1
|
Zhang M, Ding B, Dragonu I, Liebig P, Rodgers CT. Dynamic parallel transmit diffusion MRI at 7T. Magn Reson Imaging 2024; 111:35-46. [PMID: 38547935 DOI: 10.1016/j.mri.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Diffusion MRI (dMRI) is inherently limited by SNR. Scanning at 7 T increases intrinsic SNR but 7 T MRI scans suffer from regions of signal dropout, especially in the temporal lobes and cerebellum. We applied dynamic parallel transmit (pTx) to allow whole-brain 7 T dMRI and compared with circularly polarized (CP) pulses in 6 subjects. Subject-specific 2-spoke dynamic pTx pulses were designed offline for 8 slabs covering the brain. We used vendor-provided B0 and B1+ mapping. Spokes positions were set using the Fourier difference approach, and RF coefficients optimized with a Jacobi-matrix high-flip-angle optimizer. Diffusion data were analyzed with FSL. Comparing whole-brain averages for pTx against CP scans: mean flip angle error improved by 15% for excitation (2-spoke-VERSE 15.7° vs CP 18.4°, P = 0.012) and improved by 14% for refocusing (2-spoke-VERSE 39.7° vs CP 46.2°, P = 0.008). Computed spin-echo signal standard deviation improved by 14% (2-spoke-VERSE 0.185 vs 0.214 CP, P = 0.025). Temporal SNR increased by 5.4% (2-spoke-VERSE 8.47 vs CP 8.04, P = 0.004) especially in the inferior temporal lobes. Diffusion fitting uncertainty decreased by 6.2% for first fibers (2-spoke VERSE 0.0655 vs CP 0.0703, P < 0.001) and 1.3% for second fibers (2-spoke VERSE 0.139 vs CP 0.141, P = 0.01). In conclusion, dynamic parallel transmit improves the uniformity of 7 T diffusion-weighted imaging. In future, less restrictive SAR limits for parallel transmit scans are expected to allow further improvements.
Collapse
Affiliation(s)
- Minghao Zhang
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.
| | - Belinda Ding
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom; Siemens Healthcare Ltd, Frimley, United Kingdom
| | | | | | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
2
|
Ivanov D, De Martino F, Formisano E, Fritz FJ, Goebel R, Huber L, Kashyap S, Kemper VG, Kurban D, Roebroeck A, Sengupta S, Sorger B, Tse DHY, Uludağ K, Wiggins CJ, Poser BA. Magnetic resonance imaging at 9.4 T: the Maastricht journey. MAGMA (NEW YORK, N.Y.) 2023; 36:159-173. [PMID: 37081247 PMCID: PMC10140139 DOI: 10.1007/s10334-023-01080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.
Collapse
Affiliation(s)
- Dimo Ivanov
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| | - Federico De Martino
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Elia Formisano
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Francisco J Fritz
- Institute of Systems Neuroscience, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Sriranga Kashyap
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Valentin G Kemper
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Denizhan Kurban
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Alard Roebroeck
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | | | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Desmond H Y Tse
- Scannexus BV, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Krembil Brain Institute, Koerner Scientist in MR Imaging, University Health Network Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher J Wiggins
- Imaging Core Facility (INM-ICF), Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ding B, Dragonu I, Rua C, Carlin JD, Halai AD, Liebig P, Heidemann R, Correia MM, Rodgers CT. Parallel transmit (pTx) with online pulse design for task-based fMRI at 7 T. Magn Reson Imaging 2022; 93:163-174. [PMID: 35863691 DOI: 10.1016/j.mri.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Parallel transmission (pTx) is an approach to improve image uniformity for ultra-high field imaging. In this study, we modified an echo planar imaging (EPI) sequence to design subject-specific pTx pulses online. We compared its performance against EPI with conventional circularly polarised (CP) pulses. METHODS We compared the pTx-EPI and CP-EPI sequences in a short EPI acquisition protocol and for two different functional paradigms in six healthy volunteers (2 female, aged 23-36 years, mean age 29.2 years). We chose two paradigms that are typically affected by signal dropout at 7 T: a visual objects localiser to determine face/scene selective brain regions and a semantic-processing task. RESULTS Across all subjects, pTx-EPI improved whole-brain mean temporal signal-to-noise ratio (tSNR) by 11.0% compared to CP-EPI. We also compared the ability of pTx-EPI and CP-EPI to detect functional activation for three contrasts over the two paradigms: face > object and scene > object for the visual objects localiser and semantic association > pattern matching for the semantic-processing paradigm. Across all three contrasts, pTx-EPI showed higher median z-scores and detected more active voxels in relevant areas, as determined from previous 3 T studies. CONCLUSION We have demonstrated a workflow for EPI acquisitions with online per-subject pulse calculations. We saw improved performance in both tSNR and functional acquisitions from pTx-EPI. Thus, we believe that online calculation pTx-EPI is robust enough for future fMRI studies, especially where activation is expected in brain areas liable to significant signal dropout.
Collapse
Affiliation(s)
- Belinda Ding
- Wolfson Brain Imaging Centre, University of Cambridge, UK.
| | | | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, UK; Invicro, Invicro London, UK
| | | | - Ajay D Halai
- MRC Cognition and Brain Science Unit, Cambridge, UK
| | | | | | | | | |
Collapse
|
4
|
Yetisir F, Poser BA, Grant PE, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control. Magn Reson Imaging 2022; 93:87-96. [PMID: 35940379 PMCID: PMC9789791 DOI: 10.1016/j.mri.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE We develop and test a parallel transmit (pTx) pulse design framework to mitigate transmit field inhomogeneity with control of local specific absorption rate (SAR) in 2D rapid acquisition with relaxation enhancement (RARE) imaging at 7T. METHODS We design large flip angle RF pulses with explicit local SAR constraints by numerical simulation of the Bloch equations. Parallel computation and analytical expressions for the Jacobian and the Hessian matrices are employed to reduce pulse design time. The refocusing-excitation "spokes" pulse pairs are designed to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition using a combined magnitude least squares-least squares approach. RESULTS In a simulated dataset, the proposed approach reduced peak local SAR by up to 56% for the same level of refocusing uniformity error and reduced refocusing uniformity error by up to 59% (from 32% to 7%) for the same level of peak local SAR compared to the circularly polarized birdcage mode of the pTx array. Using explicit local SAR constraints also reduced peak local SAR by up to 46% compared to an RF peak power constrained design. The excitation and refocusing uniformity error were reduced from 20%-33% to 4%-6% in single slice phantom experiments. Phantom experiments demonstrated good agreement between the simulated excitation and refocusing uniformity profiles and experimental image shading. CONCLUSION PTx-designed excitation and refocusing CPMG pulse pairs can mitigate transmit field inhomogeneity in the 2D RARE sequence. Moreover, local SAR can be decreased significantly using pTx, potentially leading to better slice coverage, enabling larger flip angles or faster imaging.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA
| | - Lawrence L Wald
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Jamil R, Mauconduit F, Gras V, Boulant N. General gradient delay correction method in bipolar multispoke RF pulses using trim blips. Magn Reson Med 2020; 85:1004-1012. [PMID: 32851654 DOI: 10.1002/mrm.28478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE To correct with gradient trim blips for gradient delays in bipolar-spoke RF pulses in slice-selective and slab-selective excitations, compatible with tilted acquisitions and anisotropic delays. THEORY The effect of small gradient delays with respect to RF pulses results in a dephasing of the second RF spoke, proportional to the slab-selection gradient amplitude and the distance of the slice center from the magnet isocenter. Accordingly, adding a trim blip along the corresponding logical gradient axis between the two spokes compensates for the same dephasing, and therefore cancels the gradient delay effects, regardless of position and orientation. METHODS Gradient delays on different axes were first measured on a 7T system based on an imaging method. Parallel transmission universal bipolar spokes were designed offline to mitigate the RF field inhomogeneity problem in the human brain. Trim blips were used to compensate for the known delays, which was validated with flip angle and temporal SNR measurements on two different volunteers at 7 T. RESULTS Pulses corrected with trim blips greatly reduced gradient delay effects. Acquisitions made with corrected and noncorrected pulses showed good fidelity with simulations. CONCLUSIONS Unlike time or phase-shifting approaches, trim blip-based methods apply to all possible bipolar spoke scenarios such as slice excitations, slab excitations, and anisotropy in the gradient delays.
Collapse
Affiliation(s)
- Redouane Jamil
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Vincent Gras
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Gras V, Poser BA, Wu X, Tomi-Tricot R, Boulant N. Optimizing BOLD sensitivity in the 7T Human Connectome Project resting-state fMRI protocol using plug-and-play parallel transmission. Neuroimage 2019; 195:1-10. [DOI: 10.1016/j.neuroimage.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
|
7
|
Abstract
Magnetic resonance imaging (MRI) has been driven toward ultrahigh magnetic fields (UHF) in order to benefit from correspondingly higher signal-to-noise ratio and spectral resolution. Technological challenges associated with UHF, such as increased radiofrequency (RF) energy deposition and RF excitation inhomogeneity, limit realization of the full potential of these benefits. Parallel RF transmission (pTx) enables decreases in the inhomogeneity of RF excitations and in RF energy deposition by using multiple-transmit RF coils driven independently and operating simultaneously. pTx plays a fundamental role in UHF MRI by bringing the potential applications of UHF into reality. In this review article, we review the recent developments in pTx pulse design and RF safety in pTx. Simultaneous multislice imaging and inner volume imaging using pTx are reviewed with a focus on UHF applications. Emerging pTx design approaches using improved pTx design frameworks and calibrations are reviewed together with calibration-free approaches that remove the necessity of time-consuming calibrations necessary for successful pTx. Lastly, we focus on the safety of pTx that is improved by using intersubject variability analysis, proactively managing pTx and temperature-based pTx approaches.
Collapse
Affiliation(s)
- Cem M. Deniz
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY
- RF Test Labs, LLC, New York, NY
| |
Collapse
|
8
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
9
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Poser BA, Setsompop K. Pulse sequences and parallel imaging for high spatiotemporal resolution MRI at ultra-high field. Neuroimage 2018; 168:101-118. [PMID: 28392492 PMCID: PMC5630499 DOI: 10.1016/j.neuroimage.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/18/2022] Open
Abstract
The SNR and CNR benefits of ultra-high field (UHF) have helped push the envelope of achievable spatial resolution in MRI. For applications based on susceptibility contrast where there is a large CNR gain, high quality sub-millimeter resolution imaging is now being routinely performed, particularly in fMRI and phase imaging/QSM. This has enabled the study of structure and function of very fine-scale structures in the brain. UHF has also helped push the spatial resolution of many other MRI applications as will be outlined in this review. However, this push in resolution comes at a cost of a large encoding burden leading to very lengthy scans. Developments in parallel imaging with controlled aliasing and the move away from 2D slice-by-slice imaging to much more SNR-efficient simultaneous multi-slice (SMS) and 3D acquisitions have helped address this issue. In particular, these developments have revolutionized the efficiency of UHF MRI to enable high spatiotemporal resolution imaging at an order of magnitude faster acquisition. In addition to describing the main approaches to these techniques, this review will also outline important key practical considerations in using these methods in practice. Furthermore, new RF pulse design to tackle the B1+ and SAR issues of UHF and the increased SAR and power requirement of SMS RF pulses will also be touched upon. Finally, an outlook into new developments of smart encoding in more dimensions, particularly through using better temporal/across-contrast encoding and reconstruction will be described. Just as controlled aliasing fully exploits spatial encoding in parallel imaging to provide large multiplicative gains in accelerations, the complimentary use of these new approaches in temporal and across-contrast encoding are expected to provide exciting opportunities for further large gains in efficiency to further push the spatiotemporal resolution of MRI.
Collapse
Affiliation(s)
- Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Kawin Setsompop
- Department of Radiology, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
11
|
Çavuşoğlu M, Dietrich BE, Brunner DO, Weiger M, Pruessmann KP. Correction of parallel transmission using concurrent RF and gradient field monitoring. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:473-488. [DOI: 10.1007/s10334-017-0620-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|