1
|
Heij J, van der Zwaag W, Knapen T, Caan MWA, Forstman B, Veltman DJ, van Wingen G, Aghajani M. Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder. Transl Psychiatry 2024; 14:262. [PMID: 38902245 PMCID: PMC11190139 DOI: 10.1038/s41398-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstman
- Department of Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Education and Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Batsikadze G, Pakusch J, Klein M, Ernst TM, Thieme A, Nicksirat SA, Steiner KM, Nio E, Genc E, Maderwald S, Deuschl C, Merz CJ, Quick HH, Mark MD, Timmann D. Mild Deficits in Fear Learning: Evidence from Humans and Mice with Cerebellar Cortical Degeneration. eNeuro 2024; 11:ENEURO.0365-23.2023. [PMID: 38176906 PMCID: PMC10897646 DOI: 10.1523/eneuro.0365-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Klein
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Michael Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Seyed Ali Nicksirat
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Katharina Marie Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Enzo Nio
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Erhan Genc
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology and C-TNBS, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Josef Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
- High-Field and Hybrid MR Imaging, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
3
|
Li B, Li N, Wang Z, Balan R, Ernst T. Simultaneous multislice EPI prospective motion correction by real-time receiver phase correction and coil sensitivity map interpolation. Magn Reson Med 2023; 90:1932-1948. [PMID: 37448116 PMCID: PMC10795703 DOI: 10.1002/mrm.29789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. METHODS A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. RESULTS Brain SMS-EPI scans in the presence of motion with PMC and no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p = 0.0007) for scans with large movements (up to ˜35 mm and 30°). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. CONCLUSION Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion.
Collapse
Affiliation(s)
- Bo Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Ningzhi Li
- U.S. Food Drug Administration, Silver Spring, MD, United States
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Radu Balan
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
4
|
Hu S, Chen Y, Zong X, Lin W, Griswold M, Ma D. Improving motion robustness of 3D MR fingerprinting with a fat navigator. Magn Reson Med 2023; 90:1802-1817. [PMID: 37345703 PMCID: PMC10524525 DOI: 10.1002/mrm.29761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE To develop a 3D MR fingerprinting (MRF) method in combination with fat navigators to improve its motion robustness for neuroimaging. METHODS A rapid fat navigator was developed using the stack-of-spirals acquisition and non-Cartesian spiral GRAPPA. The fat navigator module was implemented in the 3D MRF sequence with high scan efficiency. The developed method was first validated in phantoms and five healthy subjects with intentional head motion. The method was further applied to infants with neonatal opioid withdrawal symptoms. The 3D MRF scans with fat navigators acquired with and without acceleration along the partition-encoding direction were both examined in the study. RESULTS Both phantom and in vivo results demonstrated that the added fat navigator modules did not influence the quantification accuracy in MRF. In combination with non-Cartesian spiral GRAPPA, a rapid fat navigator sampling with whole-brain coverage was achieved in ˜0.5 s at 3T, reducing its sensitivity to potential motion. Based on the motion waveforms extracted from fat navigators, the motion robustness of the 3D MRF was largely improved. With the proposed method, the motion-corrupted MRF datasets yielded T1 and T2 maps with significantly reduced artifacts and high correlations with measurements from the reference motion-free MRF scans. CONCLUSION We developed a 3D MRF method coupled with rapid fat navigators to improve its motion robustness for quantitative neuroimaging. Our results demonstrate that (1) accurate tissue quantification was preserved with the fat navigator modules and (2) the motion robustness for quantitative tissue mapping was largely improved with the developed method.
Collapse
Affiliation(s)
- Siyuan Hu
- Department of Biomedical Engineering Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaopeng Zong
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering Cleveland, Ohio, USA
| |
Collapse
|
5
|
Raimondo L, Priovoulos N, Passarinho C, Heij J, Knapen T, Dumoulin SO, Siero JCW, van der Zwaag W. Robust high spatio-temporal line-scanning fMRI in humans at 7T using multi-echo readouts, denoising and prospective motion correction. J Neurosci Methods 2023; 384:109746. [PMID: 36403778 DOI: 10.1016/j.jneumeth.2022.109746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI), typically using blood oxygenation level-dependent (BOLD) contrast weighted imaging, allows the study of brain function with millimeter spatial resolution and temporal resolution of one to a few seconds. At a mesoscopic scale, neurons in the human brain are spatially organized in structures with dimensions of hundreds of micrometers, while they communicate at the millisecond timescale. For this reason, it is important to develop an fMRI method with simultaneous high spatial and temporal resolution. Line-scanning promises to reach this goal at the cost of volume coverage. NEW METHOD Here, we release a comprehensive update to human line-scanning fMRI. First, we investigated multi-echo line-scanning with five different protocols varying the number of echoes and readout bandwidth while keeping the TR constant. In these, we compared different echo combination approaches in terms of BOLD activation (sensitivity) and temporal signal-to-noise ratio. Second, we implemented an adaptation of NOise reduction with DIstribution Corrected principal component analysis (NORDIC) thermal noise removal for line-scanning fMRI data. Finally, we tested three image-based navigators for motion correction and investigated different ways of performing fMRI analysis on the timecourses which were influenced by the insertion of the navigators themselves. RESULTS The presented improvements are relatively straightforward to implement; multi-echo readout and NORDIC denoising together, significantly improve data quality in terms of tSNR and t-statistical values, while motion correction makes line-scanning fMRI more robust. COMPARISON WITH EXISTING METHODS Multi-echo acquisitions and denoising have previously been applied in 3D magnetic resonance imaging. Their combination and application to 1D line-scanning is novel. The current proposed method greatly outperforms the previous line-scanning acquisitions with single-echo acquisition, in terms of tSNR (4.0 for single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo) and t-statistical values (3.8 for single-echo line-scanning and 25.1 for NORDIC-denoised multi-echo line-scanning). CONCLUSIONS Line-scanning fMRI was advanced compared to its previous implementation in order to improve sensitivity and reliability. The improved line-scanning acquisition could be used, in the future, for neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| | - Catarina Passarinho
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental Psychology, Utrecht University, PO Box 80125, 3508 TC Utrecht, Netherlands.
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Radiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands.
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| |
Collapse
|
6
|
Andersen M, Laustsen M, Boer V. Accuracy investigations for volumetric head-motion navigators with and without EPI at 7 T. Magn Reson Med 2022; 88:1198-1211. [PMID: 35576128 PMCID: PMC9325528 DOI: 10.1002/mrm.29296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Accuracy investigation of volumetric navigators for motion correction, with emphasis on geometric EPI distortions at ultrahigh field. METHODS High-resolution Dixon images were collected in different head positions and reconstructed to water, fat, T2 *, and B0 maps. Resolution reduction was performed, and the T2 * and B0 maps were used to apply effects of TE and EPI distortions to simulate various volumetric water and fat navigators. Registrations of the simulated navigators were compared with registrations of the original high-resolution images. RESULTS Increased accuracy was observed with increased spatial resolution for non-EPI navigators. When using EPI, the distortions had a negative effect on registration accuracy, which was most noticeable for high-resolution navigators. Parallel imaging helped to alleviate those caveats to a certain extent, and 5-fold acceleration gave close to similar accuracy to non-EPI in most cases. Shortening the TE by partial Fourier sampling was shown to be mostly beneficial, except for water navigators with long readout durations. The EPI blip direction had an influence on navigator accuracy, and positive blip gradient polarities (yielding mostly image stretching frontally) typically gave the best accuracy for water navigators, whereas no clear recommendation could be made for fat navigators. Generally, fat EPI navigators had lower accuracy than water EPI navigators with otherwise similar parameters. CONCLUSIONS Echo planar imaging has been widely used for MRI navigators, but the induced distortions reduce navigator accuracy at ultrahigh field. This study can help protocol optimization and guide the complex tradeoff between resolution and EPI acceleration in navigator parameter setup.
Collapse
Affiliation(s)
- Mads Andersen
- Philips HealthcareCopenhagenDenmark
- Lund University Bioimaging Center, Lund UniversityLundSweden
| | - Malte Laustsen
- Center for Magnetic Resonance, Department of Health TechnologyTechnical University of DenmarkLyngbyDenmark
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital – Amager and HvidovreCopenhagenDenmark
| | - Vincent Boer
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital – Amager and HvidovreCopenhagenDenmark
| |
Collapse
|
7
|
Laustsen M, Andersen M, Xue R, Madsen KH, Hanson LG. Tracking of rigid head motion during MRI using an EEG system. Magn Reson Med 2022; 88:986-1001. [PMID: 35468237 PMCID: PMC9325421 DOI: 10.1002/mrm.29251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
Purpose To demonstrate a novel method for tracking of head movements during MRI using electroencephalography (EEG) hardware for recording signals induced by native imaging gradients. Theory and Methods Gradient switching during simultaneous EEG–fMRI induces distortions in EEG signals, which depend on subject head position and orientation. When EEG electrodes are interconnected with high‐impedance carbon wire loops, the induced voltages are linear combinations of the temporal gradient waveform derivatives. We introduce head tracking based on these signals (CapTrack) involving 3 steps: (1) phantom scanning is used to characterize the target sequence and a fast calibration sequence; (2) a linear relation between changes of induced signals and head pose is established using the calibration sequence; and (3) induced signals recorded during target sequence scanning are used for tracking and retrospective correction of head movement without prolonging the scan time of the target sequence. Performance of CapTrack is compared directly to interleaved navigators. Results Head‐pose tracking at 27.5 Hz during echo planar imaging (EPI) was demonstrated with close resemblance to rigid body alignment (mean absolute difference: [0.14 0.38 0.15]‐mm translation, [0.30 0.27 0.22]‐degree rotation). Retrospective correction of 3D gradient‐echo imaging shows an increase of average edge strength of 12%/−0.39% for instructed/uninstructed motion with CapTrack pose estimates, with a tracking interval of 1561 ms and high similarity to interleaved navigator estimates (mean absolute difference: [0.13 0.33 0.12] mm, [0.28 0.15 0.22] degrees). Conclusion Motion can be estimated from recordings of gradient switching with little or no sequence modification, optionally in real time at low computational burden and synchronized to image acquisition, using EEG equipment already found at many research institutions.
Collapse
Affiliation(s)
- Malte Laustsen
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Sino-Danish Centre for Education and Research, Aarhus, Denmark.,University of Chinese Academic of Sciences, Beijing, China
| | - Mads Andersen
- Philips Healthcare, Copenhagen, Denmark.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Rong Xue
- University of Chinese Academic of Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars G Hanson
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
8
|
Wilferth T, Müller M, Gast LV, Ruck L, Meyerspeer M, Lopez Kolkovsky AL, Uder M, Dörfler A, Nagel AM. Motion‐corrected
23
Na MRI
of the human brain using interleaved
1
H 3D
navigator images. Magn Reson Med 2022; 88:309-321. [DOI: 10.1002/mrm.29221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Max Müller
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Lena V. Gast
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Laurent Ruck
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
| | - Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- NMR Laboratory CEA/DRF/IBFJ/Molecular Imaging Research Center Paris France
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arnd Dörfler
- Department of Neuroradiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
9
|
Yedavalli V, DiGiacomo P, Tong E, Zeineh M. High-resolution Structural Magnetic Resonance Imaging and Quantitative Susceptibility Mapping. Magn Reson Imaging Clin N Am 2021; 29:13-39. [PMID: 33237013 DOI: 10.1016/j.mric.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
High-resolution 7-T imaging and quantitative susceptibility mapping produce greater anatomic detail compared with conventional strengths because of improvements in signal/noise ratio and contrast. The exquisite anatomic details of deep structures, including delineation of microscopic architecture using advanced techniques such as quantitative susceptibility mapping, allows improved detection of abnormal findings thought to be imperceptible on clinical strengths. This article reviews caveats and techniques for translating sequences commonly used on 1.5 or 3 T to high-resolution 7-T imaging. It discusses for several broad disease categories how high-resolution 7-T imaging can advance the understanding of various diseases, improve diagnosis, and guide management.
Collapse
Affiliation(s)
- Vivek Yedavalli
- Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA; Division of Neuroradiology, Johns Hopkins University, 600 N. Wolfe St. B-112 D, Baltimore, MD 21287, USA
| | - Phillip DiGiacomo
- Department of Bioengineering, Stanford University, Lucas Center for Imaging, Room P271, 1201 Welch Road, Stanford, CA 94305-5488, USA
| | - Elizabeth Tong
- Department of Radiology, 300 Pasteur Drive, Room S031, Stanford, CA 94305-5105, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Lucas Center for Imaging, Room P271, 1201 Welch Road, Stanford, CA 94305-5488, USA.
| |
Collapse
|
10
|
Zong X, Nanavati S, Hung SC, Li T, Lin W. Effects of motion and retrospective motion correction on the visualization and quantification of perivascular spaces in ultrahigh resolution T2-weighted images at 7T. Magn Reson Med 2021; 86:1944-1955. [PMID: 34009709 DOI: 10.1002/mrm.28847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Motion can strongly affect MRI image quality and derived imaging measures. We studied the effects of motion and retrospective motion correction (MC) on the visualization and quantitative measures of the perivascular space and penetrating vessel (PVSV) complex, an essential part of the glymphatic system, on high-resolution T2 -weighted MRI images at 7T. METHODS MC was achieved by adjusting k-space data based on head positions measured using fat navigator images. PVSV visibility and quantitative measures including diameter, volume fraction (VF), count, and contrast were compared between images with and without MC. RESULTS Without MC, VF, and count decreased significantly with increasing head rotation. MC improved PVSV visualization in all cases with severe motion artifacts. MC decreased diameter in white matter (WM) and increased VF, count, and contrast in basal ganglia and WM. The changes of VF, count, and contrast after MC strongly correlated with motion severity. MC eliminated the significant dependences of VF and count on rotation and reduced the inter-subject variations of VF and count. The effect sizes of age and breathing gas effects on VF and count, and contrast increased in most cases after MC, while those on diameter exhibited inconsistent behavior. CONCLUSIONS Motion affects PVSV quantification without MC. MC improves PVSV visibility and increases the statistical power of detecting physiological PVSV VF, count, and contrast changes but may have limited benefits for increasing the power for detecting diameter changes.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Soham Nanavati
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sheng-Che Hung
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Variable flip angle echo planar time-resolved imaging (vFA-EPTI) for fast high-resolution gradient echo myelin water imaging. Neuroimage 2021; 232:117897. [PMID: 33621694 PMCID: PMC8221177 DOI: 10.1016/j.neuroimage.2021.117897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 μm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.
Collapse
|
12
|
Berglund J, van Niekerk A, Rydén H, Sprenger T, Avventi E, Norbeck O, Glimberg SL, Olesen OV, Skare S. Prospective motion correction for diffusion weighted EPI of the brain using an optical markerless tracker. Magn Reson Med 2020; 85:1427-1440. [PMID: 32989859 PMCID: PMC7756594 DOI: 10.1002/mrm.28524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE To enable motion-robust diffusion weighted imaging of the brain using well-established imaging techniques. METHODS An optical markerless tracking system was used to estimate and correct for rigid body motion of the head in real time during scanning. The imaging coordinate system was updated before each excitation pulse in a single-shot EPI sequence accelerated by GRAPPA with motion-robust calibration. Full Fourier imaging was used to reduce effects of motion during diffusion encoding. Subjects were imaged while performing prescribed motion patterns, each repeated with prospective motion correction on and off. RESULTS Prospective motion correction with dynamic ghost correction enabled high quality DWI in the presence of fast and continuous motion within a 10° range. Images acquired without motion were not degraded by the prospective correction. Calculated diffusion tensors tolerated the motion well, but ADC values were slightly increased. CONCLUSIONS Prospective correction by markerless optical tracking minimizes patient interaction and appears to be well suited for EPI-based DWI of patient groups unable to remain still including those who are not compliant with markers.
Collapse
Affiliation(s)
- Johan Berglund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adam van Niekerk
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henric Rydén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Sprenger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,MR Applied Science Laboratory, GE Healthcare, Stockholm, Sweden
| | - Enrico Avventi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Norbeck
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Stefan Skare
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Bazin PL, Nijsse HE, van der Zwaag W, Gallichan D, Alkemade A, Vos FM, Forstmann BU, Caan MWA. Sharpness in motion corrected quantitative imaging at 7T. Neuroimage 2020; 222:117227. [PMID: 32781231 DOI: 10.1016/j.neuroimage.2020.117227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Sub-millimeter imaging at 7T has opened new possibilities for qualitatively and quantitatively studying brain structure as it evolves throughout the life span. However, subject motion introduces image blurring on the order of magnitude of the spatial resolution and is thus detrimental to image quality. Such motion can be corrected for, but widespread application has not yet been achieved and quantitative evaluation is lacking. This raises a need to quantitatively measure image sharpness throughout the brain. We propose a method to quantify sharpness of brain structures at sub-voxel resolution, and use it to assess to what extent limited motion is related to image sharpness. The method was evaluated in a cohort of 24 healthy volunteers with a wide and uniform age range, aiming to arrive at results that largely generalize to larger populations. Using 3D fat-excited motion navigators, quantitative R1, R2* and Quantitative Susceptibility Maps and T1-weighted images were retrospectively corrected for motion. Sharpness was quantified in all modalities for selected regions of interest (ROI) by fitting the sigmoidally shaped error function to data within locally homogeneous clusters. A strong, almost linear correlation between motion and sharpness improvement was observed, and motion correction significantly improved sharpness. Overall, the Full Width at Half Maximum reduced from 0.88 mm to 0.70 mm after motion correction, equivalent to a 2.0 times smaller voxel volume. Motion and sharpness were not found to correlate with the age of study participants. We conclude that in our data, motion correction using fat navigators is overall able to restore the measured sharpness to the imaging resolution, irrespective of the amount of motion observed during scanning.
Collapse
Affiliation(s)
- Pierre-Louis Bazin
- Integrative Model-based Cognitive Neuroscience research unit, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Hannah E Nijsse
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands.
| | | | - Daniel Gallichan
- CUBRIC, School of Engineering, Cardiff University, Cardiff, United Kingdom.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience research unit, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Frans M Vos
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands.
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Matthan W A Caan
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Avventi E, Ryden H, Norbeck O, Berglund J, Sprenger T, Skare S. Projection‐based 3D/2D registration for prospective motion correction. Magn Reson Med 2020; 84:1534-1542. [DOI: 10.1002/mrm.28225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Avventi
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Henric Ryden
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Ola Norbeck
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Johan Berglund
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Tim Sprenger
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- MR Applied Science Laboratory Europe GE Healthcare Stockholm Sweden
| | - Stefan Skare
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
15
|
DiGiacomo P, Maclaren J, Aksoy M, Tong E, Carlson M, Lanzman B, Hashmi S, Watkins R, Rosenberg J, Burns B, Skloss TW, Rettmann D, Rutt B, Bammer R, Zeineh M. A within-coil optical prospective motion-correction system for brain imaging at 7T. Magn Reson Med 2020; 84:1661-1671. [PMID: 32077521 DOI: 10.1002/mrm.28211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.
Collapse
Affiliation(s)
- Phillip DiGiacomo
- Department of Bioengineering, Stanford University, Stanford, California
| | - Julian Maclaren
- Department of Radiology, Stanford University, Stanford, California
| | - Murat Aksoy
- Department of Radiology, Stanford University, Stanford, California
| | - Elizabeth Tong
- Department of Radiology, Stanford University, Stanford, California
| | - Mackenzie Carlson
- Department of Bioengineering, Stanford University, Stanford, California
| | - Bryan Lanzman
- Department of Radiology, Stanford University, Stanford, California
| | - Syed Hashmi
- Department of Radiology, Stanford University, Stanford, California
| | - Ronald Watkins
- Department of Radiology, Stanford University, Stanford, California
| | | | - Brian Burns
- Applied Sciences Lab West, GE Healthcare, Menlo Park, California
| | | | - Dan Rettmann
- MR Applications and Workflow, GE Healthcare, Rochester, Minnesota
| | - Brian Rutt
- Department of Bioengineering, Stanford University, Stanford, California.,Department of Radiology, Stanford University, Stanford, California
| | - Roland Bammer
- Department of Radiology, University of Melbourne, Melbourne, Australia
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
16
|
Jorge J, Gretsch F, Najdenovska E, Tuleasca C, Levivier M, Maeder P, Gallichan D, Marques JP, Bach Cuadra M. Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T. Magn Reson Med 2020; 84:1218-1234. [PMID: 32052486 DOI: 10.1002/mrm.28197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The thalamus is an important brain structure and neurosurgical target, but its constituting nuclei are challenging to image non-invasively. Recently, susceptibility-weighted imaging (SWI) at ultra-high field has shown promising capabilities for thalamic nuclei mapping. In this work, several methodological improvements were explored to enhance SWI quality and contrast, and specifically its ability for thalamic imaging. METHODS High-resolution SWI was performed at 7T in healthy participants, and the following techniques were applied: (a) monitoring and retrospective correction of head motion and B0 perturbations using integrated MR navigators, (b) segmentation and removal of venous vessels on the SWI data using vessel enhancement filtering, and (c) contrast enhancement by tuning the parameters of the SWI phase-magnitude combination. The resulting improvements were evaluated with quantitative metrics of image quality, and by comparison to anatomo-histological thalamic atlases. RESULTS Even with sub-millimeter motion and natural breathing, motion and field correction produced clear improvements in both magnitude and phase data quality (76% and 41%, respectively). The improvements were stronger in cases of larger motion/field deviations, mitigating the dependence of image quality on subject performance. Optimizing the SWI phase-magnitude combination yielded substantial improvements in image contrast, particularly in the thalamus, well beyond previously reported SWI results. The atlas comparisons provided compelling evidence of anatomical correspondence between SWI features and several thalamic nuclei, for example, the ventral intermediate nucleus. Vein detection performed favorably inside the thalamus, and vein removal further improved visualization. CONCLUSION Altogether, the proposed developments substantially improve high-resolution SWI, particularly for thalamic nuclei imaging.
Collapse
Affiliation(s)
- João Jorge
- Medical Image Analysis Laboratory, Center for Biomedical Imaging (CIBM), University of Lausanne, Lausanne, Switzerland.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gretsch
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elena Najdenovska
- Medical Image Analysis Laboratory, Center for Biomedical Imaging (CIBM), University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Maeder
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Daniel Gallichan
- Cardiff University Brain Research Imaging Centre, School of Engineering, Cardiff University, Cardiff, UK
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Meritxell Bach Cuadra
- Medical Image Analysis Laboratory, Center for Biomedical Imaging (CIBM), University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Cordero-Grande L, Ferrazzi G, Teixeira RPAG, O'Muircheartaigh J, Price AN, Hajnal JV. Motion-corrected MRI with DISORDER: Distributed and incoherent sample orders for reconstruction deblurring using encoding redundancy. Magn Reson Med 2020; 84. [PMID: 31898832 PMCID: PMC7392051 DOI: 10.1002/mrm.28157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE To enable rigid body motion-tolerant parallel volumetric magnetic resonance imaging by retrospective head motion correction on a variety of spatiotemporal scales and imaging sequences. THEORY AND METHODS Tolerance against rigid body motion is based on distributed and incoherent sampling orders for boosting a joint retrospective motion estimation and reconstruction framework. Motion resilience stems from the encoding redundancy in the data, as generally provided by the coil array. Hence, it does not require external sensors, navigators or training data, so the methodology is readily applicable to sequences using 3D encodings. RESULTS Simulations are performed showing full inter-shot corrections for usual levels of in vivo motion, large number of shots, standard levels of noise and moderate acceleration factors. Feasibility of inter- and intra-shot corrections is shown under controlled motion in vivo. Practical efficacy is illustrated by high-quality results in most corrupted of 208 volumes from a series of 26 clinical pediatric examinations collected using standard protocols. CONCLUSIONS The proposed framework addresses the rigid motion problem in volumetric anatomical brain scans with sufficient encoding redundancy which has enabled reliable pediatric examinations without sedation.
Collapse
Affiliation(s)
- Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Giulio Ferrazzi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
18
|
Bazin PL, Alkemade A, van der Zwaag W, Caan M, Mulder M, Forstmann BU. Denoising High-Field Multi-Dimensional MRI With Local Complex PCA. Front Neurosci 2019; 13:1066. [PMID: 31649500 PMCID: PMC6794471 DOI: 10.3389/fnins.2019.01066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Modern high field and ultra high field magnetic resonance imaging (MRI) experiments routinely collect multi-dimensional data with high spatial resolution, whether multi-parametric structural, diffusion or functional MRI. While diffusion and functional imaging have benefited from recent advances in multi-dimensional signal analysis and denoising, structural MRI has remained untouched. In this work, we propose a denoising technique for multi-parametric quantitative MRI, combining a highly popular denoising method from diffusion imaging, over-complete local PCA, with a reconstruction of the complex-valued MR signal in order to define stable estimates of the noise in the decomposition. With this approach, we show signal to noise ratio (SNR) improvements in high resolution MRI without compromising the spatial accuracy or generating spurious perceptual boundaries.
Collapse
Affiliation(s)
- Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, Department of Psychology, Universiteit van Amsterdam, Amsterdam, Netherlands
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, Department of Psychology, Universiteit van Amsterdam, Amsterdam, Netherlands
| | | | - Matthan Caan
- Brain Imaging Centre, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Martijn Mulder
- Integrative Model-Based Cognitive Neuroscience Research Unit, Department of Psychology, Universiteit van Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Universiteit Utrecht, Utrecht, Netherlands
| | - Birte U. Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, Department of Psychology, Universiteit van Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Ernst TM, Brol AE, Gratz M, Ritter C, Bingel U, Schlamann M, Maderwald S, Quick HH, Merz CJ, Timmann D. The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. eLife 2019; 8:46831. [PMID: 31464686 PMCID: PMC6715348 DOI: 10.7554/elife.46831] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/13/2019] [Indexed: 01/16/2023] Open
Abstract
Prediction errors are thought to drive associative fear learning. Surprisingly little is known about the possible contribution of the cerebellum. To address this question, healthy participants underwent a differential fear conditioning paradigm during 7T magnetic resonance imaging. An event-related design allowed us to separate cerebellar fMRI signals related to the visual conditioned stimulus (CS) from signals related to the subsequent unconditioned stimulus (US; an aversive electric shock). We found significant activation of cerebellar lobules Crus I and VI bilaterally related to the CS+ compared to the CS-. Most importantly, significant activation of lobules Crus I and VI was also present during the unexpected omission of the US in unreinforced CS+ acquisition trials. This activation disappeared during extinction when US omission became expected. These findings provide evidence that the cerebellum has to be added to the neural network processing predictions and prediction errors in the emotional domain.
Collapse
Affiliation(s)
- Thomas Michael Ernst
- Department of Neurology, Essen University Hospital, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | | | - Marcel Gratz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, Essen University Hospital, Essen, Germany
| | - Christoph Ritter
- Department of Neurology, Essen University Hospital, Essen, Germany
| | - Ulrike Bingel
- Department of Neurology, Essen University Hospital, Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany.,Department of Neuroradiology, University Hospital Cologne, Cologne, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, Essen University Hospital, Essen, Germany
| | - Christian Josef Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Gretsch F, Mattern H, Gallichan D, Speck O. Fat navigators and Moiré phase tracking comparison for motion estimation and retrospective correction. Magn Reson Med 2019; 83:83-93. [PMID: 31400041 DOI: 10.1002/mrm.27908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To compare motion tracking by two modern methods (fat navigators [FatNavs] and Moiré phase tracking [MPT]) as well as their performance for retrospective correction of very high resolution acquisitions. METHODS A direct comparison of FatNavs and MPT motion parameters was performed for several deliberate motion patterns to estimate the agreement between methods. In addition, two different navigator resolution were applied. 0.5 mm isotropic MP2RAGE images with simultaneous MPT and FatNavs tracking were acquired in 9 cooperative subjects with no intentional motion. Retrospective motion corrections based on both tracking modalities were compared qualitatively and quantitatively. The FatNavs impact on quantitative T1 maps was also investigated. RESULTS Both methods showed good agreement within a 0.3 mm/° margin in subjects that moved very little. Higher resolution FatNavs (2 mm) showed overall better agreement with MPT than 4 mm resolution ones, except for fast and large motion. The retrospective motion corrections based on MPT or FatNavs were at par in 33 cases out of 36, and visibly improved image quality compared to the uncorrected images. In separate fringe cases, both methods suffered from their respective potential shortcomings: unreliable marker attachment for MPT and poor temporal resolution for FatNavs. The magnetization transfer induced by the navigator RF pulses had a visible impact on the T1 values distribution, with a shift of the gray and white matter peaks of 12 ms at most. CONCLUSION This work confirms both FatNavs and MPT as excellent retrospective motion correction methods for very high resolution imaging of cooperative subjects.
Collapse
Affiliation(s)
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute of Experimental Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Daniel Gallichan
- CUBRIC, School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Institute of Experimental Physics, Otto-von-Guericke-University, Magdeburg, Germany
- German Center for Neurodegenerative Disease, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
21
|
Marques JP, Simonis FF, Webb AG. Low-field MRI: An MR physics perspective. J Magn Reson Imaging 2019; 49:1528-1542. [PMID: 30637943 PMCID: PMC6590434 DOI: 10.1002/jmri.26637] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Historically, clinical MRI started with main magnetic field strengths in the ∼0.05-0.35T range. In the past 40 years there have been considerable developments in MRI hardware, with one of the primary ones being the trend to higher magnetic fields. While resulting in large improvements in data quality and diagnostic value, such developments have meant that conventional systems at 1.5 and 3T remain relatively expensive pieces of medical imaging equipment, and are out of the financial reach for much of the world. In this review we describe the current state-of-the-art of low-field systems (defined as 0.25-1T), both with respect to its low cost, low foot-print, and subject accessibility. Furthermore, we discuss how low field could potentially benefit from many of the developments that have occurred in higher-field MRI. In the first section, the signal-to-noise ratio (SNR) dependence on the static magnetic field and its impact on the achievable contrast, resolution, and acquisition times are discussed from a theoretical perspective. In the second section, developments in hardware (eg, magnet, gradient, and RF coils) used both in experimental low-field scanners and also those that are currently in the market are reviewed. In the final section the potential roles of new acquisition readouts, motion tracking, and image reconstruction strategies, currently being developed primarily at higher fields, are presented. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- José P. Marques
- Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Frank F.J. Simonis
- Magnetic Detection & Imaging, Technical Medical CentreUniversity of TwenteThe Netherlands
| | - Andrew G. Webb
- C.J.Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreThe Netherlands
| |
Collapse
|
22
|
Caan MWA, Bazin PL, Marques JP, de Hollander G, Dumoulin SO, van der Zwaag W. MP2RAGEME: T 1 , T 2 * , and QSM mapping in one sequence at 7 tesla. Hum Brain Mapp 2018; 40:1786-1798. [PMID: 30549128 PMCID: PMC6590660 DOI: 10.1002/hbm.24490] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Quantitative magnetic resonance imaging generates images of meaningful physical or chemical variables measured in physical units that allow quantitative comparisons between tissue regions and among subjects scanned at the same or different sites. Here, we show that we can acquire quantitative T1, T2*, and quantitative susceptibility mapping (QSM) information in a single acquisition, using a multi‐echo (ME) extension of the second gradient‐echo image of the MP2RAGE sequence. This combination is called MP2RAGE ME, or MP2RAGEME. The simultaneous acquisition results in large time savings, perfectly coregistered data, and minimal image quality differences compared to separately acquired data. Following a correction for residual transmit B1+‐sensitivity, quantitative T1, T2*, and QSM values were in excellent agreement with those obtained from separately acquired, also B1+‐corrected, MP2RAGE data and ME gradient echo data. The quantitative values from reference regions of interests were also in very good correspondence with literature values. From the MP2RAGEME data, we further derived a multiparametric cortical parcellation, as well as a combined arterial and venous map. In sum, our MP2RAGEME sequence has the benefit in large time savings, perfectly coregistered data and minor image quality differences.
Collapse
Affiliation(s)
- Matthan W A Caan
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.,Social Brain Laboratory, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gilles de Hollander
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.,Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Gretsch F, Marques JP, Gallichan D. Investigating the accuracy of FatNav-derived estimates of temporal B 0 changes and their application to retrospective correction of high-resolution 3D GRE of the human brain at 7T. Magn Reson Med 2018; 80:585-597. [PMID: 29359352 DOI: 10.1002/mrm.27063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 11/05/2022]
Abstract
PURPOSE To investigate the precision of estimates of temporal variations of magnetic field achievable by double-echo fat image navigators (FatNavs), and their potential application to retrospective correction of 3-dimensional gradient echo-based sequences. METHODS Both head motion and temporal changes of B0 were tracked using double-echo highly accelerated 3-dimensional FatNavs as navigators, allowing estimation of the temporal changes in low spatial-order field coefficients. The accuracy of the method was determined by direct comparison to controlled offsets in the linear imaging gradients. Double-echo FatNavs were also incorporated into a high-resolution, 3-dimensional gradient echo-based sequence to retrospectively correct for both motion and temporal changes in B0 during natural and deep breathing. The additional scan time was 5 min (a 40% increase). Correction was also investigated using only the first echo of the FatNav to explore the trade-off in accuracy versus scan time. RESULTS Excellent accuracy (0.27 Hz, 1.57-2.75 Hz/m) was achieved for tracking field changes, and no significant bias could be observed. Artifacts in the 3-dimensional gradient echo-based images induced by temporal field changes, if present, were effectively reduced using either the field estimates from the double echo or the first echo only from the FatNavs. CONCLUSION The FatNavs were shown to be an excellent candidate for accurate, fast, and precise estimation of global field variations for the tested patterns of respiration. Future work will investigate ways to increase the temporal sampling to increase robustness to variations in breathing patterns. Magn Reson Med 80:585-597, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Frédéric Gretsch
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José P Marques
- Donders Institute, Radboud University, Nijmegen, the Netherlands
| | - Daniel Gallichan
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Engineering, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Jorge J, Gretsch F, Gallichan D, Marques JP. Tracking discrete off-resonance markers with three spokes (trackDOTS) for compensation of head motion and B0
perturbations: Accuracy and performance in anatomical imaging. Magn Reson Med 2017; 79:160-171. [DOI: 10.1002/mrm.26654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/29/2023]
Affiliation(s)
- João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Frédéric Gretsch
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Daniel Gallichan
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - José P. Marques
- Donders Institute; Radboud University; Nijmegen the Netherlands
| |
Collapse
|