1
|
Priovoulos N, de Oliveira IAF, Poser BA, Norris DG, van der Zwaag W. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Hum Brain Mapp 2023; 44:2509-2522. [PMID: 36763562 PMCID: PMC10028680 DOI: 10.1002/hbm.26227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
BOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical-depth-dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial-surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in-vivo neuroscience.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Icaro Agenor Ferreira de Oliveira
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Benedikt A Poser
- MR-Methods Group, Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Wietske van der Zwaag
- Spinoza Center for Neuroimaging, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Uwano I, Kobayashi M, Setta K, Ogasawara K, Yamashita F, Mori F, Matsuda T, Sasaki M. Assessment of Impaired Cerebrovascular Reactivity in Chronic Cerebral Ischemia using Intravoxel Incoherent Motion Magnetic Resonance Imaging. J Stroke Cerebrovasc Dis 2021; 30:106107. [PMID: 34562793 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The severity of chronic cerebral ischemia can be assessed using cerebrovascular reactivity (CVR) to acetazolamide (ACZ) challenge, which is measured by single-photon emission computed tomography (SPECT); however, this is an invasive method. We investigated whether intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) can assess impaired CVR in preoperative patients with chronic cerebral ischemia and compared it to SPECT-CVR. METHODS Forty-seven patients with unilateral cervical carotid artery stenosis underwent diffusion-weighted MRI with 11 b-values in the range of 0-800 s/mm2 and cerebral perfusion SPECT with the ACZ challenge. The perfusion fraction (f) and diffusion coefficient (D) of the IVIM parameters were calculated using a bi-exponential model. The f and D values and these ratios of the ipsilateral middle cerebral artery territory against the contralateral side were compared with the CVR values of the affected side calculated from the SPECT data. RESULTS The IVIM-f and D values in the affected side were significantly higher than those in the unaffected side (median: 7.74% vs. 7.45%, p = 0.027; 0.816 vs. 0.801 10-3mm2/s, p < 0.001; respectively). However, there were no significant correlations between the f or D values and SPECT-CVR values in the affected side. In contrast, the f ratio showed a moderate negative correlation with the SPECT-CVR values (r = -0.40, p = 0.006) and detected impaired CVR (< 18.4%) with a sensitivity/specificity of 0.71/0.90. CONCLUSION The IVIM perfusion parameter, f, can noninvasively assess impaired CVR with high sensitivity and specificity in patients with unilateral cervical carotid artery stenosis.
Collapse
Affiliation(s)
- Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan.
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kengo Setta
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Futoshi Mori
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Tsuyoshi Matsuda
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
3
|
Raitamaa L, Huotari N, Korhonen V, Helakari H, Koivula A, Kananen J, Kiviniemi V. Spectral analysis of physiological brain pulsations affecting the BOLD signal. Hum Brain Mapp 2021; 42:4298-4313. [PMID: 34037278 PMCID: PMC8356994 DOI: 10.1002/hbm.25547] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Physiological pulsations have been shown to affect the global blood oxygen level dependent (BOLD) signal in human brain. While these pulsations have previously been regarded as noise, recent studies show their potential as biomarkers of brain pathology. We used the extended 5 Hz spectral range of magnetic resonance encephalography (MREG) data to investigate spatial and frequency distributions of physiological BOLD signal sources. Amplitude spectra of the global image signals revealed cardiorespiratory envelope modulation (CREM) peaks, in addition to the previously known very low frequency (VLF) and cardiorespiratory pulsations. We then proceeded to extend the amplitude of low frequency fluctuations (ALFF) method to each of these pulsations. The respiratory pulsations were spatially dominating over most brain structures. The VLF pulsations overcame the respiratory pulsations in frontal and parietal gray matter, whereas cardiac and CREM pulsations had this effect in central cerebrospinal fluid (CSF) spaces and major blood vessels. A quasi‐periodic pattern (QPP) analysis showed that the CREM pulsations propagated as waves, with a spatiotemporal pattern differing from that of respiratory pulsations, indicating them to be distinct intracranial physiological phenomenon. In conclusion, the respiration has a dominant effect on the global BOLD signal and directly modulates cardiovascular brain pulsations.
Collapse
Affiliation(s)
- Lauri Raitamaa
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Niko Huotari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Korhonen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Heta Helakari
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Anssi Koivula
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Janne Kananen
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| | - Vesa Kiviniemi
- Oulu Functional Neuro Imaging Group, Research Unit of Medical Imaging Physics and Technology (MIPT), University of Oulu, Oulu.,Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu
| |
Collapse
|
4
|
Driver ID, Stobbe RW, Wise RG, Beaulieu C. Venous contribution to sodium MRI in the human brain. Magn Reson Med 2019; 83:1331-1338. [PMID: 31556169 PMCID: PMC6972645 DOI: 10.1002/mrm.27996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T 2 ∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T 2 ∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Collapse
Affiliation(s)
- Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage 2019; 187:3-16. [PMID: 29305164 PMCID: PMC6030511 DOI: 10.1016/j.neuroimage.2017.12.095] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 11/26/2022] Open
Abstract
This article aims to provide the reader with an overview of recent developments in Arterial Spin Labeling (ASL) MRI techniques. A great deal of progress has been made in recent years in terms of the SNR and acquisition speed. New strategies have been introduced to improve labeling efficiency, reduce artefacts, and estimate other relevant physiological parameters besides perfusion. As a result, ASL techniques has become a reliable workhorse for researchers as well as clinicians. After a brief overview of the technique's fundamentals, this article will review new trends and variants in ASL including vascular territory mapping and velocity selective ASL, as well as arterial blood volume imaging techniques. This article will also review recent processing techniques to reduce partial volume effects and physiological noise. Next the article will examine how ASL techniques can be leveraged to calculate additional physiological parameters beyond perfusion and finally, it will review a few recent applications of ASL in the literature.
Collapse
Affiliation(s)
| | - Anish Lahiri
- FMRI Laboratory, University of Michigan, United States
| | | |
Collapse
|
6
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Hernandez-Garcia L, Nielsen JF, Noll DC. Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 2018; 81:1004-1015. [PMID: 30187951 DOI: 10.1002/mrm.27461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE This work aims to investigate the utility of velocity selective inversion pulses for perfusion weighted functional MRI. METHODS Tracer kinetic properties of velocity selective inversion (VSI) pulses as an input function for an arterial spin labeling (ASL) experiment were characterized in a group of healthy participants. Numerical simulations were conducted to search for a robust set of timing parameters for FMRI time series acquisition with maximal signal to noise ratio efficiency. The performance of three VSI pulse sequences with different timing parameters was compared with a pseudocontinuous ASL sequence in a simple FMRI experiment conducted on healthy participants. RESULTS The fit to the tracer kinetic model yielded arterial CBV of 1.24% ± 0.52% and 0.45 ± 0.11% and perfusion rates of 60.8 ± 32.3 and 34.4 ± 5.4 mL/min/100 g for gray and white matter, respectively. Bolus arrival times were estimated as 75.7 ± 21 ms and 349 ± 78 ms for gray and white matter, respectively. The FMRI experiments showed that VSI pulses yield comparable sensitivity to PCASL with similar timing parameters (TR = 4 s). However, VSI pulses could be used at a faster acquisition speed (TR = 3 s) and were more sensitive to neuronal activity than PCASL pulses, as evidenced by the 31% higher Z scores obtained on average in the active regions. CONCLUSION VSI pulses can be very beneficial for perfusion weighted functional MRI because of their tracer kinetic characteristics, which allow a faster acquisition rate while maintaining an efficient labeling input function.
Collapse
Affiliation(s)
| | | | - Douglas C Noll
- University of Michigan FMRI Laboratory, Ann Arbor, Michigan
| |
Collapse
|
8
|
Silva JPS, Mônaco LDM, Paschoal AM, Oliveira ÍAFD, Leoni RF. Effects of global signal regression and subtraction methods on resting-state functional connectivity using arterial spin labeling data. Magn Reson Imaging 2018; 51:151-157. [DOI: 10.1016/j.mri.2018.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
9
|
Shah YS, Hernandez-Garcia L, Jahanian H, Peltier SJ. Support vector machine classification of arterial volume-weighted arterial spin tagging images. Brain Behav 2016; 6:e00549. [PMID: 28031993 PMCID: PMC5167003 DOI: 10.1002/brb3.549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION In recent years, machine-learning techniques have gained growing popularity in medical image analysis. Temporal brain-state classification is one of the major applications of machine-learning techniques in functional magnetic resonance imaging (fMRI) brain data. This article explores the use of support vector machine (SVM) classification technique with motor-visual activation paradigm to perform brain-state classification into activation and rest with an emphasis on different acquisition techniques. METHODS Images were acquired using a recently developed variant of traditional pseudocontinuous arterial spin labeling technique called arterial volume-weighted arterial spin tagging (AVAST). The classification scheme is also performed on images acquired using blood oxygenation-level dependent (BOLD) and traditional perfusion-weighted arterial spin labeling (ASL) techniques for comparison. RESULTS The AVAST technique outperforms traditional pseudocontinuous ASL, achieving classification accuracy comparable to that of BOLD contrast images. CONCLUSION This study demonstrates that AVAST has superior signal-to-noise ratio and improved temporal resolution as compared with traditional perfusion-weighted ASL and reduced sensitivity to scanner drift as compared with BOLD. Owing to these characteristics, AVAST lends itself as an ideal choice for dynamic fMRI and real-time neurofeedback experiments with sustained activation periods.
Collapse
Affiliation(s)
- Yash S Shah
- Functional MRI Laboratory Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Luis Hernandez-Garcia
- Functional MRI Laboratory Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Scott J Peltier
- Functional MRI Laboratory Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
10
|
Kim KH, Choi SH, Park SH. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN). PLoS One 2016; 11:e0156687. [PMID: 27257674 PMCID: PMC4892492 DOI: 10.1371/journal.pone.0156687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hong Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
11
|
Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36:842-61. [PMID: 26945019 PMCID: PMC4853843 DOI: 10.1177/0271678x16636393] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Noninvasive imaging of cerebral blood flow provides critical information to understand normal brain physiology as well as to identify and manage patients with neurological disorders. To date, the reference standard for cerebral blood flow measurements is considered to be positron emission tomography using injection of the [(15)O]-water radiotracer. Although [(15)O]-water has been used to study brain perfusion under normal and pathological conditions, it is not widely used in clinical settings due to the need for an on-site cyclotron, the invasive nature of arterial blood sampling, and experimental complexity. As an alternative, arterial spin labeling is a promising magnetic resonance imaging technique that magnetically labels arterial blood as it flows into the brain to map cerebral blood flow. As arterial spin labeling becomes more widely adopted in research and clinical settings, efforts have sought to standardize the method and validate its cerebral blood flow values against positron emission tomography-based cerebral blood flow measurements. The purpose of this work is to critically review studies that performed both [(15)O]-water positron emission tomography and arterial spin labeling to measure brain perfusion, with the aim of better understanding the accuracy and reproducibility of arterial spin labeling relative to the positron emission tomography reference standard.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|