1
|
Zhang L, Antonacci M, Burant A, McCallister A, Kelley M, Bryden N, McHugh C, Atalla S, Holmes L, Katz L, Branca RT. Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized 129Xe. COMMUNICATIONS MEDICINE 2023; 3:147. [PMID: 37848608 PMCID: PMC10582175 DOI: 10.1038/s43856-023-00374-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Absolute temperature measurements of tissues inside the human body are difficult to perform non-invasively. Yet, for brown adipose tissue (BAT), these measurements would enable direct monitoring of its thermogenic activity and its association with metabolic health. METHODS Here, we report direct measurement of absolute BAT temperature in humans during cold exposure by magnetic resonance (MR) with laser polarized xenon gas. This methodology, which leverages on the sensitivity of the chemical shift of the 129Xe isotope to temperature-induced changes in fat density, is first calibrated in vitro and then tested in vivo in rodents. Finally, it is used in humans along with positron emission tomography (PET) scans with fluorine-18-fluorodeoxyglucose to detect BAT thermogenic activity during cold exposure. RESULTS Absolute temperature measurements, obtained in rodents with an experimental error of 0.5 °C, show only a median deviation of 0.12 °C against temperature measurements made using a pre-calibrated optical temperature probe. In humans, enhanced uptake of 129Xe in BAT during cold exposure leads to background-free detection of this tissue by MR. Global measurements of supraclavicular BAT temperature, made over the course of four seconds and with an experimental error ranging from a minimum of 0.4 °C to more than 2 °C, in case of poor shimming, reveal an average BAT temperature of 38.8° ± 0.8 °C, significantly higher (p < 0.02 two-sided t test) than 37.7 °C. Hot BAT is also detected in participants with a PET scan negative for BAT. CONCLUSIONS Non-invasive, radiation-free measurements of BAT temperature by MRI with hyperpolarized 129Xe may enable longitudinal monitoring of human BAT activity under various stimulatory conditions.
Collapse
Affiliation(s)
- Le Zhang
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Small Animal Imaging Laboratory, Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Department of Physics, Saint Vincent College, 300 Fraser Purchase Rd., Latrobe, PA, 15650, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Department of Physics, University of Arizona, 1118 E Fourth Street, PO Box 210081, Tucson, AZ, 85721, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Christian McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Sebastian Atalla
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Leah Holmes
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Laurence Katz
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Compartment-specific 129Xe HyperCEST z spectroscopy and chemical shift imaging of cucurbit[6]uril in spontaneously breathing rats. Z Med Phys 2023:S0939-3889(23)00094-6. [PMID: 37661475 DOI: 10.1016/j.zemedi.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
129Xe hyperpolarized gas chemical exchange saturation transfer (HyperCEST) MRI has been suggested as molecular imaging modality but translation to in vivo imaging has been slow, likely due to difficulties of synthesizing suitable molecules. Cucurbit[6]uril-either in readily available non-functionalized or potentially in functionalized form-may, combined with 129Xe HyperCEST MRI, prove useful as a switchable 129Xe MR contrast agent but the likely differential properties of contrast generation in individual chemical compartments as well as the influence of 129Xe signal drifts encountered in vivo on HyperCEST MRI are unknown. Here, HyperCEST z spectroscopy and chemical shift imaging with compartment-specific analysis are performed in a total of 10 rats using cucurbit[6]uril injected i.v. and under a protocol employing spontaneous respiration. Differences in intensity of the HyperCEST effect between chemical compartments and anatomical regions are investigated. Strategies to mitigate influence of signal instabilities associated with drifts in physiological parameters are developed. It is shown that presence of cucurbit[6]uril can be readily detected under spontaneous 129Xe inhalation mostly in aqueous tissues further away from the lung. Differences of effect intensity in individual regions and compartments must be considered in HyperCEST data interpretation. In particular, there seems to be almost no effect in lipids. 129Xe HyperCEST MR measurements utilizing spontaneous respiration protocols and extended measurement times are feasible. HyperCEST MRI of non-functionalized cucurbit[6]uril may create contrast between anatomical structures in vivo.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
3
|
Preclinical MRI Using Hyperpolarized 129Xe. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238338. [PMID: 36500430 PMCID: PMC9738892 DOI: 10.3390/molecules27238338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Although critical for development of novel therapies, understanding altered lung function in disease models is challenging because the transport and diffusion of gases over short distances, on which proper function relies, is not readily visualized. In this review we summarize progress introducing hyperpolarized 129Xe imaging as a method to follow these processes in vivo. The work is organized in sections highlighting methods to observe the gas replacement effects of breathing (Gas Dynamics during the Breathing Cycle) and gas diffusion throughout the parenchymal airspaces (3). We then describe the spectral signatures indicative of gas dissolution and uptake (4), and how these features can be used to follow the gas as it enters the tissue and capillary bed, is taken up by hemoglobin in the red blood cells (5), re-enters the gas phase prior to exhalation (6), or is carried via the vasculature to other organs and body structures (7). We conclude with a discussion of practical imaging and spectroscopy techniques that deliver quantifiable metrics despite the small size, rapid motion and decay of signal and coherence characteristic of the magnetically inhomogeneous lung in preclinical models (8).
Collapse
|
4
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Absolute thermometry using hyperpolarized 129 Xe free-induction decay and spin-echo chemical-shift imaging in rats. Magn Reson Med 2022; 89:54-63. [PMID: 36121206 DOI: 10.1002/mrm.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement and test variants of chemical shift imaging (CSI) acquiring both free induction decays (FIDs) showing all dissolved-phase compartments and spin echoes for specifically assessing 129 $$ {}^{129} $$ Xe in lipids in order to perform precise lipid-dissolved 129 $$ {}^{129} $$ Xe MR thermometry in a rat model of general hypothermia. METHODS Imaging was performed at 2.89 T. T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined in one rat by fitting exponentials to decaying signals of global spin-echo spectra. Four rats (conventional CSI) and six rats (turbo spectroscopic imaging) were scanned at three time points with core body temperature 37/34/37 ∘ $$ {}^{\circ } $$ C. Lorentzian functions were fit to spectra from regions of interest to determine the water-referenced chemical shift of lipid-dissolved 129 $$ {}^{129} $$ Xe in the abdomen. Absolute 129 $$ {}^{129} $$ Xe-derived temperature was compared to values from a rectal probe. RESULTS Global T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined as 251 . 3 ms ± 81 . 4 ms $$ 251.3\;\mathrm{ms}\pm 81.4\;\mathrm{ms} $$ . Friedman tests showed significant changes of chemical shift with time for both sequence variants and both FID and spin-echo acquisitions. Mean and SD of 129 $$ {}^{129} $$ Xe and rectal probe temperature differences were found to be - 0 . 1 5 ∘ C ± 0 . 9 3 ∘ C $$ -0.1{5}^{\circ}\mathrm{C}\pm 0.9{3}^{\circ}\mathrm{C} $$ (FID) and - 0 . 3 8 ∘ C ± 0 . 6 4 ∘ C $$ -0.3{8}^{\circ}\mathrm{C}\pm 0.6{4}^{\circ}\mathrm{C} $$ (spin echo) for conventional CSI as well as 0 . 0 3 ∘ C ± 0 . 7 7 ∘ C $$ 0.0{3}^{\circ}\mathrm{C}\pm 0.7{7}^{\circ}\mathrm{C} $$ (FID) and - 0 . 0 6 ∘ C ± 0 . 7 6 ∘ C $$ -0.0{6}^{\circ}\mathrm{C}\pm 0.7{6}^{\circ}\mathrm{C} $$ (spin echo) for turbo spectroscopic imaging. CONCLUSION 129 $$ {}^{129} $$ Xe MRI using conventional CSI and turbo spectroscopic imaging of lipid-dissolved 129 $$ {}^{129} $$ Xe enables precise temperature measurements in the rat's abdomen using both FID and spin-echo acquisitions with acquisition of spin echoes enabling most precise temperature measurements.
Collapse
Affiliation(s)
- Agilo L Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
6
|
Friedlander Y, Zanette B, Lindenmaier A, Li D, Kadlecek S, Santyr G, Kassner A. Hyperpolarized 129 Xe MRI of the rat brain with chemical shift saturation recovery and spiral-IDEAL readout. Magn Reson Med 2021; 87:1971-1979. [PMID: 34841605 DOI: 10.1002/mrm.29105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe chemical shift saturation recovery (CSSR) combined with spiral-IDEAL imaging for simultaneous measurement of the time-course of red blood cell (RBC) and brain tissue signals in the rat brain. METHODS Images of both the RBC and brain tissue 129 Xe signals from the brains of five rats were obtained using interleaved spiral-IDEAL imaging following chemical shift saturation pulses applied at multiple CSSR delay times, τ. A linear fit of the signals to τ was used to calculate the slope of the signal for both RBC and brain tissue compartments on a voxel-by-voxel basis. Gas transfer was evaluated by measuring the ratio of the whole brain tissue-to-RBC signal intensities as a function of τ. To investigate the relationship between the CSSR images and gas transfer in the brain, the experiments were repeated during hypercapnic ventilation. RESULTS Hypercapnia, affected the ratio of the tissue-to-RBC signal intensity (p = 0.026), consistent with an increase in gas transfer. CONCLUSION CSSR with spiral-IDEAL imaging is feasible for acquisition of 129 Xe RBC and brain tissue time-course images in the rat brain. Differences in the time-course of the signal intensity ratios are consistent with gas transfer changes expected under hypercapnic conditions.
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Friedlander Y, Zanette B, Lindenmaier AA, Fliss J, Li D, Emami K, Jankov RP, Kassner A, Santyr G. Effect of inhaled oxygen concentration on 129 Xe chemical shift of red blood cells in rat lungs. Magn Reson Med 2021; 86:1187-1193. [PMID: 33837550 DOI: 10.1002/mrm.28801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To investigate the dependence of dissolved 129 Xe chemical shift on the fraction of inhaled oxygen, Fi O2 , in the lungs of healthy rats. METHODS The chemical shifts of 129 Xe dissolved in red blood cells, δRBC , and blood plasma and/or tissue, δPlasma , were measured using MRS in 12 Sprague Dawley rats mechanically ventilated at Fi O2 values of 0.14, 0.19, and 0.22. Regional effects on the chemical shifts were controlled using a chemical shift saturation recovery sequence with a fixed delay time. MRS was also performed at an Fi CO2 value of 0.085 to investigate the potential effect of the vascular response on δRBC and δPlasma . RESULTS δRBC increased with decreasing Fi O2 (P = .0002), and δPlasma showed no dependence on Fi O2 (P = .23). δRBC at Fi CO2 = 0 (210.7 ppm ± 0.1) and at Fi CO2 = 0.085 (210.6 ppm ± 0.2) were not significantly different (P = .67). δPlasma at Fi CO2 = 0 (196.9 ppm ± 0.3) and at Fi CO2 = 0.085 (197.0 ppm ± 0.1) were also not significantly different (P = .81). CONCLUSION Rat lung δRBC showed an inverse relationship to Fi O2 , opposite to the relationship previously demonstrated for in vitro human blood. Rat lung δRBC did not depend on Fi CO2 .
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras A Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Fliss
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Robert P Jankov
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Friedlander Y, Zanette B, Lindenmaier A, Sadanand S, Li D, Stirrat E, Couch M, Kassner A, Jankov RP, Santyr G. Chemical shift of
129
Xe dissolved in red blood cells: Application to a rat model of bronchopulmonary dysplasia. Magn Reson Med 2019; 84:52-60. [DOI: 10.1002/mrm.28121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| | - Brandon Zanette
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Andras Lindenmaier
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| | - Siddharth Sadanand
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Daniel Li
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Elaine Stirrat
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Marcus Couch
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| | - Andrea Kassner
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Imaging University of Toronto Toronto Ontario Canada
| | - Robert P. Jankov
- Molecular Biomedicine Program Children’s Hospital of Eastern Ontario Research Institute Ottawa Ontario Canada
- Department of Cellular and Molecular Medicine University of Ottawa Ottawa Ontario Canada
| | - Giles Santyr
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Antonacci MA, McHugh C, Kelley M, McCallister A, Degan S, Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized 129Xe MR thermometry. Sci Rep 2019; 9:14865. [PMID: 31619741 PMCID: PMC6795875 DOI: 10.1038/s41598-019-51483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Physics, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Christian McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Simone Degan
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| |
Collapse
|
11
|
Chacon-Caldera J, Maunder A, Rao M, Norquay G, Rodgers OI, Clemence M, Puddu C, Schad LR, Wild JM. Dissolved hyperpolarized xenon-129 MRI in human kidneys. Magn Reson Med 2019; 83:262-270. [PMID: 31400040 PMCID: PMC6852523 DOI: 10.1002/mrm.27923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Purpose To assess the feasibility of using dissolved hyperpolarized xenon‐129 (129Xe) MRI to study renal physiology in humans at 3 T. Methods Using a flexible transceiver RF coil, dynamic and spatially resolved 129Xe spectroscopy was performed in the abdomen after inhalation of hyperpolarized 129Xe gas with 3 healthy male volunteers. A transmit‐only receive‐only RF coil array was purpose‐built to focus RF excitation and enhance sensitivity for dynamic imaging of 129Xe uptake in the kidneys using spoiled gradient echo and balanced steady‐state sequences. Results Using spatially resolved spectroscopy, different magnitudes of signal from 129Xe dissolved in red blood cells and tissue/plasma could be identified in the kidneys and the aorta. The spectra from both kidneys showed peaks with similar amplitudes and chemical shift values. Imaging with the purpose‐built coil array was shown to provide more than a 3‐fold higher SNR in the kidneys when compared with surrounding tissues, while further physiological information from the dissolved 129Xe in the lungs and in transit to the kidneys was provided with the transceiver coil. The signal of dissolved hyperpolarized 129Xe could be imaged with both tested sequences for about 40 seconds after inhalation. Conclusion The uptake of 129Xe dissolved in the human kidneys was measured with spectroscopic and imaging experiments, demonstrating the potential of hyperpolarized 129Xe MR as a novel, noninvasive technique to image human kidney tissue perfusion.
Collapse
Affiliation(s)
- Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Adam Maunder
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Oliver I Rodgers
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | | | - Claudio Puddu
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Antonacci MA, Zhang L, Degan S, Erdmann D, Branca RT. Calibration of methylene-referenced lipid-dissolved xenon frequency for absolute MR temperature measurements. Magn Reson Med 2018; 81:765-772. [PMID: 30216528 DOI: 10.1002/mrm.27441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Le Zhang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina
| | - Detlev Erdmann
- Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|