1
|
Dall'Armellina E, Ennis DB, Axel L, Croisille P, Ferreira PF, Gotschy A, Lohr D, Moulin K, Nguyen C, Nielles-Vallespin S, Romero W, Scott AD, Stoeck C, Teh I, Tunnicliffe L, Viallon M, Wang, Young AA, Schneider JE, Sosnovik DE. Cardiac diffusion-weighted and tensor imaging: a Society for Cardiovascular Magnetic Resonance (SCMR) special interest group consensus statement. J Cardiovasc Magn Reson 2024:101109. [PMID: 39442672 DOI: 10.1016/j.jocmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Thanks to recent developments in Cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the 3D microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intra-cellular, extra-cellular and intra-vascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD) -measuring the magnitude of diffusion; b) fractional anisotropy (FA) - specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA) -indicating the orientation of the cardiomyocytes; d) E2A and E2A mobility - measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations and recommendations in terminology, acquisition schemes, post-processing pipelines, data analysis and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
Collapse
Affiliation(s)
- E Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - L Axel
- Department of Radiology, and Division of Cardiology, Department of Internal Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - P Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - P F Ferreira
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - A Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland and Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - D Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - K Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - C Nguyen
- Harvard Medical School, MA, and Cardiovascular Innovation Research Center, Cleveland Clinic, United States
| | - S Nielles-Vallespin
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - W Romero
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Saint Etienne, France
| | - A D Scott
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - C Stoeck
- University and ETH Zurich, Switzerland
| | - I Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - L Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford UK
| | - M Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - J E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D E Sosnovik
- Martinos Center for Biomedical Imaging and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Deng Z, Wang L, Kuai Z, Chen Q, Ye C, Scott AD, Nielles-Vallespin S, Zhu Y. Deep learning method with integrated invertible wavelet scattering for improving the quality of in vivocardiac DTI. Phys Med Biol 2024; 69:185005. [PMID: 39142339 DOI: 10.1088/1361-6560/ad6f6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Objective.Respiratory motion, cardiac motion and inherently low signal-to-noise ratio (SNR) are major limitations ofin vivocardiac diffusion tensor imaging (DTI). We propose a novel enhancement method that uses unsupervised learning based invertible wavelet scattering (IWS) to improve the quality ofin vivocardiac DTI.Approach.Our method starts by extracting nearly transformation-invariant features from multiple cardiac diffusion-weighted (DW) image acquisitions using multi-scale wavelet scattering (WS). Then, the relationship between the WS coefficients and DW images is learned through a multi-scale encoder and a decoder network. Using the trained encoder, the deep features of WS coefficients of multiple DW image acquisitions are further extracted and then fused using an average rule. Finally, using the fused WS features and trained decoder, the enhanced DW images are derived.Main result.We evaluate the performance of the proposed method by comparing it with several methods on threein vivocardiac DTI datasets in terms of SNR, contrast to noise ratio (CNR), fractional anisotropy (FA), mean diffusivity (MD) and helix angle (HA). Comparing against the best comparison method, SNR/CNR of diastolic, gastric peristalsis influenced, and end-systolic DW images were improved by 1%/16%, 5%/6%, and 56%/30%, respectively. The approach also yielded consistent FA and MD values and more coherent helical fiber structures than the comparison methods used in this work.Significance.The ablation results verify that using the transformation-invariant and noise-robust wavelet scattering features enables us to effectively explore the useful information from the limited data, providing a potential mean to alleviate the dependence of the fusion results on the number of repeated acquisitions, which is beneficial for dealing with the issues of noise and residual motion simultaneously and therefore improving the quality ofinvivocardiac DTI. Code can be found inhttps://github.com/strawberry1996/WS-MCNN.
Collapse
Affiliation(s)
- Zeyu Deng
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University, Guiyang, People's Republic of China
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University, Guiyang, People's Republic of China
| | - Zixiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Qijian Chen
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University, Guiyang, People's Republic of China
| | - Chen Ye
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, College of Computer Science and Technology, State Key Laboratory of Public Big Data, Guizhou University, Guiyang, People's Republic of China
| | - Andrew D Scott
- CMR Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sonia Nielles-Vallespin
- CMR Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yuemin Zhu
- University Lyon, INSA Lyon, CNRS, Inserm, IRP Metislab CREATIS UMR5220, U1206, Lyon 69621, France
| |
Collapse
|
3
|
van Gorkum RJH, Guenthner C, Koethe A, Stoeck CT, Kozerke S. Characterization and correction of diffusion gradient-induced eddy currents in second-order motion-compensated echo-planar and spiral cardiac DTI. Magn Reson Med 2022; 88:2378-2394. [PMID: 35916545 PMCID: PMC9804234 DOI: 10.1002/mrm.29378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Very high gradient amplitudes played out over extended time intervals as required for second-order motion-compensated cardiac DTI may violate the assumption of a linear time-invariant gradient system model. The aim of this work was to characterize diffusion gradient-related system nonlinearity and propose a correction approach for echo-planar and spiral spin-echo motion-compensated cardiac DTI. METHODS Diffusion gradient-induced eddy currents of 9 diffusion directions were characterized at b values of 150 s/mm2 and 450 s/mm2 for a 1.5 Tesla system and used to correct phantom, ex vivo, and in vivo motion-compensated cardiac DTI data acquired with echo-planar and spiral trajectories. Predicted trajectories were calculated using gradient impulse response function and diffusion gradient strength- and direction-dependent zeroth- and first-order eddy current responses. A reconstruction method was implemented using the predicted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>k</mml:mi></mml:mrow> <mml:annotation>$$ k $$</mml:annotation></mml:semantics> </mml:math> -space trajectories to additionally include off-resonances and concomitant fields. Resulting images were compared to a reference reconstruction omitting diffusion gradient-induced eddy current correction. RESULTS Diffusion gradient-induced eddy currents exhibited nonlinear effects when scaling up the gradient amplitude and could not be described by a 3D basis alone. This indicates that a gradient impulse response function does not suffice to describe diffusion gradient-induced eddy currents. Zeroth- and first-order diffusion gradient-induced eddy current effects of up to -1.7 rad and -16 to +12 rad/m, respectively, were identified. Zeroth- and first-order diffusion gradient-induced eddy current correction yielded improved image quality upon image reconstruction. CONCLUSION The proposed approach offers correction of diffusion gradient-induced zeroth- and first-order eddy currents, reducing image distortions to promote improvements of second-order motion-compensated spin-echo cardiac DTI.
Collapse
Affiliation(s)
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| | - Andreas Koethe
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Center for Proton Therapy, Paul Scherrer InstituteVilligenSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Division of Surgical ResearchUniversity Hospital Zurich, University ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| |
Collapse
|
4
|
Scott AD, Jackson T, Khalique Z, Gorodezky M, Pardoe B, Begum L, Bruno VD, Chowdhury RA, Ferreira PF, Nielles‐Vallespin S, Roehl M, McCarthy KP, Sarathchandra P, Rose JN, Doorly DJ, Pennell DJ, Ascione R, de Silva R, Firmin DN. Development of a cardiovascular magnetic resonance-compatible large animal isolated heart model for direct comparison of beating and arrested hearts. NMR IN BIOMEDICINE 2022; 35:e4692. [PMID: 35040195 PMCID: PMC9286060 DOI: 10.1002/nbm.4692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/02/2023]
Abstract
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-μm histological sections at and a 100-μm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Tim Jackson
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Margarita Gorodezky
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ben Pardoe
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Lale Begum
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - V. Domenico Bruno
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Rasheda A. Chowdhury
- National Heart and Lung InstituteImperial CollegeLondonUK
- Imperial Centre for Cardiac EngineeringImperial CollegeLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Malte Roehl
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | | | - Padmini Sarathchandra
- National Heart and Lung InstituteImperial CollegeLondonUK
- Magdi Yacoub Institute, National Heart and Lung InstituteImperial CollegeLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial CollegeLondonUK
| | | | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Raimondo Ascione
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Ranil de Silva
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| |
Collapse
|
5
|
Stimm J, Guenthner C, Kozerke S, Stoeck CT. Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data. NMR IN BIOMEDICINE 2022; 35:e4667. [PMID: 34964179 PMCID: PMC9285076 DOI: 10.1002/nbm.4667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cardiac electrophysiology and cardiac mechanics both depend on the average cardiomyocyte long-axis orientation. In the realm of personalized medicine, knowledge of the patient-specific changes in cardiac microstructure plays a crucial role. Patient-specific computational modelling has emerged as a tool to better understand disease progression. In vivo cardiac diffusion tensor imaging (cDTI) is a vital tool to non-destructively measure the average cardiomyocyte long-axis orientation in the heart. However, cDTI suffers from long scan times, rendering volumetric, high-resolution acquisitions challenging. Consequently, interpolation techniques are needed to populate bio-mechanical models with patient-specific average cardiomyocyte long-axis orientations. In this work, we compare five interpolation techniques applied to in vivo and ex vivo porcine input data. We compare two tensor interpolation approaches, one rule-based approximation, and two data-driven, low-rank models. We demonstrate the advantage of tensor interpolation techniques, resulting in lower interpolation errors than do low-rank models and rule-based methods adapted to cDTI data. In an ex vivo comparison, we study the influence of three imaging parameters that can be traded off against acquisition time: in-plane resolution, signal to noise ratio, and number of acquired short-axis imaging slices.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian Guenthner
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
- Division of Surgical ResearchUniversity Hospital ZurichUniversity ZurichSwitzerland
| |
Collapse
|
6
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Stoeck CT, von Deuster C, Fuetterer M, Polacin M, Waschkies CF, van Gorkum RJH, Kron M, Fleischmann T, Cesarovic N, Weisskopf M, Kozerke S. Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. J Cardiovasc Magn Reson 2021; 23:103. [PMID: 34538266 PMCID: PMC8451129 DOI: 10.1186/s12968-021-00794-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. METHODS CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. RESULTS Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: - 31 ± 10% (day 6) - 38 ± 8% (week 5) - 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17-18%/T2 10-20%). CONCLUSION During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Malgorzata Polacin
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Conny F. Waschkies
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Robbert J. H. van Gorkum
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mareike Kron
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
- Institute of Translational Cardiovascular Technologies, ETH Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Miller R, Kerfoot E, Mauger C, Ismail TF, Young AA, Nordsletten DA. An Implementation of Patient-Specific Biventricular Mechanics Simulations With a Deep Learning and Computational Pipeline. Front Physiol 2021; 12:716597. [PMID: 34603077 PMCID: PMC8481785 DOI: 10.3389/fphys.2021.716597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023] Open
Abstract
Parameterised patient-specific models of the heart enable quantitative analysis of cardiac function as well as estimation of regional stress and intrinsic tissue stiffness. However, the development of personalised models and subsequent simulations have often required lengthy manual setup, from image labelling through to generating the finite element model and assigning boundary conditions. Recently, rapid patient-specific finite element modelling has been made possible through the use of machine learning techniques. In this paper, utilising multiple neural networks for image labelling and detection of valve landmarks, together with streamlined data integration, a pipeline for generating patient-specific biventricular models is applied to clinically-acquired data from a diverse cohort of individuals, including hypertrophic and dilated cardiomyopathy patients and healthy volunteers. Valve motion from tracked landmarks as well as cavity volumes measured from labelled images are used to drive realistic motion and estimate passive tissue stiffness values. The neural networks are shown to accurately label cardiac regions and features for these diverse morphologies. Furthermore, differences in global intrinsic parameters, such as tissue anisotropy and normalised active tension, between groups illustrate respective underlying changes in tissue composition and/or structure as a result of pathology. This study shows the successful application of a generic pipeline for biventricular modelling, incorporating artificial intelligence solutions, within a diverse cohort.
Collapse
Affiliation(s)
- Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Eric Kerfoot
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Charlène Mauger
- Auckland MR Research Group, University of Auckland, Auckland, New Zealand
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alistair A. Young
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Auckland MR Research Group, University of Auckland, Auckland, New Zealand
| | - David A. Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Hadjicharalambous M, Stoeck CT, Weisskopf M, Cesarovic N, Ioannou E, Vavourakis V, Nordsletten DA. Investigating the reference domain influence in personalised models of cardiac mechanics : Effect of unloaded geometry on cardiac biomechanics. Biomech Model Mechanobiol 2021; 20:1579-1597. [PMID: 34047891 DOI: 10.1007/s10237-021-01464-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/03/2021] [Indexed: 01/23/2023]
Abstract
A major concern in personalised models of heart mechanics is the unknown zero-pressure domain, a prerequisite for accurately predicting cardiac biomechanics. As the reference configuration cannot be captured by clinical data, studies often employ in-vivo frames which are unlikely to correspond to unloaded geometries. Alternatively, zero-pressure domain is approximated through inverse methodologies, which, however, entail assumptions pertaining to boundary conditions and material parameters. Both approaches are likely to introduce biases in estimated biomechanical properties; nevertheless, quantification of these effects is unattainable without ground-truth data. In this work, we assess the unloaded state influence on model-derived biomechanics, by employing an in-silico modelling framework relying on experimental data on porcine hearts. In-vivo images are used for model personalisation, while in-situ experiments provide a reliable approximation of the reference domain, creating a unique opportunity for a validation study. Personalised whole-cycle cardiac models are developed which employ different reference domains (image-derived, inversely estimated) and are compared against ground-truth model outcomes. Simulations are conducted with varying boundary conditions, to investigate the effect of data-derived constraints on model accuracy. Attention is given to modelling the influence of the ribcage on the epicardium, due to its close proximity to the heart in the porcine anatomy. Our results find merit in both approaches for dealing with the unknown reference domain, but also demonstrate differences in estimated biomechanical quantities such as material parameters, strains and stresses. Notably, they highlight the importance of a boundary condition accounting for the constraining influence of the ribcage, in forward and inverse biomechanical models.
Collapse
Affiliation(s)
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Translational Cardiovascular Technologies, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Eleftherios Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David A Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Stimm J, Buoso S, Berberoğlu E, Kozerke S, Genet M, Stoeck CT. A 3D personalized cardiac myocyte aggregate orientation model using MRI data-driven low-rank basis functions. Med Image Anal 2021; 71:102064. [PMID: 33957560 DOI: 10.1016/j.media.2021.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Cardiac myocyte aggregate orientation has a strong impact on cardiac electrophysiology and mechanics. Studying the link between structural characteristics, strain, and stresses over the cardiac cycle and cardiac function requires a full volumetric representation of the microstructure. In this work, we exploit the structural similarity across hearts to extract a low-rank representation of predominant myocyte orientation in the left ventricle from high-resolution magnetic resonance ex-vivo cardiac diffusion tensor imaging (cDTI) in porcine hearts. We compared two reduction methods, Proper Generalized Decomposition combined with Singular Value Decomposition and Proper Orthogonal Decomposition. We demonstrate the existence of a general set of basis functions of aggregated myocyte orientation which defines a data-driven, personalizable, parametric model featuring higher flexibility than existing atlas and rule-based approaches. A more detailed representation of microstructure matching the available patient data can improve the accuracy of personalized computational models. Additionally, we approximate the myocyte orientation of one ex-vivo human heart and demonstrate the feasibility of transferring the basis functions to humans.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Stefano Buoso
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- Laboratoire de Mécanique des Solides, École Polytechnique, Palaiseau, France; M3DISIM team, Inria / Université Paris-Saclay, Palaiseau, France; C.N.R.S./Université Paris-Saclay, Palaiseau, France
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Perotti LE, Verzhbinsky IA, Moulin K, Cork TE, Loecher M, Balzani D, Ennis DB. Estimating cardiomyofiber strain in vivo by solving a computational model. Med Image Anal 2021; 68:101932. [PMID: 33383331 PMCID: PMC7956226 DOI: 10.1016/j.media.2020.101932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Since heart contraction results from the electrically activated contraction of millions of cardiomyocytes, a measure of cardiomyocyte shortening mechanistically underlies cardiac contraction. In this work we aim to measure preferential aggregate cardiomyocyte ("myofiber") strains based on Magnetic Resonance Imaging (MRI) data acquired to measure both voxel-wise displacements through systole and myofiber orientation. In order to reduce the effect of experimental noise on the computed myofiber strains, we recast the strains calculation as the solution of a boundary value problem (BVP). This approach does not require a calibrated material model, and consequently is independent of specific myocardial material properties. The solution to this auxiliary BVP is the displacement field corresponding to assigned values of myofiber strains. The actual myofiber strains are then determined by minimizing the difference between computed and measured displacements. The approach is validated using an analytical phantom, for which the ground-truth solution is known. The method is applied to compute myofiber strains using in vivo displacement and myofiber MRI data acquired in a mid-ventricular left ventricle section in N=8 swine subjects. The proposed method shows a more physiological distribution of myofiber strains compared to standard approaches that directly differentiate the displacement field.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
| | - Ilya A Verzhbinsky
- Department of Radiology, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
13
|
Lasič S, Szczepankiewicz F, Dall'Armellina E, Das A, Kelly C, Plein S, Schneider JE, Nilsson M, Teh I. Motion-compensated b-tensor encoding for in vivo cardiac diffusion-weighted imaging. NMR IN BIOMEDICINE 2020; 33:e4213. [PMID: 31765063 PMCID: PMC6980347 DOI: 10.1002/nbm.4213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/30/2023]
Abstract
Motion is a major confound in diffusion-weighted imaging (DWI) in the body, and it is a common cause of image artefacts. The effects are particularly severe in cardiac applications, due to the nonrigid cyclical deformation of the myocardium. Spin echo-based DWI commonly employs gradient moment-nulling techniques to desensitise the acquisition to velocity and acceleration, ie, nulling gradient moments up to the 2nd order (M2-nulled). However, current M2-nulled DWI scans are limited to encode diffusion along a single direction at a time. We propose a method for designing b-tensors of arbitrary shapes, including planar, spherical, prolate and oblate tensors, while nulling gradient moments up to the 2nd order and beyond. The design strategy comprises initialising the diffusion encoding gradients in two encoding blocks about the refocusing pulse, followed by appropriate scaling and rotation, which further enables nulling undesired effects of concomitant gradients. Proof-of-concept assessment of in vivo mean diffusivity (MD) was performed using linear and spherical tensor encoding (LTE and STE, respectively) in the hearts of five healthy volunteers. The results of the M2-nulled STE showed that (a) the sequence was robust to cardiac motion, and (b) MD was higher than that acquired using standard M2-nulled LTE, where diffusion-weighting was applied in three orthogonal directions, which may be attributed to the presence of restricted diffusion and microscopic diffusion anisotropy. Provided adequate signal-to-noise ratio, STE could significantly shorten estimation of MD compared with the conventional LTE approach. Importantly, our theoretical analysis and the proposed gradient waveform design may be useful in microstructure imaging beyond diffusion tensor imaging where the effects of motion must be suppressed.
Collapse
Affiliation(s)
| | - Filip Szczepankiewicz
- Clinical SciencesLund UniversityLundSweden
- Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Arka Das
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Christopher Kelly
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
14
|
Stoeck CT, von Deuster C, van Gorkum RJH, Kozerke S. Motion and eddy current-induced signal dephasing in in vivo cardiac DTI. Magn Reson Med 2019; 84:277-288. [PMID: 31868257 DOI: 10.1002/mrm.28132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To address motion in cardiac DWI, stimulated-echo acquisition mode (STEAM) and second-order motion-compensated spin-echo (SE) sequences have been proposed. Despite applying motion-compensation strategies, residual motion can cause misleading signal attenuation. The purpose of this study is to estimate the motion-induced error in both sequences by analysis of image phase. METHODS Diffusion-weighted motion-compensated SE sequences and STEAM imaging was applied in vivo with diffusion encoding along 3 orthogonal directions. A b-value range of 100 to 600 s/mm2 and trigger delays of 25%, 50%, and 75% of end systole and middiastole were used. Eddy-current contributions were obtained from phantom measurements. After computation of motion-induced phase maps, the amount of signal dephasing was computed from phase gradients, and the resulting errors in diffusion tensor parameters were calculated. RESULTS Motion-induced dephasing from the STEAM sequence showed less dependency on the b-value and no dependency on the heart phase, whereas SE imaging performed best at 75% end systole followed by 50% end systole and middiastole. For a typical experimental setting, errors of 3.3%/3.0% mean diffusivity, 4.9%/4.8% fractional anisotropy, 2.9º/3.2º helix angulation, 0.8º/0.7º transverse angulation, and 9.9º/10.0º sheet angulation (SE/STEAM) were calculated. CONCLUSION Image phase contains valuable information regarding uncompensated motion and eddy currents in cardiac DTI. Although the trigger delay window for SE is narrower compared with the STEAM-based approach, imaging in both systole and diastole is feasible and both sequences perform similarly if the trigger delays are selected carefully with SE.
Collapse
Affiliation(s)
- Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:331-342. [PMID: 31758419 PMCID: PMC7230046 DOI: 10.1007/s10334-019-00799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
Objectives Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. Materials and methods Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. Results Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). Discussion In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease. Electronic supplementary material The online version of this article (10.1007/s10334-019-00799-3) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
17
|
Garcia-Canadilla P, Cook AC, Mohun TJ, Oji O, Schlossarek S, Carrier L, McKenna WJ, Moon JC, Captur G. Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth. J Anat 2019; 235:962-976. [PMID: 31347708 PMCID: PMC6794206 DOI: 10.1111/joa.13058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 01/24/2023] Open
Abstract
Myoarchitectural disarray – the multiscalar disorganisation of myocytes, is a recognised histopathological hallmark of adult human hypertrophic cardiomyopathy (HCM). It occurs before the establishment of left ventricular hypertrophy (LVH) but its early origins and evolution around the time of birth are unknown. Our aim is to investigate whether myoarchitectural abnormalities in HCM are present in the fetal heart. We used wild‐type, heterozygous and homozygous hearts (n = 56) from a Mybpc3‐targeted knock‐out HCM mouse model and imaged the 3D micro‐structure by high‐resolution episcopic microscopy. We developed a novel structure tensor approach to extract, display and quantify myocyte orientation and its local angular uniformity by helical angle, angle of intrusion and myoarchitectural disarray index, respectively, immediately before and after birth. In wild‐type, we demonstrate uniformity of orientation of cardiomyocytes with smooth transitions of helical angle transmurally both before and after birth but with traces of disarray at the septal insertion points of the right ventricle. In comparison, heterozygous mice free of LVH, and homozygous mice showed not only loss of the normal linear helical angulation transmural profiles observed in wild‐type but also fewer circumferentially arranged myocytes at birth. Heterozygous and homozygous showed more disarray with a wider distribution than in wild‐type before birth. In heterozygous mice, disarray was seen in the anterior, septal and inferior walls irrespective of stage, whereas in homozygous mice it extended to the whole LV circumference including the lateral wall. In conclusion, myoarchitectural disarray is detectable in the fetal heart of an HCM mouse model before the development of LVH.
Collapse
Affiliation(s)
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | | | - Onyedikachi Oji
- Institute of Cardiovascular Science, University College London, London, UK
| | - Saskia Schlossarek
- Cardiovascular Research Centre, Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Cardiovascular Research Centre, Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK.,The Cardiovascular Magnetic Resonance Imaging Unit, Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
18
|
Rose JN, Nielles-Vallespin S, Ferreira PF, Firmin DN, Scott AD, Doorly DJ. Novel insights into in-vivo diffusion tensor cardiovascular magnetic resonance using computational modeling and a histology-based virtual microstructure. Magn Reson Med 2018; 81:2759-2773. [PMID: 30350880 PMCID: PMC6637383 DOI: 10.1002/mrm.27561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Purpose To develop histology‐informed simulations of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) for typical in‐vivo pulse sequences and determine their sensitivity to changes in extra‐cellular space (ECS) and other microstructural parameters. Methods We synthesised the DT‐CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra‐cellular volume fraction (ECV) of 16–40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm3 for pulse sequences covering short and long diffusion times: Stejskal–Tanner pulsed‐gradient spin echo, second‐order motion‐compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. Results The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology‐based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra‐cellular diffusivity (DIC) results in large changes of MD and FA. Varying extra‐cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. Conclusions We found that the distribution of ECS has a measurable impact on DT‐CMR parameters. The observed sensitivity of MD and FA to ECV and DIC has potentially interesting applications for interpreting in‐vivo DT‐CMR parameters.
Collapse
Affiliation(s)
- Jan N Rose
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Denis J Doorly
- Department of Aeronautics, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Aliotta E, Moulin K, Magrath P, Ennis DB. Quantifying precision in cardiac diffusion tensor imaging with second-order motion-compensated convex optimized diffusion encoding. Magn Reson Med 2018; 80:1074-1087. [PMID: 29427349 DOI: 10.1002/mrm.27107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California
| | - Kévin Moulin
- Department of Radiological Sciences, University of California, Los Angeles, California
| | - Patrick Magrath
- Department of Bioengineering, University of California, Los Angeles, California
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
20
|
Fillmer A, Hock A, Cameron D, Henning A. Non-Water-Suppressed 1H MR Spectroscopy with Orientational Prior Knowledge Shows Potential for Separating Intra- and Extramyocellular Lipid Signals in Human Myocardium. Sci Rep 2017; 7:16898. [PMID: 29203776 PMCID: PMC5714998 DOI: 10.1038/s41598-017-16318-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
Conditions such as type II diabetes are linked with elevated lipid levels in the heart, and significantly increased risk of heart failure; however, metabolic processes underlying the development of cardiac disease in type II diabetes are not fully understood. Here we present a non-invasive method for in vivo investigation of cardiac lipid metabolism: namely, IVS-McPRESS. This technique uses metabolite-cycled, non-water suppressed 1H cardiac magnetic resonance spectroscopy with prospective and retrospective motion correction. High-quality IVS-McPRESS data acquired from healthy volunteers allowed us to investigate the frequency shift of extramyocellular lipid signals, which depends on the myocardial fibre orientation. Assuming consistent voxel positioning relative to myofibres, the myofibre angle with the magnetic field was derived from the voxel orientation. For separation and individual analysis of intra- and extramyocellular lipid signals, the angle myocardial fibres in the spectroscopy voxel take with the magnetic field should be within ±24.5°. Metabolite and lipid concentrations were analysed with respect to BMI. Significant correlations between BMI and unsaturated fatty acids in intramyocellular lipids, and methylene groups in extramyocellular lipids were found. The proposed IVS-McPRESS technique enables non-invasive investigation of cardiac lipid metabolism and may thus be a useful tool to study healthy and pathological conditions.
Collapse
Affiliation(s)
- Ariane Fillmer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland.
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany.
| | - Andreas Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Lenggstr. 31, 8032, Zurich, Switzerland
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, UK
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 South Hanover Street, Baltimore, MD21225, Maryland, USA
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastr. 35, 8092, Zurich, Switzerland
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 11, 72076, Tuebingen, Germany
| |
Collapse
|