1
|
Champagne AA, Zuleger TM, Smith DR, Slutsky-Ganesh AB, Warren SM, Ramirez ME, Sengkhammee LM, Mandava S, Wei H, Bardana DD, Lamplot JD, Myer GD, Diekfuss JA. Quantitative susceptibility and T1 ρ mapping of knee articular cartilage at 3T. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100509. [PMID: 39224132 PMCID: PMC11367491 DOI: 10.1016/j.ocarto.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
T1 ρ and Quantitative Susceptibility Mapping (QSM) are evolving as substrates for quantifying the progressive nature of knee osteoarthritis. Objective To evaluate the effects of spin lock time combinations on depth-dependent T1 ρ estimation, in adjunct to QSM, and characterize the degree of shared variance in QSM and T1 ρ for the quantitative measurement of articular cartilage. Design Twenty healthy participants (10 M/10F, 22.2 ± 3.4 years) underwent bilateral knee MRI using T1 ρ MAPPS sequences with varying TSLs ([0-120] ms), along with a 3D spoiled gradient echo for QSM. Five total TSL combinations were used for T1 ρ computation, and direct depth-based comparison. Depth-wide variance was assessed in comparison to QSM as a basis to assess for depth-specific variation in T1 ρ computations across healthy cartilage. Results Longer T1 ρ relaxation times were observed for TSL combinations with higher spin lock times. Depth-specific differences were documented for both QSM and T1 ρ , with most change found at ∼60% depth of the cartilage, relative to the surface. Direct squared linear correlation revealed that most T1 ρ TSL combinations can explain over 30% of the variability in QSM, suggesting inherent shared sensitivity to cartilage microstructure. Conclusions T1 ρ mapping is subjective to the spin lock time combinations used for computation of relaxation times. When paired with QSM, both similarities and differences in signal sensitivity may be complementary to capture depth-wide changes in articular cartilage.
Collapse
Affiliation(s)
- Allen A. Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Taylor M. Zuleger
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel R. Smith
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Shayla M. Warren
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mario E. Ramirez
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- School of Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Lexie M. Sengkhammee
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Davide D. Bardana
- Department of Orthopedic Surgery, Queen's University, Kingston, ON, Canada
| | | | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Tóth F, Nissi MJ, Armstrong AR, Buko EO, Johnson CP. Epiphyseal cartilage vascular architecture at the distal humeral osteochondritis dissecans predilection site in juvenile pigs. J Orthop Res 2024; 42:737-744. [PMID: 37971288 PMCID: PMC10978299 DOI: 10.1002/jor.25732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Failure of endochondral ossification due to interruption of the vascular supply to the epiphyseal cartilage is a critical step in the development of osteochondritis dissecans (OCD). Herein we describe the vascular architecture of the distal humeral epiphyseal cartilage in pigs and identify characteristic features that have been associated with sites predisposed to OCD development across species. Distal humeral specimens were harvested from pigs (n = 5, ages = 1, 10, 18, 30, and, 42 days old) and imaged at 9.4T magnetic resonance imaging (MRI) using a 3D gradient recalled echo sequence. The MRI data were processed using a quantitative susceptibility mapping (QSM) pipeline to visualize the vascular architecture. Specimens were also evaluated histologically to identify the presence of ischemic epiphyseal cartilage necrosis (osteochondrosis [OC]-latens) and associated failure of endochondral ossification (OC-manifesta). The QSM data enabled visualization of two distinct vascular beds arising from the perichondrium at the lateral and medial aspects of the distal humeral epiphysis. Elongated vessels originating from these beds coursed axially to supply the lateral and medial thirds of epiphyseal cartilage. At 18 days of age and older, a shift from perichondrial to transosseous blood supply was noted axially, which appeared more pronounced on the lateral side. This shift coincided with histologic identification of OC-latens (30- and 42-day-old specimens) and OC-manifesta (18- and 42-day-old specimens) lesions in the corresponding regions. The vascular anatomy and its evolution at the distal humeral epiphysis closely resembles that previously reported at predilection sites of knee OCD, suggesting a shared pathophysiology between the knee and elbow joints.
Collapse
Affiliation(s)
- Ferenc Tóth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Alexandra R Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Erick O Buko
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Casey P Johnson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Relaxation anisotropy of quantitative MRI parameters in biological tissues. Sci Rep 2022; 12:12155. [PMID: 35840627 PMCID: PMC9287339 DOI: 10.1038/s41598-022-15773-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative MR relaxation parameters vary in the sensitivity to the orientation of the tissue in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in various tissues. Ex vivo samples of each tissue type were prepared either from bovine knee (tendon, cartilage) or mouse (brain, spinal cord, heart, kidney), and imaged at 9.4 T MRI with T1, T2, continuous wave (CW-) T1ρ, adiabatic T1ρ and T2ρ, and Relaxation along fictitious field (RAFF2-4) sequences at five different orientations with respect to the main magnetic field. Relaxation anisotropy of the measured parameters was quantified and compared. The highly ordered collagenous tissues, i.e. cartilage and tendon, presented the highest relaxation anisotropy for T2, CW-T1ρ with spin-lock power < 1 kHz, Ad-T2ρ and RAFF2-4. Maximally anisotropy was 75% in cartilage and 30% in tendon. T1 and adiabatic T1ρ did not exhibit observable anisotropy. In the other measured tissue types, anisotropy was overall less than 10% for all the parameters. The results confirm that highly ordered collagenous tissues have properties that induce very clearly observable relaxation anisotropy, whereas in other tissues the effect is not as prominent. Quantitative comparison of anisotropy of different relaxation parameters highlights the importance of sequence choice and design in MR imaging.
Collapse
|
6
|
Zhang M, Li Z, Wang H, Chen T, Lu Y, Yan F, Zhang Y, Wei H. Simultaneous Quantitative Susceptibility Mapping of Articular Cartilage and Cortical Bone of Human Knee Joint Using Ultrashort Echo Time Sequences. Front Endocrinol (Lausanne) 2022; 13:844351. [PMID: 35273576 PMCID: PMC8901574 DOI: 10.3389/fendo.2022.844351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is of great clinical importance to assess the microstructure of the articular cartilage and cortical bone of the human knee joint. While quantitative susceptibility mapping (QSM) is a promising tool for investigating the knee joint, however, previous QSM studies using conventional gradient recalled echo sequences or ultrashort echo time (UTE) sequences only focused on mapping the magnetic susceptibility of the articular cartilage or cortical bone, respectively. Simultaneously mapping the underlying susceptibilities of the articular cartilage and cortical bone of human in vivo has not been explored and reported. METHOD Three-dimensional multi-echo radial UTE sequences with the shortest TE of 0.07 msec and computed tomography (CT) were performed on the bilateral knee joints of five healthy volunteers for this prospective study. UTE-QSM was reconstructed from the local field map after water-fat separation and background field removal. Spearman's correlation analysis was used to explore the relationship between the magnetic susceptibility and CT values in 158 representative regions of interest of cortical bone. RESULT The susceptibility properties of the articular cartilage and cortical bone were successfully quantified by UTE-QSM. The laminar structure of articular cartilage was characterized by the difference of susceptibility value in each layer. Susceptibility was mostly diamagnetic in cortical bone. A significant negative correlation (r=-0.43, p<0.001) between the susceptibility value and CT value in cortical bone was observed. CONCLUSION UTE-QSM enables simultaneous susceptibility mapping of the articular cartilage and cortical bone of human in vivo. Good association between susceptibility and CT values in cortical bone suggests the potential of UTE-QSM for bone mapping for further clinical application.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihui Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanqi Wang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tongtong Chen
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongjiang Wei,
| |
Collapse
|
7
|
Zhao Q, Ridout RP, Shen J, Wang N. Effects of Angular Resolution and b Value on Diffusion Tensor Imaging in Knee Joint. Cartilage 2021; 13:295S-303S. [PMID: 33843284 PMCID: PMC8804734 DOI: 10.1177/19476035211007909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To investigate the influences of the diffusion gradient directions (angular resolution) and the strength of the diffusion gradient (b value) on diffusion tensor imaging (DTI) metrics and tractography of various connective tissues in knee joint. DESIGN Two rat knee joints were scanned on a preclinical 9.4-T system using a 3-dimensional diffusion-weighted spin echo pulse sequence. One protocol with b value of 500, 1500, and 2500 s/mm2 were acquired separately using 43 diffusion gradient directions. The other protocol with b value of 1000 s/mm2 was performed using 147 diffusion gradient directions. The in-plane resolution was 45 µm isotropic. Fractional anisotropy (FA) and mean diffusivity (MD) were compared at different angular resolution. Tractography was quantitatively evaluated at different b values and angular resolutions in cartilage, ligament, meniscus, and growth plate. RESULTS The ligament showed higher FA value compared with growth plate and cartilage. The FA values were largely overestimated at the angular resolution of 6. Compared with FA, MD showed less sensitivity to the angular resolution. The fiber tracking was failed at low angular resolution (6 diffusion gradient directions) or high b value (2500 s/mm2). The quantitative measurements of tract length and track volume were strongly dependent on angular resolution and b value. CONCLUSIONS To obtain consistent DTI outputs and tractography in knee joint, the scan may require a proper b value (ranging from 500 to 1500 s/mm2) and sufficient angular resolution (>14) with signal-to-noise ratio >10.
Collapse
Affiliation(s)
- Qi Zhao
- School of Psychology, Shanghai
University of Sport, Shanghai, China
| | - Rees P. Ridout
- Pratt School of Engineering, Duke
University, Durham, NC, USA
| | - Jikai Shen
- Pratt School of Engineering, Duke
University, Durham, NC, USA
| | - Nian Wang
- Department of Radiology, Duke
University School of Medicine, Durham, NC, USA,Department of Radiology and Imaging
Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Nian Wang, Department of Radiology and
Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202,
USA.
| |
Collapse
|
8
|
Yoshikawa M, Kudo K, Harada T, Harashima K, Suzuki J, Ogawa K, Fujiwara T, Nishida M, Sato R, Shirai T, Bito Y. Quantitative Susceptibility Mapping versus R2*-based Histogram Analysis for Evaluating Liver Fibrosis: Preliminary Results. Magn Reson Med Sci 2021; 21:609-622. [PMID: 34483224 DOI: 10.2463/mrms.mp.2020-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The staging of liver fibrosis is clinically important, and a less invasive method is preferred. Quantitative susceptibility mapping (QSM) has shown a great potential in estimating liver fibrosis in addition to R2* relaxometry. However, few studies have compared QSM analysis and liver fibrosis. We aimed to evaluate the feasibility of estimating liver fibrosis by using QSM and R2*-based histogram analyses by comparing it with ultrasound-based transient elastography and the stage of histologic fibrosis. METHODS Fourteen patients with liver disease were enrolled. Data sets of multi-echo gradient echo sequence with breath-holding were acquired on a 3-Tesla scanner. QSM and R2* were reconstructed by water-fat separation method, and ROIs were analyzed for these images. Quantitative parameters with histogram features (mean, variance, skewness, kurtosis, and 1st, 10th, 50th, 90th, and 99th percentiles) were extracted. These data were compared with the elasticity measured by ultrasound transient elastography and histological stage of liver fibrosis (F0 to F4, based on the new Inuyama classification) determined by biopsy or hepatectomy. The correlation of histogram parameters with intrahepatic elasticity and histologically confirmed fibrosis stage was examined. Texture parameters were compared between subgroups divided according to fibrosis stage. Receiver operating characteristic (ROC) analysis was also performed. P < 0.05 indicated statistical significance. RESULTS The six histogram parameters of both QSM and R2*were significantly correlated with intrahepatic elasticity. In particular, three parameters (variance, percentiles [90th and 99th]) of QSM showed high correlation (r = 0.818-0.844), whereas R2* parameters showed a moderate correlation with elasticity. Four parameters of QSM were significantly correlated with fibrosis stage (ρ = 0.637-0.723) and differentiated F2-4 from F0-1 fibrosis and F3-4 from F0-2 fibrosis with areas under the ROC curve of > 0.8, but those of R2* did not. CONCLUSION QSM may serve as a promising surrogate indicator in detecting liver fibrosis.
Collapse
Affiliation(s)
- Masato Yoshikawa
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine.,Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine
| | - Taisuke Harada
- Center for Cause of Death Investigation, Hokkaido University Faculty of Medicine.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Kazutaka Harashima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Jun Suzuki
- Department of Radiation Oncology, Hakodate Municipal Hospital
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine
| | - Taro Fujiwara
- Department of Radiology, Division of Medical Imaging and Technology, Hokkaido University Hospital
| | - Mutsumi Nishida
- Diagnostic Center for Sonography, Hokkaido University Hospital
| | | | | | | |
Collapse
|
9
|
Stone AJ, Tornifoglio B, Johnston RD, Shmueli K, Kerskens C, Lally C. Quantitative susceptibility mapping of carotid arterial tissue ex vivo: Assessing sensitivity to vessel microstructural composition. Magn Reson Med 2021; 86:2512-2527. [PMID: 34270122 DOI: 10.1002/mrm.28893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To characterize microstructural contributions to the magnetic susceptibility of carotid arteries. METHOD Arterial vessels were scanned using high-resolution quantitative susceptibility mapping (QSM) at 7 Tesla. Models of vessel degradation were generated using ex vivo porcine carotid arteries that were subjected to several different enzymatic digestion treatments that selectively removed microstructural components (smooth muscle cells, collagen, and elastin). Magnetic susceptibilities measured in these tissue models were compared to those in untreated (native) porcine arteries. Magnetic susceptibility measured in native porcine carotid arteries was further compared to the susceptibility of cadaveric human carotid arteries to investigate their similarity. RESULTS The magnetic susceptibility of native porcine vessels was diamagnetic (χnative = -0.1820 ppm), with higher susceptibilities in all models of vessel degradation (χelastin-degraded = -0.0163 ppm; χcollagen-degraded = -0.1158 ppm; χdecellularized = -0.1379 ppm; χfixed native = -0.2199 ppm). Magnetic susceptibility was significantly higher in collagen-degraded compared to native porcine vessels (Tukey-Kramer, P < .01) and between elastin-degraded and all other models (including native, Tukey-Kramer, P < .001). The susceptibility of fixed healthy human arterial tissue was diamagnetic, and no significant difference was found between fixed human and fixed porcine arterial tissue susceptibilities (analysis of variance, P > .05). CONCLUSIONS Magnetic susceptibility measured using QSM is sensitive to the microstructural composition of arterial vessels-most notably to collagen. The similarity of human and porcine arterial tissue susceptibility values provides a solid basis for translational studies. Because vessel microstructure becomes disrupted during the onset and progression of carotid atherosclerosis, QSM has the potential to provide a sensitive and specific marker of vessel disease.
Collapse
Affiliation(s)
- Alan J Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christian Kerskens
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Wen Y, Spincemaille P, Nguyen T, Cho J, Kovanlikaya I, Anderson J, Wu G, Yang B, Fung M, Li K, Kelley D, Benhamo N, Wang Y. Multiecho complex total field inversion method (mcTFI) for improved signal modeling in quantitative susceptibility mapping. Magn Reson Med 2021; 86:2165-2178. [PMID: 34028868 DOI: 10.1002/mrm.28814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Typical quantitative susceptibility mapping (QSM) reconstruction steps consist of first estimating the magnetization field from the gradient-echo images, and then reconstructing the susceptibility map from the estimated field. The errors from the field-estimation steps may propagate into the final QSM map, and the noise in the estimated field map may no longer be zero-mean Gaussian noise, thus, causing streaking artifacts in the resulting QSM. A multiecho complex total field inversion (mcTFI) method was developed to compute the susceptibility map directly from the multiecho gradient echo images using an improved signal model that retains the Gaussian noise property in the complex domain. It showed improvements in QSM reconstruction over the conventional field-to-source inversion. METHODS The proposed mcTFI method was compared with the nonlinear total field inversion (nTFI) method in a numerical brain with hemorrhage and calcification, the numerical brains provided by the QSM Challenge 2.0, 18 brains with intracerebral hemorrhage scanned at 3T, and 6 healthy brains scanned at 7T. RESULTS Compared with nTFI, the proposed mcTFI showed more accurate QSM reconstruction around the lesions in the numerical simulations. The mcTFI reconstructed QSM also showed the best image quality with the least artifacts in the brains with intracerebral hemorrhage scanned at 3T and healthy brains scanned at 7T. CONCLUSION The proposed multiecho complex total field inversion improved QSM reconstruction over traditional field-to-source inversion through better signal modeling.
Collapse
Affiliation(s)
- Yan Wen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Junghun Cho
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Gaohong Wu
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Baolian Yang
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Maggie Fung
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Ke Li
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | | | | | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Zhang M, Li Y, Feng R, Wang Z, Wang W, Zheng N, Wang S, Yan F, Lu Y, Tsai TY, Wei H. Change in Susceptibility Values in Knee Cartilage After Marathon Running Measured Using Quantitative Susceptibility Mapping. J Magn Reson Imaging 2021; 54:1585-1593. [PMID: 34031930 DOI: 10.1002/jmri.27745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) has been used to study the magnetic susceptibility properties of collagen fibers in articular cartilage; however, it is unclear whether QSM is sensitive to changes due to degradation caused by long-distance running. It is clinically important to understand the link between long-distance running and microstructural changes in knee cartilage. PURPOSE To investigate the ability of QSM to assess microstructural changes within cartilage after repetitive loading. STUDY TYPE Prospective. POPULATION Thirteen recreational, male long-distance runners. FIELD STRENGTH/SEQUENCE Three-dimensional gradient recalled echo acquired at 3 T. ASSESSMENT Magnetic resonance imaging (MRI) and 3D kinematics (translations and rotations during treadmill walking and running) of the knee joint were collected before and after marathon running. The compartments for analysis included the patella, trochlea, and subregions of femoral and tibial cartilage. Changes in regional susceptibility and cartilage thickness were calculated after marathon running. A susceptibility profile was obtained by fitting susceptibility as a function of the normalized depth of cartilage from the superficial to deep layers. STATISTICAL TESTS Paired t-test or Wilcoxon signed-rank test, 95% confidence interval (CI) of the depth-wise susceptibility profile, Pearson correlation or Spearman correlation. RESULTS There was a statistically significant increase in susceptibility value in the weight-bearing region of central medial femoral cartilage (cMF-c) after marathon running (pre-marathon: -0.0219 ± 0.0151 ppm, post-marathon: -0.0070 ± 0.0213 ppm, P < 0.05), while the cartilage thickness did not show significant changes in any regions (P-value range: 0.068-0.963). Significant susceptibility elevations occurred in the middle and deep layers of cMF-c (95% CIs did not overlap). A trend toward a positive correlation was found between the changes in susceptibility value in cMF-c and proximal-distal translation of the knee joint during walking (r = 0.55, P = 0.101) and running (r = 0.57, P = 0.089). DATA CONCLUSION Localized magnetic susceptibility alterations were observed within knee cartilage in the weight-bearing area after repetitive loading without any morphologic changes. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Nan Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shaobai Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Lu
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Nykänen O, Leskinen HPP, Finnilä MAJ, Karhula SS, Turunen MJ, Töyräs J, Saarakkala S, Nissi MJ. Bright ultrashort echo time SWIFT MRI signal at the osteochondral junction is not located in the calcified cartilage. J Orthop Res 2020; 38:2649-2656. [PMID: 32543707 DOI: 10.1002/jor.24777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
In this study, we aimed to precisely localize the hyperintense signal that is generated at the osteochondral junction when using ultrashort echo time magnetic resonance imaging (MRI) and to investigate the osteochondral junction using sweep imaging with Fourier transformation (SWIFT) MRI. Furthermore, we seek to evaluate what compositional properties of the osteochondral junction are the sources of this signal. In the study, we obtained eight samples from a tibial plateau dissected from a 68-year-old male donor, and one additional osteochondral sample of bovine origin. The samples were imaged using high-resolution ultrashort echo time SWIFT MRI and microcomputed tomography (μCT) scans. Localization of the bright signal in the osteochondral junction was performed using coregistered data sets. Potential sources of the signal feature were examined by imaging the bovine specimen with variable receiver bandwidths and by performing variable flip angle T1 relaxation time mapping. The results of the study showed that the hyperintense signal was found to be located entirely in the deep noncalcified articular cartilage. The intensity of this signal at the interface varied between the specimens. Further tests with bovine specimens indicated that the imaging bandwidth and T1 relaxation affect the properties of the signal. Based on the present results, the calcified cartilage has low signal intensity even in SWIFT imaging. Concomitantly, it appears that the bright signal seen in ultrashort echo time imaging resides within the noncalcified cartilage. Furthermore, the most likely sources of this signal are the rapid T1 relaxation of the deep cartilage and the susceptibility-induced effects arising from the calcified tissues.
Collapse
Affiliation(s)
- Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Henri P P Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Sakari S Karhula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,SIB Labs, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
13
|
Tornifoglio B, Stone AJ, Johnston RD, Shahid SS, Kerskens C, Lally C. Diffusion tensor imaging and arterial tissue: establishing the influence of arterial tissue microstructure on fractional anisotropy, mean diffusivity and tractography. Sci Rep 2020; 10:20718. [PMID: 33244026 PMCID: PMC7693170 DOI: 10.1038/s41598-020-77675-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigates diffusion tensor imaging (DTI) for providing microstructural insight into changes in arterial tissue by exploring how cell, collagen and elastin content effect fractional anisotropy (FA), mean diffusivity (MD) and tractography. Five ex vivo porcine carotid artery models (n = 6 each) were compared-native, fixed native, collagen degraded, elastin degraded and decellularised. Vessels were imaged at 7 T using a DTI protocol with b = 0 and 800 s/mm2 and 10 isotopically distributed directions. FA and MD were evaluated in the vessel media and compared across models. FA values measured in native (p < 0.0001), fixed native (p < 0.0001) and collagen degraded (p = 0.0018, p = 0.0016, respectively) were significantly higher than those in elastin degraded and decellularised arteries. Native and fixed native had significantly lower MD values than elastin degraded (p < 0.0001) and decellularised tissue (p = 0.0032, p = 0.0003, respectively). Significantly lower MD was measured in collagen degraded compared with the elastin degraded model (p = 0.0001). Tractography yielded helically arranged tracts for native and collagen degraded vessels only. FA, MD and tractography were found to be highly sensitive to changes in the microstructural composition of arterial tissue, specifically pointing to cell, not collagen, content as the dominant source of the measured anisotropy in the vessel wall.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - S S Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Lee SH, Han MJ, Lee J, Lee SK. Experimental setup for bulk susceptibility effect-minimized, multi-orientation MRI of ex vivo tissue samples. Med Phys 2020; 47:3032-3043. [PMID: 32282079 DOI: 10.1002/mp.14174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Many conventional ex vivo magnetic resonance imaging (MRI) setups utilize cylindrical or other nonspherical tissue containers which can cause static field (B0 ) inhomogeneity affecting the accuracy of the measurements in an orientation-dependent manner. In this work we demonstrate an experimental method to obtain MRI of ex vivo tissue samples held in a spherical container in order to minimize bulk susceptibility-induced B0 inhomogeneity in arbitrary orientations. METHODS B0 inhomogeneity caused by tissue-air susceptibility mismatch can be theoretically eliminated if the surface of susceptibility discontinuity is spherical. This situation can be approximated by putting a tissue sample in a spherical shell filled with materials with tissue-like magnetic susceptibility. We achieved this on an intact monkey brain by (a) holding the brain with a three-dimensional (3D)-printed holder with tissue-like (within 0.5 ppm) susceptibility, and (b) enclosing the brain and the holder in an acrylic spherical shell filled with diamagnetic liquid. Furthermore, the sphere and the radio-frequency coil for MRI were mounted on a 3D-printed frame designed to reduce B0 inhomogeneity contributions. The sphere could be rotated freely without disturbing the RF coil to facilitate multi-orientation imaging. We verified our setup by mapping B0 in the monkey brain at 13 different orientations in a human 7T scanner, and measuring orientation-dependent R 2 ∗ relaxation rates in the white and gray matters of the brain. The results were then compared with a setup where the brain was held inside a cylindrical container. RESULTS In all orientations, the B0 standard deviation in the brain in the spherical setup (converted to Larmor frequency offset) was less than about 10 Hz. This corresponds to two-sigma deviation of B0 of <0.07 ppm. The B0 gradient was <9 Hz/mm in 95 % of the brain voxels in all orientations. In high-resolution imaging with e.g. voxel size <0.4 mm, this corresponds to voxel line broadening of <4 Hz (0.013 ppm). R 2 ∗ in the corpus callosum showed distinctly different orientation dependence compared to the gray matter. The B0 uniformity and R 2 ∗ reliability were much reduced in the cylindrical container setup. CONCLUSIONS We have demonstrated an experimental method to effectively minimize bulk susceptibility-induced B0 perturbation in multi-orientation ex vivo MRI. The method promises to benefit a range of tissue orientation-dependent MR property studies.
Collapse
Affiliation(s)
- So-Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Min-Jun Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Seung-Kyun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea.,Department of Physics, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
15
|
Tóth F, Johnson CP, Mills B, Nissi MJ, Nykänen O, Ellermann J, Ludwig KD, Tompkins M, Carlson CS. Evaluation of the Suitability of Miniature Pigs as an Animal Model of Juvenile Osteochondritis Dissecans. J Orthop Res 2019; 37:2130-2137. [PMID: 31115932 PMCID: PMC6739150 DOI: 10.1002/jor.24353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Juvenile osteochondritis dissecans (JOCD) is a developmental disease characterized by formation of intra-articular (osteo)chondral flaps or fragments. Evidence-based treatment guidelines for JOCD are currently lacking. An animal model would facilitate study of JOCD and evaluation of diagnostic and treatment approaches. The purpose of this study was to assess the suitability of miniature pigs as a model of JOCD at the distal femur. First, stifle (knee) joints harvested from three juvenile miniature pigs underwent magnetic resonance imaging (MRI) to establish the vascular architecture of the distal femoral epiphyseal cartilage. Second, vessels supplying the axial or abaxial aspects of the medial femoral condyle were surgically interrupted in four additional juvenile miniature pigs, and the developing epiphyseal cartilage lesions were monitored using three consecutive MRI examinations over nine weeks. The miniature pigs were then euthanized, and their distal femora were harvested for histological evaluation. Vascular architecture of the distal femoral epiphyseal cartilage in the miniature pigs was found to be nearly identical to that of juvenile human subjects, characterized by separate vascular beds supplying the axial and abaxial aspects of the condyles. Surgical interruption of the vascular supply to the abaxial aspect of the medial femoral condyle resulted in ischemic cartilage necrosis (a precursor lesion of JOCD) in 75% (3/4) of the miniature pigs. Cartilage lesions were identified during the first MRI performed 3 weeks post-operatively. No clinically apparent JOCD-like lesions developed. In conclusion, miniature pigs are suitable for modeling JOCD precursor lesions. Further investigation of the model is warranted to assess induction of clinically apparent JOCD lesions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2130-2137, 2019.
Collapse
Affiliation(s)
- Ferenc Tóth
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Casey P. Johnson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Benigno Mills
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Mikko J. Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Kai D. Ludwig
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Marc Tompkins
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
16
|
Nykänen O, Sarin JK, Ketola JH, Leskinen H, Te Moller NCR, Tiitu V, Mancini IAD, Visser J, Brommer H, van Weeren PR, Malda J, Töyräs J, Nissi MJ. T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage. Osteoarthritis Cartilage 2019; 27:1481-1490. [PMID: 31276818 DOI: 10.1016/j.joca.2019.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the potential of quantitative susceptibility mapping (QSM) and T2* relaxation time mapping to determine mechanical and structural properties of articular cartilage via univariate and multivariate analysis. METHODS Samples were obtained from a cartilage repair study, in which surgically induced full-thickness chondral defects in the stifle joints of seven Shetland ponies caused post-traumatic osteoarthritis (14 samples). Control samples were collected from non-operated joints of three animals (6 samples). Magnetic resonance imaging (MRI) was performed at 9.4 T, using a 3-D multi-echo gradient echo sequence. Biomechanical testing, digital densitometry (DD) and polarized light microscopy (PLM) were utilized as reference methods. To compare MRI parameters with reference parameters (equilibrium and dynamic moduli, proteoglycan content, collagen fiber angle and -anisotropy), depth-wise profiles of MRI parameters were acquired at the biomechanical testing locations. Partial least squares regression (PLSR) and Spearman's rank correlation were utilized in data analysis. RESULTS PLSR indicated a moderate-to-strong correlation (ρ = 0.49-0.66) and a moderate correlation (ρ = 0.41-0.55) between the reference values and T2* relaxation time and QSM profiles, respectively (excluding superficial-only results). PLSR correlations were noticeably higher than direct correlations between bulk MRI and reference parameters. 3-D parametric surface maps revealed spatial variations in the MRI parameters between experimental and control groups. CONCLUSION Quantitative parameters from 3-D multi-echo gradient echo MRI can be utilized to predict the properties of articular cartilage. With PLSR, especially the T2* relaxation time profile appeared to correlate with the properties of cartilage. Furthermore, the results suggest that degeneration affects the QSM-contrast in the cartilage. However, this change in contrast is not easy to quantify.
Collapse
Affiliation(s)
- O Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - J K Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - J H Ketola
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - H Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - N C R Te Moller
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - V Tiitu
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland.
| | - I A D Mancini
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Visser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - H Brommer
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - P R van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - J Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - J Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - M J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| |
Collapse
|
17
|
Wei H, Lin H, Qin L, Cao S, Zhang Y, He N, Chen W, Yan F, Liu C. Quantitative susceptibility mapping of articular cartilage in patients with osteoarthritis at 3T. J Magn Reson Imaging 2018; 49:1665-1675. [PMID: 30584684 DOI: 10.1002/jmri.26535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) has recently been applied in humans to quantify the magnetic susceptibility of collagen fibrils in the articular cartilage. PURPOSE To determine the ability of QSM to detect cartilage matrix degeneration between normal and early knee osteoarthritis (OA) patients. STUDY TYPE Prospective. POPULATION Twenty-four patients with knee OA and 24 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo, T1 turbo spin echo, and proton density-weighted (PDw) spectral attenuated inversion recovery (SPAIR) sequence at 3.0T. ASSESSMENT Scan-rescan reproducibility of the susceptibility values in the cartilage was assessed in control subjects. Cartilage thickness, volume, mean, and standard deviation (SD) of susceptibility values of the cartilage compartments were compared between normal and OA patients. The relationship between magnetic susceptibility values and cartilage lesion grading based on MR images was studied. STATISTICAL TESTS The Wilcoxon Rank-Sum test was used to compare cartilage thickness, volume, mean, and SD of susceptibility values between control subjects and OA patients. A Spearman rank correlation was performed to study the relationship between the mean and SD of susceptibility values and the cartilage thinning grades. RESULTS The SD of magnetic susceptibility values in the knee cartilage was significantly lower in OA patients compared with healthy controls, and it decreased with more severe MR grades of cartilage thinning degeneration. Significant correlations between the SD of susceptibility values and cartilage thinning grades were observed with R2 = 0.64 and P = 0.000, R2 = 0.47 and P = 0.002, R2 = 0.52 and P = 0.001, R2 = 0.42 and P = 0.0006, and R2 = 0.67 and P = 0.000 for medial femoral condyle (MFC), lateral femoral condyle (LFC), medial tibia (MT), lateral tibia (LT), and patella, respectively. No significant difference was found in cartilage volume (P = 0.17, P = 0.13, P = 0.20, P = 0.25, and P = 0.18 for MFC, LFC, MT, LT, and patella, respectively) and thickness (P = 0.31, P = 0.19, P = 0.16, P = 0.09, and P = 0.22 for MFC, LFC, MT, LT, and patella, respectively) between OA patients and healthy controls. DATA CONCLUSION The variations of susceptibility values in the knee cartilage decrease with the degree of cartilage degeneration. QSM may be a sensitive indicator for alteration of the collagen network and shows potential to detect cartilage degeneration at early stage. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, MED-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Huimin Lin
- School of Information Scienece and Technology, Shanghaitech University, Shanghai, P.R. China
| | - Le Qin
- School of Information Scienece and Technology, Shanghaitech University, Shanghai, P.R. China
| | - Steven Cao
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Yuyao Zhang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,School of Information Scienece and Technology, Shanghaitech University, Shanghai, P.R. China
| | - Naying He
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weibo Chen
- Philips Healthcare, Shanghai, P.R. China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
Nykänen O, Rieppo L, Töyräs J, Kolehmainen V, Saarakkala S, Shmueli K, Nissi MJ. Quantitative susceptibility mapping of articular cartilage: Ex vivo findings at multiple orientations and following different degradation treatments. Magn Reson Med 2018; 80:2702-2716. [PMID: 29687923 PMCID: PMC6220965 DOI: 10.1002/mrm.27216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
Purpose We investigated the feasibility of quantitative susceptibility mapping (QSM) for assessing degradation of articular cartilage by measuring ex vivo bovine cartilage samples subjected to different degradative treatments. Specimens were scanned at several orientations to study if degradation affects the susceptibility anisotropy. T2*‐mapping, histological stainings, and polarized light microscopy were used as reference methods. Additionally, simulations of susceptibility in layered geometry were performed. Methods Samples (n = 9) were harvested from the patellae of skeletally mature bovines. Three specimens served as controls, and the rest were artificially degraded. MRI was performed at 9.4T using a 3D gradient echo sequence. QSM and T2* images and depth profiles through the centers of the samples were compared with each other and the histological findings. A planar isotropic model with depth‐wise susceptibility variation was used in the simulations. Results A strong diamagnetic contrast was seen in the deep and calcified layers of cartilage, while T2* maps reflected the typical trilaminar structure of the collagen network. Anisotropy of susceptibility in cartilage was observed and was found to differ from the T2* anisotropy. Slight changes were observed in QSM and T2* following the degradative treatments. In simulations, anisotropy was observed. Conclusions The results suggest that QSM is not sensitive to cartilage proteoglycan content, but shows sensitivity to the amount of calcification and to the integrity of the collagen network, providing potential for assessing osteoarthritis. The simulations suggested that the anisotropy of susceptibility might be partially explained by the layered geometry of susceptibility in cartilage.
Collapse
Affiliation(s)
- Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Lassi Rieppo
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ville Kolehmainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Karin Shmueli
- Department of Medical Physics & Biomedical Engineering, University College London (UCL), London, United Kingdom
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|