1
|
Giovannetti G, Flori A, Martini N, Cademartiri F, Aquaro GD, Pingitore A, Frijia F. Hardware and Software Setup for Quantitative 23Na Magnetic Resonance Imaging at 3T: A Phantom Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2716. [PMID: 38732822 PMCID: PMC11085578 DOI: 10.3390/s24092716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols.
Collapse
Affiliation(s)
- Giulio Giovannetti
- Institute of Clinical Physiology, National Council of Research, Via G. Moruzzi 1, 56124 Pisa, Italy; (G.G.); (A.P.)
| | - Alessandra Flori
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.F.)
| | - Nicola Martini
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.F.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy;
| | - Giovanni Donato Aquaro
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Alessandro Pingitore
- Institute of Clinical Physiology, National Council of Research, Via G. Moruzzi 1, 56124 Pisa, Italy; (G.G.); (A.P.)
| | - Francesca Frijia
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.F.)
| |
Collapse
|
2
|
Zbýň Š, Ludwig KD, Watkins LE, Lagore RL, Nowacki A, Tóth F, Tompkins MA, Zhang L, Adriany G, Gold GE, Shea KG, Nagel AM, Carlson CS, Metzger GJ, Ellermann JM. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: Ex vivo 23 Na MRI study at 10.5 T. Magn Reson Med 2024; 91:1099-1114. [PMID: 37997011 PMCID: PMC10751033 DOI: 10.1002/mrm.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponentialT 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The shortT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850),fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.
Collapse
Affiliation(s)
- Štefan Zbýň
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH
| | - Kai D. Ludwig
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Lauren E. Watkins
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
- Steadman Philippon Research Institute, Vail, CO
| | - Russell L. Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Amanda Nowacki
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- University of Texas, Austin, TX
| | - Ferenc Tóth
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Marc A. Tompkins
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Garry E. Gold
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
| | - Kevin G. Shea
- Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA
| | - Armin M. Nagel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Jutta M. Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Baker RR, Muthurangu V, Rega M, Montalt‐Tordera J, Rot S, Solanky BS, Gandini Wheeler‐Kingshott CAM, Walsh SB, Steeden JA. 2D sodium MRI of the human calf using half-sinc excitation pulses and compressed sensing. Magn Reson Med 2024; 91:325-336. [PMID: 37799019 PMCID: PMC10962573 DOI: 10.1002/mrm.29841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Sodium MRI can be used to quantify tissue sodium concentration (TSC) in vivo; however, UTE sequences are required to capture the rapidly decaying signal. 2D MRI enables high in-plane resolution but typically has long TEs. Half-sinc excitation may enable UTE; however, twice as many readouts are necessary. Scan time can be minimized by reducing the number of signal averages (NSAs), but at a cost to SNR. We propose using compressed sensing (CS) to accelerate 2D half-sinc acquisitions while maintaining SNR and TSC. METHODS Ex vivo and in vivo TSC were compared between 2D spiral sequences with full-sinc (TE = 0.73 ms, scan time ≈ 5 min) and half-sinc excitation (TE = 0.23 ms, scan time ≈ 10 min), with 150 NSAs. Ex vivo, these were compared to a reference 3D sequence (TE = 0.22 ms, scan time ≈ 24 min). To investigate shortening 2D scan times, half-sinc data was retrospectively reconstructed with fewer NSAs, comparing a nonuniform fast Fourier transform to CS. Resultant TSC and image quality were compared to reference 150 NSAs nonuniform fast Fourier transform images. RESULTS TSC was significantly higher from half-sinc than from full-sinc acquisitions, ex vivo and in vivo. Ex vivo, half-sinc data more closely matched the reference 3D sequence, indicating improved accuracy. In silico modeling confirmed this was due to shorter TEs minimizing bias caused by relaxation differences between phantoms and tissue. CS was successfully applied to in vivo, half-sinc data, maintaining TSC and image quality (estimated SNR, edge sharpness, and qualitative metrics) with ≥50 NSAs. CONCLUSION 2D sodium MRI with half-sinc excitation and CS was validated, enabling TSC quantification with 2.25 × 2.25 mm2 resolution and scan times of ≤5 mins.
Collapse
Affiliation(s)
- Rebecca R. Baker
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| | - Vivek Muthurangu
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| | - Marilena Rega
- Institute of Nuclear MedicineUniversity College HospitalLondonUK
| | | | - Samuel Rot
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Bhavana S. Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | | | - Jennifer A. Steeden
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| |
Collapse
|
4
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Ridley B, Morsillo F, Zaaraoui W, Nonino F. Variability by region and method in human brain sodium concentrations estimated by 23Na magnetic resonance imaging: a meta-analysis. Sci Rep 2023; 13:3222. [PMID: 36828873 PMCID: PMC9957999 DOI: 10.1038/s41598-023-30363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Sodium imaging (23Na-MRI) is of interest in neurological conditions given potential sensitivity to the physiological and metabolic status of tissues. Benchmarks have so far been restricted to parenchyma or grey/white matter (GM/WM). We investigate (1) the availability of evidence, (2) regional pooled estimates and (3) variability attributable to region/methodology. MEDLINE literature search for tissue sodium concentration (TSC) measured in specified 'healthy' brain regions returned 127 reports, plus 278 retrieved from bibliographies. 28 studies met inclusion criteria, including 400 individuals. Reporting variability led to nested data structure, so we used multilevel meta-analysis and a random effects model to pool effect sizes. The pooled mean from 141 TSC estimates was 40.51 mM (95% CI 37.59-43.44; p < 0.001, I2Total=99.4%). Tissue as a moderator was significant (F214 = 65.34, p-val < .01). Six sub-regional pooled means with requisite statistical power were derived. We were unable to consider most methodological and demographic factors sought because of non-reporting, but each factor included beyond tissue improved model fit. Significant residual heterogeneity remained. The current estimates provide an empirical point of departure for better understanding in 23Na-MRI. Improving on current estimates supports: (1) larger, more representative data collection/sharing, including (2) regional data, and (3) agreement on full reporting standards.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Ben Ridley, Epidemiologia e Statistica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Padiglione G, Via Altura, 3, 40139, Bologna, Italy.
| | - Filomena Morsillo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital de La Timone, CEMEREM, Marseille, France
| | - Francesco Nonino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Bajwa AA, Neubauer A, Schwerter M, Schilling L. 23Na chemical shift imaging in the living rat brain using a chemical shift agent, Tm[DOTP] 5. MAGMA (NEW YORK, N.Y.) 2023; 36:107-118. [PMID: 36053432 PMCID: PMC9992022 DOI: 10.1007/s10334-022-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE It is well known that the use of shift reagents (SRs) in nuclear magnetic resonance (NMR) studies is substantially limited by an intact blood-brain barrier (BBB). The current study aims to develop a method enabling chemical shift imaging in the living rat brain under physiological conditions using an SR, Tm[DOTP]5-. MATERIALS AND METHODS Hyperosmotic mannitol bolus injection followed by 60 min infusion of a Tm[DOTP]5- containing solution was administered via a catheter inserted into an internal carotid artery. We monitored the homeostasis of physiological parameters, and we measured the thulium content in brain tissue post mortem using total reflection fluorescence spectroscopy (T-XRF). The alterations of the 23Na resonance spectrum were followed in a 9.4T small animal scanner. RESULTS Based on the T-XRF measurements, the thulium concentration was estimated at 2.3 ± 1.8 mM in the brain interstitial space. Spectroscopic imaging showed a split of the 23Na resonance peak which became visible 20 min after starting the infusion. Chemical shift imaging revealed a significant decrease of the initial intensity level to 0.915 ± 0.058 at the end of infusion. CONCLUSION Our novel protocol showed bulk accumulation of Tm[DOTP]5- thus enabling separation of the extra-/intracellular 23Na signal components in the living rat brain while maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Awais A Bajwa
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Neubauer
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Schwerter
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
7
|
Sanchez‐Heredia JD, Olin RB, Grist JT, Wang W, Bøgh N, Zhurbenko V, Hansen ES, Schulte RF, Tyler D, Laustsen C, Ardenkjær‐Larsen JH. RF coil design for accurate parallel imaging on 13 C MRSI using 23 Na sensitivity profiles. Magn Reson Med 2022; 88:1391-1405. [PMID: 35635156 PMCID: PMC9328386 DOI: 10.1002/mrm.29259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.
Collapse
Affiliation(s)
| | - Rie B. Olin
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
- Department of RadiologyOxford University Hospitals TrustOxfordUK
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Wenjun Wang
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Nikolaj Bøgh
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Vitaliy Zhurbenko
- National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
| | - Esben S. Hansen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Damian Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance ResearchUniversity of OxfordOxfordUK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | |
Collapse
|
8
|
Müller HP, Nagel AM, Keidel F, Wunderlich A, Hübers A, Gast LV, Ludolph AC, Beer M, Kassubek J. Relaxation-weighted 23Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis. Ther Adv Chronic Dis 2022; 13:20406223221109480. [PMID: 35837670 PMCID: PMC9274400 DOI: 10.1177/20406223221109480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: Multiparametric magnetic resonance imaging (MRI) is established as a
technical instrument for the characterisation of patients with amyotrophic
lateral sclerosis (ALS). The contribution of relaxation-weighted sodium
(23NaR) MRI remains to be defined. The aim of this study is
to apply 23NaR MRI to investigate brain sodium homeostasis and
map potential alterations in patients with ALS as compared with healthy
controls. Materials and Methods: Seventeen patients with ALS (mean age 61.1 ± 11.4 years, m/f = 9/8) and 10
healthy control subjects (mean age 60.3 ± 15.3 years, m/f = 6/4) were
examined by 23NaR MRI at 3 T. Regional sodium maps were obtained
by the calculation of the weighted difference from two image data sets with
different echo times (TE1 = 0.3 ms, TE2 = 25 ms).
Voxel-based analysis of the relaxation-weighted maps, together with
23Na concentration maps for comparison, was performed. Results: ROI-based analyses of relaxation-weighted brain sodium concentration maps
demonstrated increased sodium concentrations in the upper corticospinal
tracts and in the frontal lobes in patients with ALS; no differences between
ALS patients and controls were found in reference ROIs, where no involvement
in ALS-associated neurodegeneration could be anticipated. Conclusion: 23NaR MRI mapped regional alterations within disease-relevant
areas in ALS which correspond to the stages of the central nervous system
(CNS) pathology, providing evidence that the technique is a potential
biological marker of the cerebral neurodegenerative process in ALS.
Collapse
Affiliation(s)
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Franziska Keidel
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Arthur Wunderlich
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | | | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| |
Collapse
|
9
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
10
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Tian X, Lv Y, Fan Y, Wang Z, Yu B, Song C, Lu Q, Xi C, Pi L, Zhang X. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields. J Magn Reson Imaging 2020; 53:1872-1884. [PMID: 33382516 DOI: 10.1002/jmri.27496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023] Open
Abstract
Magnetic resonance imaging (MRI) of 7 T and higher can provide superior image resolution and capability. Clinical tests have been performed in 9.4 T MRI, and 21.1 T small-bore-size MRI has also been tested in rodents. Although the safety issue is a prerequisite for their future medical application, there are very few relevant studies for the safety of static magnetic fields (SMFs) of ≧20 T. The aim of this study was to assess the biological effects of 7.0-33.0 T SMFs in healthy adult mice. This was a prospective study, in which 104 healthy adult C57BL/6 mice were divided into control, sham control, and 7.0-33.0 T SMF-exposed groups.The sham control group and SMF group were handled identically, except for the electric current for producing SMF. A separate control group was placed outside the magnet and their data were used as normal range. After 1 h exposure, all mice were routinely fed for another 2 months while their body weight and food/water consumption were monitored. After 2 months, their complete blood count, blood biochemistry, key organ weight, and histomorphology were examined. All data are normally distributed. Differences between the sham and SMF-exposed groups were evaluated by unpaired t test. Most indicators did not show statistically significant changes or were still within the normal ranges, with only a few exceptions. For example, mono % in Group 2 (11.1 T) is 6.03 ± 1.43% while the normal range is 6.60-9.90% (p < 0.05). The cholesterol level in 33 T group is 3.38 ± 0.36 mmol/L while the normal range is 2.48-3.29 mmol/L (p < 0.05). The high-density lipoprotein cholesterol level in 33 T group is 2.54 ± 0.29 mmol/L while the normal reference range is 1.89-2.43 mmol/L (p < 0.01). Exposure to 7.0-33.0 T for 1 h did not have detrimental effects on normal adult mice. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xiaofei Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yue Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Ze Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
12
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
13
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Driver ID, Stobbe RW, Wise RG, Beaulieu C. Venous contribution to sodium MRI in the human brain. Magn Reson Med 2019; 83:1331-1338. [PMID: 31556169 PMCID: PMC6972645 DOI: 10.1002/mrm.27996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T 2 ∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T 2 ∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Collapse
Affiliation(s)
- Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Meyer MM, Schmidt A, Benrath J, Konstandin S, Pilz LR, Harrington MG, Budjan J, Meyer M, Schad LR, Schoenberg SO, Haneder S. Cerebral sodium ( 23Na) magnetic resonance imaging in patients with migraine - a case-control study. Eur Radiol 2019; 29:7055-7062. [PMID: 31264011 DOI: 10.1007/s00330-019-06299-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Evaluation of MRI-derived cerebral 23Na concentrations in patients with migraine in comparison with healthy controls. MATERIALS AND METHODS In this case-control study, 24 female migraine patients (mean age, 34 ± 11 years) were enrolled after evaluation of standardized questionnaires. Half (n = 12) of the cohort suffered from migraine, the other half was impaired by both migraine and tension-type headaches (TTH). The combined patient cohort was matched to 12 healthy female controls (mean age, 34 ± 11 years). All participants underwent a cerebral 23Na-magnetic resonance imaging examination at 3.0 T, which included a T1w MP-RAGE sequence and a 3D density-adapted, radial gradient echo sequence for 23Na imaging. Circular regions of interests were placed in predetermined anatomic regions: cerebrospinal fluid (CSF), gray and white matter, brain stem, and cerebellum. External 23Na reference phantoms were used to calculate the total 23Na tissue concentrations. Pearson's correlation, Kendall Tau, and Wilcoxon rank sum test were used for statistical analysis. RESULTS 23Na concentrations of all patients in the CSF were significantly higher than in healthy controls (p < 0.001). The CSF of both the migraine and mixed migraine/TTH group showed significantly increased sodium concentrations compared to the control group (p = 0.007 and p < 0.001). Within the patient cohort, a positive correlation between pain level and TSC in the CSF (r = 0.62) could be observed. CONCLUSION MRI-derived cerebral 23Na concentrations in the CSF of migraine patients were found to be statistically significantly higher than in healthy controls. KEY POINTS • Cerebral sodium MRI supports the theory of ionic imbalances and may aid in the challenging pathophysiologic understanding of migraine. • Case-control study shows significantly higher sodium concentrations in cerebrospinal fluid of migraineurs. • Cerebral sodium MRI may become a non-invasive imaging tool for drugs to modulate sodium, and hence migraine, on a molecular level, and influence patient management.
Collapse
Affiliation(s)
- Melissa M Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Alexander Schmidt
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Justus Benrath
- Clinic for Anaesthesiology and Operative Intensive Care, University of Heidelberg, Mannheim, Germany
| | | | - Lothar R Pilz
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Johannes Budjan
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan Haneder
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Ianniello C, Madelin G, Moy L, Brown R. A dual-tuned multichannel bilateral RF coil for 1 H/ 23 Na breast MRI at 7 T. Magn Reson Med 2019; 82:1566-1575. [PMID: 31148249 DOI: 10.1002/mrm.27829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Sodium MRI has shown promise for monitoring neoadjuvant chemotherapy response in breast cancer. The purpose of this work was to build a dual-tuned bilateral proton/sodium breast coil for 7T MRI that provides sufficient SNR to enable sodium breast imaging in less than 10 minutes. METHODS The proton/sodium coil consists of 2 shielded unilateral units: 1 for each breast. Each unit consists of 3 nested layers: (1) a 3-loop solenoid for sodium excitation, (2) a 3-loop solenoid for proton excitation and signal reception, and (3) a 4-channel receive array for sodium signal reception. Benchmark measurements were performed in phantoms with and without the sodium receive array insert. In vivo images were acquired on a healthy volunteer. RESULTS The sodium receive array boosted 1.5 to 3 times the SNR compared with the solenoid. Proton SNR loss due to residual interaction with the sodium array was less than 10%. The coil enabled sodium imaging in vivo with 2.8-mm isotropic nominal resolution (~5-mm real resolution) in 9:36 minutes. CONCLUSION The coil design that we propose addresses challenges associated with sodium's low SNR from a hardware perspective and offers the opportunity to investigate noninvasively breast tumor metabolism as a function of sodium concentration in patients undergoing neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York
| |
Collapse
|
18
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
19
|
Liao Y, Lechea N, Magill AW, Worthoff WA, Gras V, Shah NJ. Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T. Magn Reson Med 2019; 82:1518-1526. [DOI: 10.1002/mrm.27787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Yupeng Liao
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Nazim Lechea
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Arthur W. Magill
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Wieland A. Worthoff
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
- Institute of Neuroscience and Medicine (INM‐11) JARA, Forschungszentrum Jülich Jülich Germany
- JARA‐BRAIN‐Translational Medicine Aachen Germany
- Department of Neurology RWTH Aachen University Aachen Germany
- Monash Biomedical Imaging, School of Psychology Monash University Melbourne Australia
| |
Collapse
|
20
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S. Tissue sodium concentration and sodium T 1 mapping of the human brain at 3 T using a Variable Flip Angle method. Magn Reson Imaging 2019; 58:116-124. [PMID: 30695720 DOI: 10.1016/j.mri.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The state-of-the-art method to quantify sodium concentrations in vivo consists in a fully relaxed 3D spin-density (SD) weighted acquisition. Nevertheless, most sodium MRI clinical studies use short-TR SD acquisitions to reduce acquisition durations. We present a clinically viable implementation of the Variable Flip Angle (VFA) method for robust and clinically viable quantification of total sodium concentration (TSC) and longitudinal relaxation rates in vivo in human brain at 3 T. METHODS Two non-Cartesian steady-state spoiled ultrashort echo time (UTE) scans, performed at optimized flip angles, repetition time and pulse length determined under specific absorption rate constraints, are used to simultaneously compute T1 and total sodium concentration (TSC) maps using the VFA method. Images are reconstructed using the non-uniform Fast Fourier Transform algorithm and TSC maps are corrected for possible inhomogeneity of coil transmission and reception profiles. Fractioned acquisitions are used to correct for potential patient motion. TSC quantifications obtained using the VFA method are validated at first in comparison with a fully-relaxed SD acquisition in a calibration phantom. The robustness of similar VFA acquisitions are compared to the short-TR SD approach in vivo on seven healthy volunteers. RESULTS The VFA method resulted in consistent TSC and T1 estimates across our cohort of healthy subjects, with mean TSC of 38.1 ± 5.0 mmol/L and T1 of 39.2 ± 4.4 ms. These results are in agreement with previously reported values in literature TSC estimations and with the predictions of a 2-compartment model. However, the short-TR SD acquisition systematically underestimated the sodium concentration with a mean TSC of 31 ± 4.5 mmol/L. CONCLUSION The VFA method can be applied successfully to image sodium at 3 T in about 20 min and provides robust and intrinsically T1-corrected TSC maps.
Collapse
Affiliation(s)
- Arthur Coste
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Denis Le Bihan
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | |
Collapse
|
22
|
Thulborn KR, Ma C, Sun C, Atkinson IC, Claiborne T, Umathum R, Wright SM, Liang ZP. SERIAL transmit - parallel receive (ST xPR x) MR imaging produces acceptable proton image uniformity without compromising field of view or SAR guidelines for human neuroimaging at 9.4 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:145-153. [PMID: 30012280 PMCID: PMC6084804 DOI: 10.1016/j.jmr.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Non-uniform B1+ excitation and high specific absorption rates (SAR) compromise proton MR imaging of human brain at 9.4 T (400.5 MHz). By combining a transmit/receive surface coil array using serial transmission of individual coils with a total generalized variation reconstruction of images from all coils, acceptable quality human brain imaging is demonstrated. METHODS B0 is shimmed using sodium MR imaging (105.4 MHz) with a birdcage coil. Proton MR imaging is performed with an excitation/receive array of surface coils. The modified FLASH pulse sequence transmits serially across each coil within the array thereby distributing SAR in time and space. All coils operate in receive mode. Although the excitation profile of each transmit coil is non-uniform, the sensitivity profile estimated from the non-transmit receive coils provides an acceptable sensitivity correction. Signals from all coils are combined in a total generalized variation (TGV) reconstruction to provide a full field of view image at maximum signal to noise (SNR) performance. RESULTS High-resolution images across the human head are demonstrated with acceptable uniformity and SNR. CONCLUSION Proton MR imaging of the human brain is possible with acceptable uniformity at low SAR at 9.4 Tesla using this serial excitation and parallel reception strategy with TGV reconstruction.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor St., MC 707, Suite 1307, Chicago, IL 60612, USA.
| | - Chao Ma
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, TX 77843-3128, USA
| | - Ian C Atkinson
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor St., MC 707, Suite 1307, Chicago, IL 60612, USA
| | - Theodore Claiborne
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor St., MC 707, Suite 1307, Chicago, IL 60612, USA
| | - Reiner Umathum
- German Cancer Center (DKFZ), Division of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, TX 77843-3128, USA
| | - Zhi-Pei Liang
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Worthoff WA, Shymanskaya A, Shah NJ. Relaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI. Magn Reson Med 2018; 81:303-315. [DOI: 10.1002/mrm.27387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Wieland A. Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
| | - Aliaksandra Shymanskaya
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH; Jülich Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH; Jülich Germany
- Faculty of Medicine, Department of Neurology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
24
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
25
|
Lommen JM, Flassbeck S, Behl NG, Niesporek S, Bachert P, Ladd ME, Nagel AM. Probing the microscopic environment of 23
Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med 2018; 80:571-584. [DOI: 10.1002/mrm.27059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan M. Lommen
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Nicolas G.R. Behl
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Niesporek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
- University of Heidelberg, Faculty of Medicine; Heidelberg Germany
| | - Armin M. Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
26
|
Gilles A, Nagel AM, Madelin G. Multipulse sodium magnetic resonance imaging for multicompartment quantification: Proof-of-concept. Sci Rep 2017; 7:17435. [PMID: 29234043 PMCID: PMC5727256 DOI: 10.1038/s41598-017-17582-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
We present a feasibility study of sodium quantification in a multicompartment model of the brain using sodium (23Na) magnetic resonance imaging. The proposed method is based on a multipulse sequence acquisition and simulation at 7 T, which allows to differentiate the 23Na signals emanating from three compartments in human brain in vivo: intracellular (compartment 1), extracellular (compartment 2), and cerebrospinal fluid (compartment 3). The intracellular sodium concentration C1 and the volume fractions α1, α2, and α3 of all respective three brain compartments can be estimated. Simulations of the sodium spin 3/2 dynamics during a 15-pulse sequence were used to optimize the acquisition sequence by minimizing the correlation between the signal evolutions from the three compartments. The method was first tested on a three-compartment phantom as proof-of-concept. Average values of the 23Na quantifications in four healthy volunteer brains were α1 = 0.54 ± 0.01, α2 = 0.23 ± 0.01, α3 = 1.03 ± 0.01, and C1 = 23 ± 3 mM, which are comparable to the expected physiological values \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{1}}}^{{\boldsymbol{theory}}}$$\end{document}α1theory ∼ 0.6, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{2}}}^{{\boldsymbol{theory}}}$$\end{document}α2theory ∼ 0.2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{3}}}^{{\boldsymbol{theory}}}$$\end{document}α3theory ∼ 1, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{C}}}_{{\bf{1}}}^{{\boldsymbol{theory}}}$$\end{document}C1theory ∼ 10–30 mM. The proposed method may allow a quantitative assessment of the metabolic role of sodium ions in cellular processes and their malfunctions in brain in vivo.
Collapse
Affiliation(s)
- Alina Gilles
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
27
|
Yan X, Zhang X, Gore JC, Grissom WA. Improved traveling-wave efficiency in 7T human MRI using passive local loop and dipole arrays. Magn Reson Imaging 2017; 39:103-109. [PMID: 28189821 DOI: 10.1016/j.mri.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/19/2022]
Abstract
Traveling-wave MRI, which uses relatively small and simple RF antennae, has robust matching performance and capability for large field-of-view (FOV) imaging. However, the power efficiency of traveling-wave MRI is much lower than conventional methods, which limits its application. One simple approach to improve the power efficiency is to place passive resonators around the subject being imaged. The feasibility of this approach has been demonstrated in previous works using a single small resonant loop. In this work, we aim to explore how much the improvements can be maintained in human imaging using an array design, and whether electric dipoles can be used as local elements. First, a series of electromagnetic (EM) simulations were performed on a human model. Then RF coils were constructed and the simulation results using the best setup for head imaging were validated in MR experiments. By using the passive local loop and transverse dipole arrays, respectively, the transmit efficiency (B1+) of traveling-wave MRI can be improved by 3-fold in the brain and 2-fold in the knee. The types of passive elements (loops or dipoles) should be carefully chosen for brain or knee imaging to maximize the improvement, and the enhancement depends on the local body configuration.
Collapse
Affiliation(s)
- Xinqiang Yan
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Choi CH, Ha Y, Veeraiah P, Felder J, Möllenhoff K, Shah NJ. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:28-32. [PMID: 27741437 DOI: 10.1016/j.jmr.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Pandichelvam Veeraiah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Klaus Möllenhoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany; Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Schmidt R, Webb A. Characterization of an HEM-Mode Dielectric Resonator for 7-T Human Phosphorous Magnetic Resonance Imaging. IEEE Trans Biomed Eng 2016; 63:2390-2395. [PMID: 26929023 DOI: 10.1109/tbme.2016.2533659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL To design and characterize a new set-up for dual nuclei MRI combining an annular dielectric resonator filled with high permittivity material for phosphorous (31P) and a traveling wave antenna for proton imaging. METHODS Recent studies have shown that an annular cylinder filled with water can serve as dielectric resonator for proton MRI of the extremities at 7 T. Using a very high permittivity material such as BaTiO3, this type of dielectric resonator can potentially be designed for lower gyromagnetic ratio nuclei. Combining this with a remote antenna for proton imaging, an alternative method for dual frequency imaging at ultrahigh field has been implemented. RESULTS 3D electromagnetic simulations were performed to examine the efficiency of the dielectric resonator. The new dielectric resonator was constructed for 31P acquisition at 121 MHz on a human 7 T MRI system. Phantom and in vivo scans demonstrated the feasibility of the setup, although the current sensitivity of the dielectric resonator is only half that of an equivalently sized birdcage. CONCLUSION The new approach offers a simple implementation for dual nuclei imaging at ultrahigh field, with several possibilities for further increases in sensitivity. SIGNIFICANCE Utilizing high permittivity materials enables very simple designs for high field RF coils: in the current configuration the interactions between the proton and phosphorous resonators are very low.
Collapse
|
30
|
Shah NJ, Worthoff WA, Langen KJ. Imaging of sodium in the brain: a brief review. NMR IN BIOMEDICINE 2016; 29:162-174. [PMID: 26451752 DOI: 10.1002/nbm.3389] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.
Collapse
Affiliation(s)
- N Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. NMR IN BIOMEDICINE 2016; 29:96-106. [PMID: 26404631 PMCID: PMC4713340 DOI: 10.1002/nbm.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 05/11/2023]
Abstract
(23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive.
Collapse
Affiliation(s)
- Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| | - Karthik Lakshmanan
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Medical Center, New York, NY, 10016, USA
| |
Collapse
|
32
|
Thulborn KR, Lui E, Guntin J, Jamil S, Sun Z, Claiborne T, Atkinson IC. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging. NMR IN BIOMEDICINE 2016; 29:137-43. [PMID: 26058461 PMCID: PMC4674376 DOI: 10.1002/nbm.3312] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 05/11/2023]
Abstract
Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.
Collapse
Affiliation(s)
- Keith R. Thulborn
- Correspondence to: K. Thulborn, University of Illinois at Chicago, Center for MR Research, 1801 West Taylor St., MC 707, Suite 1307, Chicago, IL 60612, USA.
| | - Elaine Lui
- Royal Melbourne Hospital, Radiology, Parkville, Vic., Australia
| | - Jonathan Guntin
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Saad Jamil
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Ziqi Sun
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Theodore Claiborne
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| | - Ian C. Atkinson
- University of Illinois at Chicago, Center for MR Research, Chicago, IL, USA
| |
Collapse
|
33
|
Zaric O, Pinker K, Zbyn S, Strasser B, Robinson S, Minarikova L, Gruber S, Farr A, Singer C, Helbich TH, Trattnig S, Bogner W. Quantitative Sodium MR Imaging at 7 T: Initial Results and Comparison with Diffusion-weighted Imaging in Patients with Breast Tumors. Radiology 2016; 280:39-48. [PMID: 27007803 DOI: 10.1148/radiol.2016151304] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the clinical feasibility of a quantitative sodium 23 ((23)Na) magnetic resonance (MR) imaging protocol developed for breast tumor assessment and to compare it with 7-T diffusion-weighted imaging (DWI). Materials and Methods Written informed consent in this institutional review board-approved study was obtained from eight healthy volunteers and 17 patients with 20 breast tumors (five benign, 15 malignant). To achieve the best image quality and reproducibility, the (23)Na sequence was optimized and tested on phantoms and healthy volunteers. For in vivo quantification of absolute tissue sodium concentration (TSC), an external phantom was used. Static magnetic field, or B0, and combined transmit and receive radiofrequency field, or B1, maps were acquired, and image quality, measurement reproducibility, and accuracy testing were performed. Bilateral (23)Na and DWI sequences were performed before contrast material-enhanced MR imaging in patients with breast tumors. TSC and apparent diffusion coefficient (ADC) were calculated and correlated for healthy glandular tissue and benign and malignant lesions. Results The (23)Na MR imaging protocol is feasible, with 1.5-mm in-plane resolution and 16-minute imaging time. Good image quality was achieved, with high reproducibility (mean TSC values ± standard deviation for the test, 36 mmol per kilogram of wet weight ± 2 [range, 34-37 mmol/kg]; for the retest, 37 mmol/kg ± 1 [range, 35-39 mmol/kg]; P = .610) and accuracy (r = 0.998, P < .001). TSC values in normal glandular and adipose breast tissue were 35 mmol/kg ± 3 and 18 mmol/kg ± 3, respectively. In malignant lesions (mean size, 31 mm ± 24; range, 6-92 mm), the TSC of 69 mmol/kg ± 10 was, on average, 49% higher than that in benign lesions (mean size, 14 mm ± 12; range, 6-35 mm), with a TSC of 47 mmol/kg ± 8 (P = .002). There were similar ADC differences between benign ([1.78 ± 0.23] × 10(-3) mm(2)/sec) and malignant ([1.03 ± 0.23] × 10(-3) mm(2)/sec) tumors (P = .002). ADC and TSC were inversely correlated (r = -0.881, P < .001). Conclusion Quantitative (23)Na MR imaging is clinically feasible, may provide good differentiation between malignant and benign breast lesions, and demonstrates an inverse correlation with ADC. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Olgica Zaric
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Katja Pinker
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Stefan Zbyn
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Bernhard Strasser
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Simon Robinson
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Lenka Minarikova
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Stephan Gruber
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Alex Farr
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Christian Singer
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Thomas H Helbich
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Siegfried Trattnig
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| | - Wolfgang Bogner
- From the MR Center of Excellence (MRCE), Department of Biomedical Imaging and Image-guided Therapy (O.Z., S.Z., B.S., S.R., L.M., S.G., S.T., W.B.), Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy (K.P., T.H.H.), and Department of Obstetrics and Gynecology (A.F., C.S.), Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; and Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria (S.T.)
| |
Collapse
|
34
|
Brown R, Lakshmanan K, Madelin G, Parasoglou P. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy. Neuroimage 2016; 124:602-611. [PMID: 26375209 PMCID: PMC4651763 DOI: 10.1016/j.neuroimage.2015.08.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/04/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023] Open
Abstract
A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA; NYU WIRELESS, Polytechnic Institute of New York University, 2 Metro Tech Center, Brooklyn, NY 11201, USA.
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Prodromos Parasoglou
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Brown R, Lakshmanan K, Madelin G, Alon L, Chang G, Sodickson DK, Regatte RR, Wiggins GC. A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med 2015; 76:1325-34. [PMID: 26502310 DOI: 10.1002/mrm.26017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE We describe a 2 × 6 channel sodium/proton array for knee MRI at 3T. Multielement coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low tissue-coil coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. METHODS The issue of low tissue-coil coupling in the developed six-channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize the coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high-quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. RESULTS The wideband matching scheme and tight-fitting mechanical design contributed to >30% central signal-to-noise ratio gain on the sodium module over a mononuclear sodium birdcage coil, and the performance of the proton module was sufficient for clinical imaging. CONCLUSION We expect the strategies presented in this study to be generally relevant in high-density receive arrays, particularly in x-nuclei or small animal applications. Magn Reson Med 76:1325-1334, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA. .,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA. .,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA.
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Leeor Alon
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Gregory Chang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Ravinder R Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
de Bruin PW, Koken P, Versluis MJ, Aussenhofer SA, Meulenbelt I, Börnert P, Webb AG. Time-efficient interleaved human (23)Na and (1)H data acquisition at 7 T. NMR IN BIOMEDICINE 2015; 28:1228-1235. [PMID: 26269329 DOI: 10.1002/nbm.3368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to implement and evaluate a flexible and time-efficient interleaved imaging approach for the acquisition of proton and sodium images of the human knee at 7 T within a clinically relevant timescale. A flexible software framework was established which allowed the interleaving of multiple, different, fully specific absorption ratio (SAR)-validated scans. The system was able to switch between these different scans at flexible time points. The practical example presented consists of interleaved proton (Dixon imaging and T2* mapping) and sodium (mapping the sodium content and fluid-suppressed component separately) sequences with the key idea to perform proton MRI whilst the sodium nuclei relax towards thermal equilibrium, and vice versa. Comparisons were made between these four scans being acquired sequentially in the normal mode of scanner operation and those acquired in an interleaved fashion. Images acquired in the interleaved mode were very similar to those acquired in sequential scans with no image artifacts produced by the slight intra-sequence variation in steady-state magnetization. A reduction in scanning time of almost a factor of two was established using the interleaved scans, allowing such a protocol to be completed within 30 min. Phantom experiments and in vivo scans performed in healthy volunteers and in one patient proved the basic feasibility of this approach. This approach for the interleaving of multiple proton and sodium scans, each with different contrasts, is an efficient method for the design of new practical clinical protocols for sodium MRI.
Collapse
Affiliation(s)
- Paul W de Bruin
- Radiology Department, Leiden University Medical Center, the Netherlands
| | - Peter Koken
- Philips Research Laboratories, Hamburg, Germany
| | | | | | - Ingrid Meulenbelt
- Molecular Epidemiology, Leiden University Medical Center, the Netherlands
| | - Peter Börnert
- Radiology Department, Leiden University Medical Center, the Netherlands
- Philips Research Laboratories, Hamburg, Germany
| | - Andrew G Webb
- Radiology Department, Leiden University Medical Center, the Netherlands
| |
Collapse
|
37
|
Mirkes C, Shajan G, Bause J, Buckenmaier K, Hoffmann J, Scheffler K. Triple-quantum-filtered sodium imaging at 9.4 Tesla. Magn Reson Med 2015; 75:1278-89. [PMID: 25846242 DOI: 10.1002/mrm.25688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE Efficient acquisition of triple-quantum-filtered (TQF) sodium images at ultra-high field (UHF) strength. METHODS A three-pulse preparation and a stack of double-spirals were used for the acquisition of TQF images at 9.4 Tesla. The flip angles of the TQ preparation were smoothly reduced toward the edge of k-space along the partition-encoding direction. In doing so, the specific absorption rate could be reduced while preserving the maximal signal intensity for the partitions most relevant for image contrast in the center of k-space. Simulations, phantom and in vivo measurements were used to demonstrate the usefulness of the proposed method. RESULTS A higher sensitivity (∼ 20%) was achieved compared to the standard acquisition without flip angle apodization. Signals from free sodium ions were successfully suppressed irrespective of the amount of apodization used. B0 corrected TQF images with a nominal resolution of 5 × 5 × 5 mm(3) and an acceptable signal-to-noise ratio could be acquired in vivo within 21 min. CONCLUSION Conventional TQF in combination with flip angle apodization permits to exploit more efficiently the increased sensitivity available at 9.4T.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, University of Tübingen, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jens Hoffmann
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
38
|
Shajan G, Mirkes C, Buckenmaier K, Hoffmann J, Pohmann R, Scheffler K. Three‐layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla. Magn Reson Med 2015; 75:906-16. [DOI: 10.1002/mrm.25666] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- G. Shajan
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Christian Mirkes
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Kai Buckenmaier
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Jens Hoffmann
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Rolf Pohmann
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
| | - Klaus Scheffler
- High Field MR Center, Max Planck Institute for Biological CyberneticsTübingen Germany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| |
Collapse
|
39
|
Hoffmann J, Mirkes C, Shajan G, Scheffler K, Pohmann R. Combination of a multimode antenna and TIAMO for traveling-wave imaging at 9.4 Tesla. Magn Reson Med 2015; 75:452-62. [PMID: 25732895 DOI: 10.1002/mrm.25614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the performance of a multimode antenna combined with time-interleaved acquisition of modes (TIAMO) for improved (1)H image homogeneity as compared to conventional traveling-wave imaging in the human brain at 9.4 Tesla (T). METHODS An adjustable three-port antenna was built to stimulate the propagation of three basic waveguide modes within a 9.4 T scanner bore. For TIAMO, two time-interleaved acquisitions using different linear combinations of these modes were optimized to achieve a homogeneous rooted sum-of-squares combination of their B1+ patterns ( B1,RSS+). The antenna's transmit and receive performance, as well as local specific absorption rate, were analyzed using experiments and numerical simulations. RESULTS The optimized TIAMO B1,RSS+ combination was superior to radiofrequency shimming. Across the entire brain, it improved the homogeneity of the excitation field by a factor of two and its maximum-to-minimum ratio by almost a factor of five as compared to the circularly polarized mode. The two-fold increase in "virtual" receive channels enhanced the parallel imaging performance and enabled the use of higher acceleration factors. CONCLUSION Despite the limited number of channels, a remote three-port antenna combined with TIAMO represents an easily implementable setup to achieve void-free (1)H images from the entire brain at 9.4 T, which can be used for anatomical localization and B0 shimming.
Collapse
Affiliation(s)
- Jens Hoffmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, Tübingen, Germany
| | - Christian Mirkes
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - G Shajan
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
40
|
Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, Deimling M, Rakova N, Muller DN, Luft FC, Titze J, Niendorf T. Skin sodium measured with ²³Na MRI at 7.0 T. NMR IN BIOMEDICINE 2015; 28:54-62. [PMID: 25328128 DOI: 10.1002/nbm.3224] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.
Collapse
Affiliation(s)
- Peter Linz
- Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: methods and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 79:14-47. [PMID: 24815363 PMCID: PMC4126172 DOI: 10.1016/j.pnmrs.2014.02.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 05/11/2023]
Abstract
Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges, limitations, and current and potential new applications of sodium MRI.
Collapse
Affiliation(s)
- Guillaume Madelin
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Jae-Seung Lee
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA; Chemistry Department, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Ravinder R Regatte
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, New York, NY 10016, USA
| | - Alexej Jerschow
- Chemistry Department, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|