1
|
Chowdhury R, Papoutsaki MV, Müller CA, Smith L, Gong F, Bullock M, Rogers H, Mathew M, Syer T, Singh S, Retter A, Caselton L, Ryu J, Oliver-Taylor A, Golay X, Bainbridge A, Gadian DG, Punwani S. A reproducible dynamic phantom for sequence testing in hyperpolarised 13C-magnetic resonance. Br J Radiol 2022; 95:20210770. [PMID: 35230136 PMCID: PMC10996405 DOI: 10.1259/bjr.20210770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To develop a phantom system which can be integrated with an automated injection system, eliminating the experimental variability that arises with manual injection; for the purposes of pulse sequence testing and metric derivation in hyperpolarised 13C-MR. METHODS The custom dynamic phantom was machined from Ultem and filled with a nicotinamide adenine dinucleotide and lactate dehydrogenase mixture dissolved in phosphate buffered saline. Hyperpolarised [1-13C]-pyruvate was then injected into the phantom (n = 8) via an automated syringe pump and the conversion of pyruvate to lactate monitored through a 13C imaging sequence. RESULTS The phantom showed low coefficient of variation for the lactate to pyruvate peak signal heights (11.6%) and dynamic area-under curve ratios (11.0%). The variance for the lactate dehydrogenase enzyme rate constant (kP) was also seen to be low at 15.6%. CONCLUSION The dynamic phantom demonstrates high reproducibility for quantification of 13C-hyperpolarised MR-derived metrics. Establishing such a phantom is needed to facilitate development of hyperpolarsed 13C-MR pulse sequenced; and moreover, to enable multisite hyperpolarised 13C-MR clinical trials where assessment of metric variability across sites is critical. ADVANCES IN KNOWLEDGE The dynamic phantom developed during the course of this study will be a useful tool in testing new pulse sequences and standardisation in future hyperpolarised work.
Collapse
Affiliation(s)
- Rafat Chowdhury
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | | | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center
– University of Freiburg, Faculty of Medicine, University of
Freiburg, Freiburg,
Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German
Cancer Research Center (DKFZ),
Heidelberg, Germany
| | | | - Fiona Gong
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Max Bullock
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Harriet Rogers
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Manju Mathew
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Tom Syer
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Saurabh Singh
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Adam Retter
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Lucy Caselton
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | - Jung Ryu
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
| | | | - Xavier Golay
- Gold Standard Phantoms Limited,
London, UK
- Department of Brain Repair and Rehabilitation, Institute of
Neurology, Queen’s Square, University College
London, London,
UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering,
University College London Hospitals,
London, UK
| | - David G Gadian
- UCL Great Ormond Street Institute of Child
Health, London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, Division of Medicine, University
College London, London,
UK
- Department of Radiology, University College London Hospitals
NHS Foundation Trust, London,
UK
| |
Collapse
|
2
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
3
|
Deh K, Granlund KL, Eskandari R, Kim N, Mamakhanyan A, Keshari KR. Dynamic volumetric hyperpolarized 13 C imaging with multi-echo EPI. Magn Reson Med 2020; 85:978-986. [PMID: 32820566 DOI: 10.1002/mrm.28466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arsen Mamakhanyan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Müller CA, Hundshammer C, Braeuer M, Skinner JG, Berner S, Leupold J, Düwel S, Nekolla SG, Månsson S, Hansen AE, von Elverfeldt D, Ardenkjaer-Larsen JH, Schilling F, Schwaiger M, Hennig J, Hövener JB. Dynamic 2D and 3D mapping of hyperpolarized pyruvate to lactate conversion in vivo with efficient multi-echo balanced steady-state free precession at 3 T. NMR IN BIOMEDICINE 2020; 33:e4291. [PMID: 32154970 DOI: 10.1002/nbm.4291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to acquire the transient MRI signal of hyperpolarized tracers and their metabolites efficiently, for which specialized imaging sequences are required. In this work, a multi-echo balanced steady-state free precession (me-bSSFP) sequence with Iterative Decomposition with Echo Asymmetry and Least squares estimation (IDEAL) reconstruction was implemented on a clinical 3 T positron-emission tomography/MRI system for fast 2D and 3D metabolic imaging. Simulations were conducted to obtain signal-efficient sequence protocols for the metabolic imaging of hyperpolarized biomolecules. The sequence was applied in vitro and in vivo for probing the enzymatic exchange of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate. Chemical shift resolution was achieved using a least-square, iterative chemical species separation algorithm in the reconstruction. In vitro, metabolic conversion rate measurements from me-bSSFP were compared with NMR spectroscopy and free induction decay-chemical shift imaging (FID-CSI). In vivo, a rat MAT-B-III tumor model was imaged with me-bSSFP and FID-CSI. 2D metabolite maps of [1-13 C]pyruvate and [1-13 C]lactate acquired with me-bSSFP showed the same spatial distributions as FID-CSI. The pyruvate-lactate conversion kinetics measured with me-bSSFP and NMR corresponded well. Dynamic 2D metabolite mapping with me-bSSFP enabled the acquisition of up to 420 time frames (scan time: 180-350 ms/frame) before the hyperpolarized [1-13 C]pyruvate was relaxed below noise level. 3D metabolite mapping with a large field of view (180 × 180 × 48 mm3 ) and high spatial resolution (5.6 × 5.6 × 2 mm3 ) was conducted with me-bSSFP in a scan time of 8.2 seconds. It was concluded that Me-bSSFP improves the spatial and temporal resolution for metabolic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate compared with either of the FID-CSI or EPSI methods reported at 3 T, providing new possibilities for clinical and preclinical applications.
Collapse
Affiliation(s)
- Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Partnersite Freiburg, German Center for Cancer Research (DKFZ), Heidelberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Munich School of Bioengineering, Technical University of Munich, Garching, Germany
| | - Miriam Braeuer
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Jason G Skinner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Partnersite Freiburg, German Center for Cancer Research (DKFZ), Heidelberg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig Holstein (UKSH), Kiel University, Germany
| |
Collapse
|
5
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Laustsen C, Lipsø K, Østergaard JA, Nielsen PM, Bertelsen LB, Flyvbjerg A, Pedersen M, Palm F, Ardenkjær-Larsen JH. High Intrarenal Lactate Production Inhibits the Renal Pseudohypoxic Response to Acutely Induced Hypoxia in Diabetes. ACTA ACUST UNITED AC 2020; 5:239-247. [PMID: 31245545 PMCID: PMC6588198 DOI: 10.18383/j.tom.2019.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level–dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%–16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Kasper Lipsø
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Jan Henrik Ardenkjær-Larsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.,GE Healthcare, Copenhagen, Denmark
| |
Collapse
|
7
|
Macdonald EB, Barton GP, Cox BL, Johnson KM, Strigel RM, Fain SB. Improved reconstruction stability for chemical shift encoded hyperpolarized 13 C magnetic resonance spectroscopic imaging using k-t spiral acquisitions. Magn Reson Med 2019; 84:25-38. [PMID: 31814173 DOI: 10.1002/mrm.28122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE A multiecho, field of view (FOV)-oversampled k-t spiral acquisition and direct iterative decomposition of water and fat with echo asymmetry and least-squares estimation reconstruction is demonstrated to improve the stability of hyperpolarized 13 C magnetic resonance spectroscopic imaging (MRSI) in the presence of signal ambiguities attributed to low-SNR (signal-to-noise-ratio) species, local uncertainties in metabolite peaks, and echo-to-echo signal inconsistencies. THEORY k-t spiral acquisitions redistribute readout points to be more densely spaced radially in k-space by acquiring an FOV and matrix that are oversampled by η. These more densely spaced spiral turns constitute effective intraspiral echoes and can supplement conventional interspiral echoes to improve spectral separation and reduce spectral cross-talk to better resolve 13 C-labeled species for spectroscopic imaging. METHODS Digital simulations and imaging phantom experiments were performed for a range of interspiral echo spacings and η using multiecho, k-t spiral acquisitions. Image spectral cross-talk artifacts were evaluated both qualitatively and quantitatively as the percent error in measured metabolite ratios. In vivo murine experiments evaluated the feasibility of multiecho, k-t spiral [1-13 C]pyruvate MRSI to reduce spectral cross-talk for 3 scenarios of different expected reconstruction stability. RESULTS Digital simulations and imaging phantom experiments both demonstrated reduced or comparable image spectral cross-talk and percent errors in measured metabolite ratios with increasing η and better choices of echo spacings. In vivo images displayed markedly reduced spectral cross-talk in lactate images acquired with η = 7 versus η = 1. CONCLUSION The precision of hyperpolarized 13 C metabolic imaging and quantification in the presence of low-SNR species, local uncertainties in metabolite resonances, and echo-to-echo signal inconsistencies can be improved with the use of FOV-oversampled k-t spiral acquisitions.
Collapse
Affiliation(s)
- Erin B Macdonald
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gregory P Barton
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Benjamin L Cox
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Hansen RB, Sánchez‐Heredia JD, Bøgh N, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær‐Larsen JH. Coil profile estimation strategies for parallel imaging with hyperpolarized
13
C MRI. Magn Reson Med 2019; 82:2104-2117. [DOI: 10.1002/mrm.27892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Rie B. Hansen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | | | - Nikolaj Bøgh
- MR Research Centre Aarhus University Aarhus Denmark
| | | | | | - Lars G. Hanson
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Copenhagen Denmark
| | - Jan H. Ardenkjær‐Larsen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- GE Healthcare Brøndby Denmark
| |
Collapse
|
9
|
Gordon JW, Chen HY, Autry A, Park I, Van Criekinge M, Mammoli D, Milshteyn E, Bok R, Xu D, Li Y, Aggarwal R, Chang S, Slater JB, Ferrone M, Nelson S, Kurhanewicz J, Larson PEZ, Vigneron DB. Translation of Carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med 2018; 81:2702-2709. [PMID: 30375043 DOI: 10.1002/mrm.27549] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop and translate a metabolite-specific imaging sequence using a symmetric echo planar readout for clinical hyperpolarized (HP) Carbon-13 (13 C) applications. METHODS Initial data were acquired from patients with prostate cancer (N = 3) and high-grade brain tumors (N = 3) on a 3T scanner. Samples of [1-13 C]pyruvate were polarized for at least 2 h using a 5T SPINlab system operating at 0.8 K. Following injection of the HP substrate, pyruvate, lactate, and bicarbonate (for brain studies) were sequentially excited with a singleband spectral-spatial RF pulse and signal was rapidly encoded with a single-shot echo planar readout on a slice-by-slice basis. Data were acquired dynamically with a temporal resolution of 2 s for prostate studies and 3 s for brain studies. RESULTS High pyruvate signal was seen throughout the prostate and brain, with conversion to lactate being shown across studies, whereas bicarbonate production was also detected in the brain. No Nyquist ghost artifacts or obvious geometric distortion from the echo planar readout were observed. The average error in center frequency was 1.2 ± 17.0 and 4.5 ± 1.4 Hz for prostate and brain studies, respectively, below the threshold for spatial shift because of bulk off-resonance. CONCLUSION This study demonstrated the feasibility of symmetric EPI to acquire HP 13 C metabolite maps in a clinical setting. As an advance over prior single-slice dynamic or single time point volumetric spectroscopic imaging approaches, this metabolite-specific EPI acquisition provided robust whole-organ coverage for brain and prostate studies while retaining high SNR, spatial resolution, and dynamic temporal resolution.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Adam Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Sarah Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|