG-dMRI (ΔADC), was observed in the normal neonatal brains, and the ΔADC was higher in the subcortical white matter than the deep grey matter. In HIE neonates with severe and moderate injury, ΔADC significantly increased in the basal ganglia (BG) compared to the controls (23.7% and 10.6%, respectively). In contrast, the conventional PG-ADC showed a 12.6% reduction only in the severe HIE group. White matter edema regions also demonstrated increased ΔADC, where PG-ADC did not show apparent changes. Our result demonstrated that td-dependent dMRI provided high sensitivity in detecting moderate-to-severe HIE.
Collapse
Affiliation(s)
- Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoxia Shen
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaolu Ma
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Can Lai
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangyang Zhang
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Abstract
Diffusion-weighted images provide a unique contrast that shows the ability to assess tissue structure and condition on a micrometer scale. Notably, these equations are necessary to understand diffusion MR imaging as a theory but not for real imaging, particularly in clinical practice. The diffusion phenomenon can be observed only through MR measurements. One of the emerging fields of diffusion MRI is to probe the tissue microstructure by altering the diffusion time t, the time interval over which spin displacements are sampled. However, the diffusion time is, in a sense, more important than the b-value for diffusion-weighted images and their quantitative metrics.
Collapse
|
33
|
Xing S, Levesque IR. A simulation study of cell size and volume fraction mapping for tissue with two underlying cell populations using diffusion-weighted MRI. Magn Reson Med 2021; 86:1029-1044. [PMID: 33644889 DOI: 10.1002/mrm.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To propose a method for voxel-wise estimation of cell radii and volume fractions of two cell populations when they coexist in the same MR voxel using the combination of diffusion-weighted MRI and microstructural modeling. METHOD Microstructure models were investigated using diffusion data simulated with the matrix method for a range of microstructures mimicking tumor tissue with two cell populations, using acquisition parameters available on preclinical scanners. The effect of noise was investigated for a subset of these microstructures. The accuracy and precision of the estimated radii and volume fractions for large and small cells R l , R s , v i n , l , v i n , s were evaluated by comparing the estimates to their true values. The stability of model fitting was characterized by the percentage of accepted fits. RESULTS The estimation accuracy and precision, and thus the ability to robustly distinguish the two cell populations, depended on the microstructural properties and SNR. For a SNR of 50, a minimum difference of 3 μm between the radius of the large and small cell populations was required for differentiation. Proposed modifications to the two cell population microstructure model, including constrained fits, improved the stability of fits. CONCLUSIONS This proof-of-concept study proposed a diffusion MRI-based method for voxel-wise estimation of cell radii and volume fractions of two cell populations when they coexist in the same MR voxel. The ability to reliably characterize tissue with two cell populations opens exciting avenues of potential applications in both tumor diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Shu Xing
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada.,Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada.,Department of Physics, McGill University, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Mazzoli V, Moulin K, Kogan F, Hargreaves BA, Gold GE. Diffusion Tensor Imaging of Skeletal Muscle Contraction Using Oscillating Gradient Spin Echo. Front Neurol 2021; 12:608549. [PMID: 33658976 PMCID: PMC7917051 DOI: 10.3389/fneur.2021.608549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
Diffusion tensor imaging (DTI) measures water diffusion in skeletal muscle tissue and allows for muscle assessment in a broad range of neuromuscular diseases. However, current DTI measurements, typically performed using pulsed gradient spin echo (PGSE) diffusion encoding, are limited to the assessment of non-contracted musculature, therefore providing limited insight into muscle contraction mechanisms and contraction abnormalities. In this study, we propose the use of an oscillating gradient spin echo (OGSE) diffusion encoding strategy for DTI measurements to mitigate the effect of signal voids in contracted muscle and to obtain reliable diffusivity values. Two OGSE sequences with encoding frequencies of 25 and 50 Hz were tested in the lower leg of five healthy volunteers with relaxed musculature and during active dorsiflexion and plantarflexion, and compared with a conventional PGSE approach. A significant reduction of areas of signal voids using OGSE compared with PGSE was observed in the tibialis anterior for the scans obtained in active dorsiflexion and in the soleus during active plantarflexion. The use of PGSE sequences led to unrealistically elevated axial diffusivity values in the tibialis anterior during dorsiflexion and in the soleus during plantarflexion, while the corresponding values obtained using the OGSE sequences were significantly reduced. Similar findings were seen for radial diffusivity, with significantly higher diffusivity measured in plantarflexion in the soleus muscle using the PGSE sequence. Our preliminary results indicate that DTI with OGSE diffusion encoding is feasible in human musculature and allows to quantitatively assess diffusion properties in actively contracting skeletal muscle. OGSE holds great potential to assess microstructural changes occurring in the skeletal muscle during contraction, and for non-invasive assessment of contraction abnormalities in patients with muscle diseases.
Collapse
Affiliation(s)
- Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, CA, United States
| | | | | | | | | |
Collapse
|
35
|
Reymbaut A, Caron AV, Gilbert G, Szczepankiewicz F, Nilsson M, Warfield SK, Descoteaux M, Scherrer B. Magic DIAMOND: Multi-fascicle diffusion compartment imaging with tensor distribution modeling and tensor-valued diffusion encoding. Med Image Anal 2021; 70:101988. [PMID: 33611054 DOI: 10.1016/j.media.2021.101988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared to conventional anatomical imaging but also presents limited specificity. To tackle this problem, the DIAMOND model subdivides the voxel content into diffusion compartments and draws from diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distributions of diffusion tensors. It models each sub-voxel fascicle separately, resolving crossing white-matter pathways and allowing for a fascicle-element (fixel) based analysis of microstructural features. Alternatively, specific features of the intra-voxel diffusion tensor distribution can be selectively measured using tensor-valued diffusion-weighted acquisition schemes. However, the impact of such schemes on estimating brain microstructural features has only been studied in a handful of parametric single-fascicle models. In this work, we derive a general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the extension of DIAMOND to tensor-valued encoded data. We then evaluate this "Magic DIAMOND" model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing uncertainty on parameter estimation via stratified bootstrap, we investigate both voxel-based and fixel-based metrics by carrying out multi-peak tractography. We demonstrate using in silico evaluations that tensor-valued diffusion encoding significantly improves Magic DIAMOND's accuracy. Most importantly, we show in vivo that our estimated metrics can be robustly mapped along tracks across regions of fiber crossing, which opens new perspectives for tractometry and microstructure mapping along specific white-matter tracts.
Collapse
Affiliation(s)
| | | | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, ON L6C 2S3, Canada
| | - Filip Szczepankiewicz
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden; Random Walk Imaging AB, 22224, Lund, Sweden
| | - Markus Nilsson
- Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| | | | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
36
|
Hennel F, Michael ES, Pruessmann KP. Improved gradient waveforms for oscillating gradient spin-echo (OGSE) diffusion tensor imaging. NMR IN BIOMEDICINE 2021; 34:e4434. [PMID: 33124071 DOI: 10.1002/nbm.4434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The dependence of the diffusion tensor on frequency is of great interest in studies of tissue microstructure because it reveals restrictions to the Brownian motion of water molecules caused by cell membranes. Oscillating gradient spin-echo (OGSE) sequences can sample this dependence with gradient shapes for which the power spectrum of the zeroth moment is focused at a target frequency. In order to maintain the total spectral power (ie the b-value), oscillating gradient amplitudes must grow with the frequency squared. For this reason, OGSE applications on clinical MRI scanners are limited to low frequencies, for which it is difficult to obtain a narrow frequency bandwidth of the gradient moment in a useful echo time. In particular, the commonly used pair of single-period trapezoidal-cosine pulses separated by a half-period produces significant side lobes away from the target frequency. To mitigate this effect, improved OGSE waveforms are proposed, which reduce the gap between the two gradient pulses to the minimum duration required for the refocusing RF pulse. Additionally, a slight deviation from the periodicity of the waveforms is proposed in order to permit using the maximum slew rate of the gradient system for all lobes of trapezoidal waveforms while maintaining advantageous spectral properties, which is not the case for the currently used OGSE sequences. Numerical calculations validate these changes, showing that both modifications significantly narrow the gradient moment power spectrum and increase the contribution of its main lobe to the b-value, thus improving the specificity of the measurement. The utility of the new shapes is demonstrated by diffusion tensor measurements of human white matter in vivo over the range of 30-75 Hz with a b-value of nearly 1000 s/mm2 , using a high-performance gradient insert. However, the improvement should increase the sampling precision of OGSE experiments for all gradient systems.
Collapse
Affiliation(s)
- Franciszek Hennel
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eric Seth Michael
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Xu J. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J Neurosci Methods 2020; 349:109024. [PMID: 33333089 PMCID: PMC10124150 DOI: 10.1016/j.jneumeth.2020.109024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The detection sensitivity of diffusion MRI (dMRI) is dependent on diffusion times. A shorter diffusion time can increase the sensitivity to smaller length scales. However, the conventional dMRI uses the pulse gradient spin echo (PGSE) sequence that probes relatively long diffusion times only. To overcome this, the oscillating gradient spin echo (OGSE) sequence has been developed to probe much shorter diffusion times with hardware limitations on preclinical and clinical MRI systems. The OGSE sequence has been previously used on preclinical animal MRI systems. Recently, several studies have translated the OGSE sequence to humans on clinical MRI systems and achieved new information that is invisible using conventional PGSE sequence. This paper provides an overview of the recent progress of the OGSE neuroimaging in humans, including the technical improvements in the translation of the OGSE sequence to human imaging and various applications in different neurological disorders and stroke. Some possible future directions of the OGSE sequence are also discussed.
Collapse
Affiliation(s)
- Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
38
|
Harkins KD, Beaulieu C, Xu J, Gore JC, Does MD. A simple estimate of axon size with diffusion MRI. Neuroimage 2020; 227:117619. [PMID: 33301942 PMCID: PMC7949481 DOI: 10.1016/j.neuroimage.2020.117619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.
Collapse
Affiliation(s)
- Kevin D Harkins
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States.
| | | | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - John C Gore
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, United States
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, United States; Institute of Imaging Science, Vanderbilt University, United States
| |
Collapse
|
39
|
Reymbaut A, Mezzani P, de Almeida Martins JP, Topgaard D. Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms. NMR IN BIOMEDICINE 2020; 33:e4267. [PMID: 32067322 DOI: 10.1002/nbm.4267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 05/22/2023]
Abstract
In biological tissues, typical MRI voxels comprise multiple microscopic environments, the local organization of which can be captured by microscopic diffusion tensors. The measured diffusion MRI signal can, therefore, be written as the multidimensional Laplace transform of an intravoxel diffusion tensor distribution (DTD). Tensor-valued diffusion encoding schemes have been designed to probe specific features of the DTD, and several algorithms have been introduced to invert such data and estimate statistical descriptors of the DTD, such as the mean diffusivity, the variance of isotropic diffusivities, and the mean squared diffusion anisotropy. However, the accuracy and precision of these estimations have not been assessed systematically and compared across methods. In this article, we perform and compare such estimations in silico for a one-dimensional Gamma fit, a generalized two-term cumulant approach, and two-dimensional and four-dimensional Monte-Carlo-based inversion techniques, using a clinically feasible tensor-valued acquisition scheme. In particular, we compare their performance at different signal-to-noise ratios (SNRs) for voxel contents varying in terms of the aforementioned statistical descriptors, orientational order, and fractions of isotropic and anisotropic components. We find that all inversion techniques share similar precision (except for a lower precision of the two-dimensional Monte Carlo inversion) but differ in terms of accuracy. While the Gamma fit exhibits infinite-SNR biases when the signal deviates strongly from monoexponentiality and is unaffected by orientational order, the generalized cumulant approach shows infinite-SNR biases when this deviation originates from the variance in isotropic diffusivities or from the low orientational order of anisotropic diffusion components. The two-dimensional Monte Carlo inversion shows remarkable accuracy in all systems studied, given that the acquisition scheme possesses enough directions to yield a rotationally invariant powder average. The four-dimensional Monte Carlo inversion presents no infinite-SNR bias, but suffers significantly from noise in the data, while preserving good contrast in most systems investigated.
Collapse
Affiliation(s)
- Alexis Reymbaut
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| | - Paolo Mezzani
- Physical Chemistry Department, Lund University, Lund, Sweden
- Physics Department, Università degli Studi di Milano, Milan, Italy
| | | | - Daniel Topgaard
- Physical Chemistry Department, Lund University, Lund, Sweden
- Random Walk Imaging AB, Lund, Sweden
| |
Collapse
|
40
|
Lee HH, Papaioannou A, Novikov DS, Fieremans E. In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter. Neuroimage 2020; 222:117054. [PMID: 32585341 PMCID: PMC7736473 DOI: 10.1016/j.neuroimage.2020.117054] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
The dependence of the diffusion MRI signal on the diffusion time t is a hallmark of tissue microstructure at the scale of the diffusion length. Here we measure the time-dependence of the mean diffusivity D(t) and mean kurtosis K(t) in cortical gray matter and in 25 gray matter sub-regions, in 10 healthy subjects. Significant diffusivity and kurtosis time-dependence is observed for t=21.2-100 ms, and is characterized by a power-law tail ∼t-ϑ with dynamical exponent ϑ. To interpret our measurements, we systematize the relevant scenarios and mechanisms for diffusion time-dependence in the brain. Using the effective medium theory formalism, we derive an exact relation between the power-law tails in D(t) and K(t). The estimated dynamical exponent ϑ≃1/2 in both D(t) and K(t) is consistent with one-dimensional diffusion in the presence of randomly positioned restrictions along neurites. We analyze the short-range disordered statistics of synapses on axon collaterals in the cortex, and perform one-dimensional Monte Carlo simulations of diffusion restricted by permeable barriers with a similar randomness in their placement, to confirm the ϑ=1/2 exponent. In contrast, the Kärger model of exchange is less consistent with the data since it does not capture the diffusivity time-dependence, and the estimated exchange time from K(t) falls below our measured t-range. Although we cannot exclude exchange as a contributing factor, we argue that structural disorder along neurites is mainly responsible for the observed time-dependence of diffusivity and kurtosis. Our observation and theoretical interpretation of the t-1/2 tail in D(t) and K(t) altogether establish the sensitivity of a macroscopic MRI signal to micrometer-scale structural heterogeneities along neurites in human gray matter in vivo.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.
| | - Antonios Papaioannou
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Wu D, Liu D, Hsu YC, Li H, Sun Y, Qin Q, Zhang Y. Diffusion-prepared 3D gradient spin-echo sequence for improved oscillating gradient diffusion MRI. Magn Reson Med 2020; 85:78-88. [PMID: 32643240 DOI: 10.1002/mrm.28401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Oscillating gradient (OG) enables the access of short diffusion times for time-dependent diffusion MRI (dMRI); however, it poses several technical challenges for clinical use. This study proposes a 3D oscillating gradient-prepared gradient spin-echo (OGprep-GRASE) sequence to improve SNR and shorten acquisition time for OG dMRI on clinical scanners. METHODS The 3D OGprep-GRASE sequence consisted of global saturation, diffusion encoding, fat saturation, and GRASE readout modules. Multiplexed sensitivity-encoding reconstruction was used to correct the phase errors between multiple shots. We compared the scan time and SNR of the proposed sequence and the conventional 2D-EPI sequence for OG dMRI at 30-90-mm slice coverage. We also examined the time-dependent diffusivity changes with OG dMRI acquired at frequencies of 50 Hz and 25 Hz and pulsed-gradient dMRI at diffusion times of 30 ms and 60 ms. RESULTS The OGprep-GRASE sequence reduced the scan time by a factor of 1.38, and increased the SNR by 1.74-2.27 times compared with 2D EPI for relatively thick slice coverage (60-90 mm). The SNR gain led to improved diffusion-tensor reconstruction in the multishot protocols. Image distortion in 2D-EPI images was also reduced in GRASE images. Diffusivity measurements from the pulsed-gradient dMRI and OG dMRI showed clear diffusion-time dependency in the white matter and gray matter of the human brain, using both the GRASE and EPI sequences. CONCLUSION The 3D OGprep-GRASE sequence improved scan time and SNR and reduced image distortion compared with the 2D multislice acquisition for OG dMRI on a 3T clinical system, which may facilitate the clinical translation of time-dependent dMRI.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Csenter for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Csenter for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Lee HH, Papaioannou A, Kim SL, Novikov DS, Fieremans E. A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun Biol 2020; 3:354. [PMID: 32636463 PMCID: PMC7341838 DOI: 10.1038/s42003-020-1050-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
MRI provides a unique non-invasive window into the brain, yet is limited to millimeter resolution, orders of magnitude coarser than cell dimensions. Here, we show that diffusion MRI is sensitive to the micrometer-scale variations in axon caliber or pathological beading, by identifying a signature power-law diffusion time-dependence of the along-fiber diffusion coefficient. We observe this signature in human brain white matter and identify its origins by Monte Carlo simulations in realistic substrates from 3-dimensional electron microscopy of mouse corpus callosum. Simulations reveal that the time-dependence originates from axon caliber variation, rather than from mitochondria or axonal undulations. We report a decreased amplitude of time-dependence in multiple sclerosis lesions, illustrating the potential sensitivity of our method to axonal beading in a plethora of neurodegenerative disorders. This specificity to microstructure offers an exciting possibility of bridging across scales to image cellular-level pathology with a clinically feasible MRI technique.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Antonios Papaioannou
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sung-Lyoung Kim
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
43
|
Maekawa T, Kamiya K, Murata K, Feiweier T, Hori M, Aoki S. Time-dependent Diffusion in Transient Splenial Lesion: Comparison between Oscillating-gradient Spin-echo Measurements and Monte-Carlo Simulation. Magn Reson Med Sci 2020; 20:227-230. [PMID: 32611990 PMCID: PMC8203477 DOI: 10.2463/mrms.bc.2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The microstructural underpinnings of reduced diffusivity in transient splenial lesion remain unclear. Here, we report findings from oscillating gradient spin-echo (OGSE) diffusion imaging in a case of transient splenial lesion. Compared with normal-appearing white matter, the splenial lesion exhibited greater differences between diffusion time t = 6.5 and 35.2 ms, indicating microstructural changes occurring within the corresponding length scale. We also conducted 2D Monte-Carlo simulation. The results suggested that emergence of small and non-exchanging compartment, as often imagined in intramyelinic edema, does not fit well with the in vivo observation. Simulations with axonal swelling and microglial infiltration yielded results closer to the in vivo observations. The present report exemplifies the importance of controlling t for more specific radiological image interpretations.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, The University of Tokyo
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, The University of Tokyo.,Department of Radiology, Toho University
| | | | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, Toho University
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
44
|
Differentiation of high-grade and low-grade intra-axial brain tumors by time-dependent diffusion MRI. Magn Reson Imaging 2020; 72:34-41. [PMID: 32599021 DOI: 10.1016/j.mri.2020.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Oscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors. MATERIAL AND METHODS Eleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms - ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms - ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined. RESULTS High-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors. CONCLUSION The dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.
Collapse
|
45
|
Technological Advances of Magnetic Resonance Imaging in Today's Health Care Environment. Invest Radiol 2020; 55:531-542. [PMID: 32487969 DOI: 10.1097/rli.0000000000000678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today's health care environment is shifting rapidly, driven by demographic change and high economic pressures on the system. Furthermore, modern precision medicine requires highly accurate and specific disease diagnostics in a short amount of time. Future imaging technology must adapt to these challenges.Demographic change necessitates scanner technologies tailored to the needs of an aging and increasingly multimorbid patient population. Accordingly, examination times have to be short enough that diagnostic images can be generated even for patients who can only lie in the scanner for a short time because of pain or with low breath-hold capacity.For economic reasons, the rate of nondiagnostic scans due to artifacts should be reduced as far as possible. As imaging plays an increasingly pivotal role in clinical-therapeutic decision making, magnetic resonance (MR) imaging facilities are confronted with an ever-growing number of patients, emphasizing the need for faster acquisitions while maintaining image quality.Lastly, modern precision medicine requires high and standardized image quality as well as quantifiable data in order to develop image-based biomarkers on which subsequent treatment management can rely.In recent decades, a variety of approaches have addressed the challenges of high throughput, demographic change, and precision medicine in MR imaging. These include field strength, gradient, coil and sequence development, as well as an increasing consideration of artificial intelligence. This article reviews state-of-the art MR technology and discusses future implementation from the perspective of what we know today.
Collapse
|
46
|
Xu J, Jiang X, Li H, Arlinghaus LR, McKinley ET, Devan SP, Hardy BM, Xie J, Kang H, Chakravarthy AB, Gore JC. Magnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med 2020; 83:2002-2014. [PMID: 31765494 PMCID: PMC7047520 DOI: 10.1002/mrm.28056] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Cell size is a fundamental characteristic of all tissues, and changes in cell size in cancer reflect tumor status and response to treatments, such as apoptosis and cell-cycle arrest. Unfortunately, cell size can currently be obtained only by pathological evaluation of tumor tissue samples obtained invasively. Previous imaging approaches are limited to preclinical MRI scanners or require relatively long acquisition times that are impractical for clinical imaging. There is a need to develop cell-size imaging for clinical applications. METHODS We propose a clinically feasible IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) approach that can characterize mean cell sizes in solid tumors. We report the use of a combination of pulse sequences, using different gradient waveforms implemented on clinical MRI scanners and analytical equations based on these waveforms to analyze diffusion-weighted MRI signals and derive specific microstructural parameters such as cell size. We also describe comprehensive validations of this approach using computer simulations, cell experiments in vitro, and animal experiments in vivo and demonstrate applications in preoperative breast cancer patients. RESULTS With fast acquisitions (~7 minutes), IMPULSED can provide high-resolution (1.3 mm in-plane) mapping of mean cell size of human tumors in vivo on clinical 3T MRI scanners. All validations suggest that IMPULSED provides accurate and reliable measurements of mean cell size. CONCLUSION The proposed IMPULSED method can assess cell-size variations in tumors of breast cancer patients, which may have the potential to assess early response to neoadjuvant therapy.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA,Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA,Corresponding author: Address: Vanderbilt University, Institute of Imaging Science, 1161 21 Avenue South, AAA 3113 MCN, Nashville, TN 37232-2310, United States. Fax: +1 615 322 0734. (Junzhong Xu), Twitter: @JunzhongXu
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lori R. Arlinghaus
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P. Devan
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benjamin M. Hardy
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - A. Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA,Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Aggarwal M, Smith MD, Calabresi PA. Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med 2020; 84:1564-1578. [PMID: 32022313 DOI: 10.1002/mrm.28189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. METHODS 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. RESULTS Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability. CONCLUSION The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew D Smith
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Tan ET, Shih RY, Mitra J, Sprenger T, Hua Y, Bhushan C, Bernstein MA, McNab JA, DeMarco JK, Ho VB, Foo TKF. Oscillating diffusion-encoding with a high gradient-amplitude and high slew-rate head-only gradient for human brain imaging. Magn Reson Med 2020; 84:950-965. [PMID: 32011027 DOI: 10.1002/mrm.28180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE We investigate the importance of high gradient-amplitude and high slew-rate on oscillating gradient spin echo (OGSE) diffusion imaging for human brain imaging and evaluate human brain imaging with OGSE on the MAGNUS head-gradient insert (200 mT/m amplitude and 500 T/m/s slew rate). METHODS Simulations with cosine-modulated and trapezoidal-cosine OGSE at various gradient amplitudes and slew rates were performed. Six healthy subjects were imaged with the MAGNUS gradient at 3T with OGSE at frequencies up to 100 Hz and b = 450 s/mm2 . Comparisons were made against standard pulsed gradient spin echo (PGSE) diffusion in vivo and in an isotropic diffusion phantom. RESULTS Simulations show that to achieve high frequency and b-value simultaneously for OGSE, high gradient amplitude, high slew rates, and high peripheral nerve stimulation limits are required. A strong linear trend for increased diffusivity (mean: 8-19%, radial: 9-27%, parallel: 8-15%) was observed in normal white matter with OGSE (20 Hz to 100 Hz) as compared to PGSE. Linear fitting to frequency provided excellent correlation, and using a short-range disorder model provided radial long-term diffusivities of D∞,MD = 911 ± 72 µm2 /s, D∞,PD = 1519 ± 164 µm2 /s, and D∞,RD = 640 ± 111 µm2 /s and correlation lengths of lc ,MD = 0.802 ± 0.156 µm, lc ,PD = 0.837 ± 0.172 µm, and lc ,RD = 0.780 ± 0.174 µm. Diffusivity changes with OGSE frequency were negligible in the phantom, as expected. CONCLUSION The high gradient amplitude, high slew rate, and high peripheral nerve stimulation thresholds of the MAGNUS head-gradient enables OGSE acquisition for in vivo human brain imaging.
Collapse
Affiliation(s)
- Ek T Tan
- GE Research, Niskayuna, New York.,Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Robert Y Shih
- Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | - Yihe Hua
- GE Research, Niskayuna, New York
| | | | | | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, California
| | - J Kevin DeMarco
- Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Vincent B Ho
- Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas K F Foo
- GE Research, Niskayuna, New York.,Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
49
|
Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. Neuroimage 2020; 210:116533. [PMID: 31935520 DOI: 10.1016/j.neuroimage.2020.116533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Conventional diffusion imaging uses pulsed gradient spin echo (PGSE) waveforms with diffusion times of tens of milliseconds (ms) to infer differences of white matter microstructure. The combined use of these long diffusion times with short diffusion times (<10 ms) enabled by oscillating gradient spin echo (OGSE) waveforms can enable more sensitivity to changes of restrictive boundaries on the scale of white matter microstructure (e.g. membranes reflecting the axon diameters). Here, PGSE and OGSE images were acquired at 4.7 T from 20 healthy volunteers aged 20-73 years (10 males). Mean, radial, and axial diffusivity, as well as fractional anisotropy were calculated in the genu, body and splenium of the corpus callosum (CC). Monte Carlo simulations were also conducted to examine the relationship of intra- and extra-axonal radial diffusivity with diffusion time over a range of axon diameters and distributions. The results showed elevated diffusivities with OGSE relative to PGSE in the genu and splenium (but not the body) in both males and females, but the OGSE-PGSE difference was greater in the genu for males. Females showed positive correlations of OGSE-PGSE diffusivity difference with age across the CC, whereas there were no such age correlations in males. Simulations of radial diffusion demonstrated that for axon sizes in human brain both OGSE and PGSE diffusivities were dominated by extra-axonal water, but the OGSE-PGSE difference nonetheless increased with area-weighted outer-axon diameter. Therefore, the lack of OGSE-PGSE difference in the body is not entirely consistent with literature that suggests it is composed predominantly of axons with large diameter. The greater OGSE-PGSE difference in the genu of males could reflect larger axon diameters than females. The OGSE-PGSE difference correlation with age in females could reflect loss of smaller axons at older ages. The use of OGSE with short diffusion times to sample the microstructural scale of restriction implies regional differences of axon diameters along the corpus callosum with preliminary results suggesting a dependence on age and sex.
Collapse
Affiliation(s)
- Pascal Tétreault
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kevin D Harkins
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rob Stobbe
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mark D Does
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
50
|
Arbabi A, Kai J, Khan AR, Baron CA. Diffusion dispersion imaging: Mapping oscillating gradient spin-echo frequency dependence in the human brain. Magn Reson Med 2019; 83:2197-2208. [PMID: 31762110 DOI: 10.1002/mrm.28083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Oscillating gradient spin-echo (OGSE) diffusion MRI provides information about the microstructure of biological tissues by means of the frequency dependence of the apparent diffusion coefficient (ADC). ADC dependence on OGSE frequency has been explored in numerous rodent studies, but applications in the human brain have been limited and have suffered from low contrast between different frequencies, long scan times, and a limited exploration of the nature of the ADC dependence on frequency. THEORY AND METHODS Multiple frequency OGSE acquisitions were acquired in healthy subjects at 7T to explore the power-law frequency dependence of ADC, the "diffusion dispersion." Furthermore, a method for optimizing the estimation of the ADC difference between different OGSE frequencies was developed, which enabled the design of a highly efficient protocol for mapping diffusion dispersion. RESULTS For the first time, evidence of a linear dependence of ADC on the square root of frequency in healthy human white matter was obtained. Using the optimized protocol, high-quality, full-brain maps of apparent diffusion dispersion rate were also demonstrated at an isotropic resolution of 2 mm in a scan time of 6 min. CONCLUSIONS This work sheds light on the nature of diffusion dispersion in the healthy human brain and introduces full-brain diffusion dispersion mapping at clinically relevant scan times. These advances may lead to new biomarkers of pathology or improved microstructural modeling.
Collapse
Affiliation(s)
- Aidin Arbabi
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jason Kai
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ali R Khan
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Corey A Baron
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|