1
|
Huang J, Chen Z, van Zijl PCM, Law LH, Pemmasani Prabakaran RS, Park SW, Xu J, Chan KWY. Effect of inhaled oxygen level on dynamic glucose-enhanced MRI in mouse brain. Magn Reson Med 2024; 92:57-68. [PMID: 38308151 PMCID: PMC11055662 DOI: 10.1002/mrm.30035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rohith Saai Pemmasani Prabakaran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Mohanta Z, Stabinska J, Gilad AA, Barker PB, McMahon MT. The Proton Resonance Enhancement for CEST imaging and Shift Exchange (PRECISE) family of RF pulse shapes for Chemical Exchange Saturation Transfer MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599565. [PMID: 38948741 PMCID: PMC11212941 DOI: 10.1101/2024.06.19.599565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Purpose To optimize a 100 msec pulse for producing CEST MRI contrast and evaluate in mice. Methods A gradient ascent algorithm was employed to generate a family of 100 point, 100 msec pulses for use in CEST pulse trains ('PRECISE'). Gradient ascent optimizations were performed for exchange rates (k ca ) = 500 s -1 , 1,500 s -1 , 2,500 s -1 , 3,500 s -1 and 4,500 s -1 and offsets (Δω) = 9.6, 7.8, 4.2 and 2.0 ppm. 7 PRECISE pulse shapes were tested on an 11.7 T scanner using a phantom containing three representative CEST agents with peak saturation B 1 = 4 μT. The pulse producing the most contrast in phantoms was then evaluated for CEST MRI pH mapping of the kidneys in healthy mice after iopamidol administration. Results The most promising pulse in terms of contrast performance across all three phantoms was the 9.6 ppm, 2500 s -1 optimized pulse with ∼2.7 x improvement over Gaussian and ∼1.3x's over Fermi pulses. This pulse also displayed a large improvement in contrast over the Gaussian pulse after administration of iopamidol in live mice. Conclusion A new 100 msec pulse was developed based on gradient ascent optimizations which produced better contrast compared to standard Gaussian and Fermi pulses in phantoms. This shape also showed a substantial improvement for CEST MRI pH mapping in live mice over the Gaussian shape and appears promising for a wide range of CEST applications.
Collapse
|
3
|
Rivlin M, Perlman O, Navon G. Metabolic brain imaging with glucosamine CEST MRI: in vivo characterization and first insights. Sci Rep 2023; 13:22030. [PMID: 38086821 PMCID: PMC10716494 DOI: 10.1038/s41598-023-48515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The utility of chemical exchange saturation transfer (CEST) MRI for monitoring the uptake of glucosamine (GlcN), a safe dietary supplement, has been previously demonstrated in detecting breast cancer in both murine and human subjects. Here, we studied and characterized the detectability of GlcN uptake and metabolism in the brain. Following intravenous GlcN administration in mice, CEST brain signals calculated by magnetization transfer ratio asymmetry (MTRasym) analysis, were significantly elevated, mainly in the cortex, hippocampus, and thalamus. The in vivo contrast remained stable during 40 min of examination, which can be attributed to GlcN uptake and its metabolic products accumulation as confirmed using 13C NMR spectroscopic studies of brain extracts. A Lorentzian multi-pool fitting analysis revealed an increase in the hydroxyl, amide, and relayed nuclear Overhauser effect (rNOE) signal components after GlcN treatment. With its ability to cross the blood-brain barrier (BBB), the GlcN CEST technique has the potential to serve as a metabolic biomarker for the diagnosis and monitoring various brain disorders.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
5
|
Bie C, van Zijl P, Xu J, Song X, Yadav NN. Radiofrequency labeling strategies in chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4944. [PMID: 37002814 PMCID: PMC10312378 DOI: 10.1002/nbm.4944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has generated great interest for molecular imaging applications because it can image low-concentration solute molecules in vivo with enhanced sensitivity. CEST effects are detected indirectly through a reduction in the bulk water signal after repeated perturbation of the solute proton magnetization using one or more radiofrequency (RF) irradiation pulses. The parameters used for these RF pulses-frequency offset, duration, shape, strength, phase, and interpulse spacing-determine molecular specificity and detection sensitivity, thus their judicious selection is critical for successful CEST MRI scans. This review article describes the effects of applying RF pulses on spin systems and compares conventional saturation-based RF labeling with more recent excitation-based approaches that provide spectral editing capabilities for selectively detecting molecules of interest and obtaining maximal contrast.
Collapse
Affiliation(s)
- Chongxue Bie
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shaanxi 710127 (China)
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Peter van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
6
|
Lehmann PM, Seidemo A, Andersen M, Xu X, Li X, Yadav NN, Wirestam R, Liebig P, Testud F, Sundgren P, van Zijl PCM, Knutsson L. A numerical human brain phantom for dynamic glucose-enhanced (DGE) MRI: On the influence of head motion at 3T. Magn Reson Med 2023; 89:1871-1887. [PMID: 36579955 PMCID: PMC9992166 DOI: 10.1002/mrm.29563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Dynamic glucose-enhanced (DGE) MRI relates to a group of exchange-based MRI techniques where the uptake of glucose analogues is studied dynamically. However, motion artifacts can be mistaken for true DGE effects, while motion correction may alter true signal effects. The aim was to design a numerical human brain phantom to simulate a realistic DGE MRI protocol at 3T that can be used to assess the influence of head movement on the signal before and after retrospective motion correction. METHODS MPRAGE data from a tumor patient were used to simulate dynamic Z-spectra under the influence of motion. The DGE responses for different tissue types were simulated, creating a ground truth. Rigid head movement patterns were applied as well as physiological dilatation and pulsation of the lateral ventricles and head-motion-induced B0 -changes in presence of first-order shimming. The effect of retrospective motion correction was evaluated. RESULTS Motion artifacts similar to those previously reported for in vivo DGE data could be reproduced. Head movement of 1 mm translation and 1.5 degrees rotation led to a pseudo-DGE effect on the order of 1% signal change. B0 effects due to head motion altered DGE changes due to a shift in the water saturation spectrum. Pseudo DGE effects were partly reduced or enhanced by rigid motion correction depending on tissue location. CONCLUSION DGE MRI studies can be corrupted by motion artifacts. Designing post-processing methods using retrospective motion correction including B0 correction will be crucial for clinical implementation. The proposed phantom should be useful for evaluation and optimization of such techniques.
Collapse
Affiliation(s)
- Patrick M Lehmann
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anina Seidemo
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Mads Andersen
- Philips Healthcare, Copenhagen, Denmark
- Lund University Bioimaging Centre, Lund University, Lund, Sweden
| | - Xiang Xu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland, USA
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | - Pia Sundgren
- Lund University Bioimaging Centre, Lund University, Lund, Sweden
- Department of Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Eleftheriou A, Ravotto L, Wyss MT, Warnock G, Siebert A, Zaiss M, Weber B. Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. Neuroimage 2023; 265:119762. [PMID: 36427752 DOI: 10.1016/j.neuroimage.2022.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose is the main energy source in the brain and its regulated uptake and utilization are important biomarkers of pathological brain function. Glucose Chemical Exchange Saturation Transfer (GlucoCEST) and its time-resolved version Dynamic Glucose-Enhanced MRI (DGE) are promising approaches to monitor glucose and detect tumors, since they are radioactivity-free, do not require 13C labeling and are is easily translatable to the clinics. The main principle of DGE is clear. However, what remains to be established is to which extent the signal reflects vascular, extracellular or intracellular glucose. To elucidate the compartmental contributions to the DGE signal, we coupled it with FRET-based fiber photometry of genetically encoded sensors, a technique that combines quantitative glucose readout with cellular specificity. The glucose sensor FLIIP was used with fiber photometry to measure astrocytic and neuronal glucose changes upon injection of D-glucose, 3OMG and L-glucose, in the anaesthetized murine brain. By correlating the kinetic profiles of the techniques, we demonstrate the presence of a vascular contribution to the signal, especially at early time points after injection. Furthermore, we show that, in the case of the commonly used contrast agent 3OMG, the DGE signal actually anticorrelates with the glucose concentration in neurons and astrocytes.
Collapse
Affiliation(s)
- Afroditi Eleftheriou
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Luca Ravotto
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Matthias T Wyss
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Anita Siebert
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Moritz Zaiss
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany; High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Dickie BR, Jin T, Wang P, Hinz R, Harris W, Boutin H, Parker GJ, Parkes LM, Matthews JC. Quantitative kinetic modelling and mapping of cerebral glucose transport and metabolism using glucoCESL MRI. J Cereb Blood Flow Metab 2022; 42:2066-2079. [PMID: 35748031 PMCID: PMC9580170 DOI: 10.1177/0271678x221108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rainer Hinz
- Division of Informatics, Imaging, and Data Science, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - William Harris
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, Manchester, UK.,Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of Neuroinflammation, University College London, London, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Julian C Matthews
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
9
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
10
|
Chemical Exchange Saturation Transfer for Pancreatic Ductal Adenocarcinoma Evaluation. Pancreas 2022; 51:463-468. [PMID: 35858211 DOI: 10.1097/mpa.0000000000002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aims of the study are to evaluate the feasibility of using pH-sensitive magnetic resonance imaging, chemical exchange saturation transfer (CEST) in pancreatic imaging and to differentiate pancreatic ductal adenocarcinoma (PDAC) with the nontumor pancreas (upstream and downstream) and normal control pancreas. METHODS Sixteen CEST images with PDAC and 12 CEST images with normal volunteers were acquired and magnetization transfer ratio with asymmetric analysis were measured in areas of PDAC, upstream, downstream, and normal control pancreas. One-way analysis of variance and receiver operating characteristic curve were used to differentiate tumor from nontumor pancreas. RESULTS Areas with PDAC showed higher signal intensity than upstream and downstream on CEST images. The mean (standard deviation) values of magnetization transfer ratio with asymmetric analysis were 0.015 (0.034), -0.044 (0.030), -0.019 (0.027), and -0.037 (0.031), respectively, in PDAC area, upstream, downstream, and nontumor area in patient group and -0.008 (0.024) in normal pancreas. Significant differences were found between PDAC and upstream ( P < 0.001), between upstream and normal pancreas ( P = 0.04). Area under curve is 0.857 in differentiating PDAC with nontumor pancreas. CONCLUSIONS pH-sensitive CEST MRI is feasible in pancreatic imaging and can be used to differentiate PDAC from nontumor pancreas. This provides a novel metabolic imaging method in PDAC.
Collapse
|
11
|
Stabinska J, Müller-Lutz A, Wittsack HJ, Tell C, Rump LC, Ertas N, Antoch G, Ljimani A. Two point Dixon-based chemical exchange saturation transfer (CEST) MRI in renal transplant patients on 3 T. Magn Reson Imaging 2022; 90:61-69. [PMID: 35476934 DOI: 10.1016/j.mri.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the performance of two point (2-pt) Dixon-based chemical exchange saturation transfer (CEST) imaging for fat suppression in renal transplant patients. METHODS The 2-pt Dixon-based CEST MRI was validated in an egg-phantom and in fourteen renal transplant recipients (5 females and 9 males; age range: 23-78 years; mean age: 51 ± 16.8). All CEST experiments were performed on a 3 T clinical MRI scanner using a dual-echo CEST sequence. The 2-pt Dixon technique was applied to generate water-only CEST images at different frequency offsets, which were further used to calculate the z-spectra. The magnetization transfer ratio asymmetry (MTRasym) values in the frequency ranges of hydroxyl, amine and amide protons were estimated in the renal cortex and medulla. RESULTS Results of the in vitro experiments suggest that the 2-pt Dixon technique enables effective fat peak removal and does not introduce additional asymmetries to the z-spectrum. Accordingly, our results in vivo show that the fat-corrected amide proton transfer (APT) effect in the kidney is significantly higher compared to that obtained from the CEST data acquired close to the in-phase condition both in the renal cortex (-0.1 [0.7] vs. -0.7 [1.2], P = 0.029) and medulla (0.3 [0.8] vs. 0.01 [1.3], P = 0.049), indicating that the 2-pt Dixon-based CEST method increases the specificity of the APT contrast by correcting the fat-induced artifacts. CONCLUSION Combination of the dual-echo CEST acquisition with Dixon post-processing provides effective water-fat separation, allowing more accurate quantification of the APT CEST effect in the transplanted kidney.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Christian Tell
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Neslihan Ertas
- Department of Vascular and Endovascular Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, Arnold PM, Hassaneen W. Ultra-High-Field MRI in the Diagnosis and Management of Gliomas: A Systematic Review. Front Neurol 2022; 13:857825. [PMID: 35449515 PMCID: PMC9016277 DOI: 10.3389/fneur.2022.857825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Importance: Gliomas, tumors of the central nervous system, are classically diagnosed through invasive surgical biopsy and subsequent histopathological study. Innovations in ultra-high field (UHF) imaging, namely 7-Tesla magnetic resonance imaging (7T MRI) are advancing preoperative tumor grading, visualization of intratumoral structures, and appreciation of small brain structures and lesions. Objective Summarize current innovative uses of UHF imaging techniques in glioma diagnostics and treatment. Methods A systematic review in accordance with PRISMA guidelines was performed utilizing PubMed. Case reports and series, observational clinical trials, and randomized clinical trials written in English were included. After removing unrelated studies and those with non-human subjects, only those related to 7T MRI were independently reviewed and summarized for data extraction. Some preclinical animal models are briefly described to demonstrate future usages of ultra-high-field imaging. Results We reviewed 46 studies (43 human and 3 animal models) which reported clinical usages of UHF MRI in the diagnosis and management of gliomas. Current literature generally supports greater resolution imaging from 7T compared to 1.5T or 3T MRI, improving visualization of cerebral microbleeds and white and gray matter, and providing more precise localization for radiotherapy targeting. Additionally, studies found that diffusion or susceptibility-weighted imaging techniques applied to 7T MRI, may be used to predict tumor grade, reveal intratumoral structures such as neovasculature and microstructures like axons, and indicate isocitrate dehydrogenase 1 mutation status in preoperative imaging. Similarly, newer imaging techniques such as magnetic resonance spectroscopy and chemical exchange saturation transfer imaging can be performed on 7T MRI to predict tumor grading and treatment efficacy. Geometrical distortion, a known challenge of 7T MRI, was at a tolerable level in all included studies. Conclusion UHF imaging has the potential to preoperatively and non-invasively grade gliomas, provide precise therapy target areas, and visualize lesions not seen on conventional MRI.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Aaron T Anderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Fan Lam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| |
Collapse
|
13
|
Han Z, Chen C, Xu X, Bai R, Staedtke V, Huang J, Chan KW, Xu J, Kamson DO, Wen Z, Knutsson L, van Zijl PC, Liu G. Dynamic contrast-enhanced CEST MRI using a low molecular weight dextran. NMR IN BIOMEDICINE 2022; 35:e4649. [PMID: 34779550 PMCID: PMC8828685 DOI: 10.1002/nbm.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 05/25/2023]
Abstract
Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = -1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.
Collapse
Affiliation(s)
- Zheng Han
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Chuheng Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Xiang Xu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Renyuan Bai
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Verena Staedtke
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie W.Y. Chan
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linda Knutsson
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Peter C.M. van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
14
|
Huang J, Lai JHC, Han X, Chen Z, Xiao P, Liu Y, Chen L, Xu J, Chan KWY. Sensitivity schemes for dynamic glucose-enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T. NMR IN BIOMEDICINE 2022; 35:e4640. [PMID: 34750891 DOI: 10.1002/nbm.4640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
We investigated three dynamic glucose-enhanced (DGE) MRI methods for sensitively monitoring glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF) at clinical field strength (3 T). By comparing three sequences, namely, Carr-Purcell-Meiboom-Gill (CPMG), on-resonance variable delay multipulse (onVDMP), and on-resonance spin-lock (onSL), a high-sensitivity DGE MRI scheme with truncated multilinear singular value decomposition (MLSVD) denoising was proposed. The CPMG method showed the highest sensitivity in detecting the parenchymal DGE signal among the three methods, while both onVDMP and onSL were more robust for CSF DGE imaging. Here, onVDMP was applied for CSF imaging, as it displayed the best stability of the DGE results in this study. The truncated MLSVD denoising method was incorporated to further improve the sensitivity. The proposed DGE MRI scheme was examined in mouse brain with 50%/25%/12.5% w/w D-glucose injections. The results showed that this combination could detect DGE signal changes from the brain parenchyma and CSF with as low as a 12.5% w/w D-glucose injection. The proposed DGE MRI schemes could sensitively detect the glucose signal change from brain parenchyma and CSF after D-glucose injection at a clinically relevant concentration, demonstrating high potential for clinical translation.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Lin Chen
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
15
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Kim M, Eleftheriou A, Ravotto L, Weber B, Rivlin M, Navon G, Capozza M, Anemone A, Longo DL, Aime S, Zaiss M, Herz K, Deshmane A, Lindig T, Bender B, Golay X. What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. MAGMA (NEW YORK, N.Y.) 2022; 35:87-104. [PMID: 35032288 PMCID: PMC8901523 DOI: 10.1007/s10334-021-00994-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both d-glucose and glucose analogs, such as 3-oxy-methyl-d-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the “glucoCEST Imaging of Neoplastic Tumors (GLINT)” consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.
Collapse
Affiliation(s)
- Mina Kim
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Afroditi Eleftheriou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martina Capozza
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anagha Deshmane
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Tobias Lindig
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
| | | |
Collapse
|
17
|
Pavuluri K, Yang E, Ayyappan V, Sonkar K, Tan Z, Tressler CM, Bo S, Bibic A, Glunde K, McMahon MT. Unlabeled aspirin as an activatable theranostic MRI agent for breast cancer. Theranostics 2022; 12:1937-1951. [PMID: 35198081 PMCID: PMC8825591 DOI: 10.7150/thno.53147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
Rationale: Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is emerging as an alternative to gadolinium-based contrast MRI. We have evaluated the possibility of CEST MRI of orthotopic breast tumor xenografts with unlabeled aspirin's conversion to salicylic acid (SA) through various enzymatic activities, most notably inhibition of cyclooxygenase (COX)-1/-2 enzymes. Methods: We measured the COX-1/-2 expression in four breast cancer cell lines by Western Blot analysis and selected the highest and lowest expressing cell lines. We then performed CEST MRI following aspirin treatment to detect SA levels and ELISA to measure levels of downstream prostaglandin E2 (PGE2). We also injected aspirin into the tail vein of mice growing orthotopic tumor xenografts which expressed high and low COX-1/-2 and acquired SA CEST MR images of these tumor xenografts for up to 70 minutes. Tumors were then harvested to perform Western Blot and ELISA experiments to measure COX-1/-2 expression and PGE2 levels, respectively. Results: Western Blots determined that SUM159 cells contained significantly higher COX-1/-2 expression levels than MDA-MB-231 cells, in line with higher levels of downstream PGE2. SA CEST MRI yielded similar contrast at approximately 3% for both cell lines, independent of COX-1/-2 expression level. PGE2 levels decreased by about 50% following aspirin treatment. Results from our mouse study aligned with cultured cells, the overall SA CEST MRI contrast in both MDA-MB-231 and SUM159 tumor xenograft models was 5~8% at one hour post injection. PGE2 levels were ten times higher in SUM159 than MDA-MB-231 and decreased by 50%. The CEST contrast directly depended on the injected dose, with ~6%, ~3% and ~1.5% contrast observed following injection of 100 µL of 300 mM, 200 mM and 150 mM aspirin, respectively. Conclusions: Our data demonstrate the feasibility of using aspirin as a noninvasive activatable CEST MRI contrast agent for breast tumor detection.
Collapse
Affiliation(s)
- KowsalyaDevi Pavuluri
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ethan Yang
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vinay Ayyappan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kanchan Sonkar
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zheqiong Tan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Caitlin M. Tressler
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shaowei Bo
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adnan Bibic
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD.,✉ Corresponding authors: ,
| | - Michael T McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD.,✉ Corresponding authors: ,
| |
Collapse
|
18
|
Anemone A, Capozza M, Arena F, Zullino S, Bardini P, Terreno E, Longo DL, Aime S. In vitro and in vivo comparison of MRI chemical exchange saturation transfer (CEST) properties between native glucose and 3-O-Methyl-D-glucose in a murine tumor model. NMR IN BIOMEDICINE 2021; 34:e4602. [PMID: 34423470 PMCID: PMC9285575 DOI: 10.1002/nbm.4602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 05/05/2023]
Abstract
D-Glucose and 3-O-Methyl-D-glucose (3OMG) have been shown to provide contrast in magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) images. However, a systematic comparison between these two molecules has yet to be performed. The current study deals with the assessment of the effect of pH, saturation power level (B1 ) and magnetic field strength (B0 ) on the MRI-CEST contrast with the aim of comparing the in vivo CEST contrast detectability of these two agents in the glucoCEST procedure. Phosphate-buffered solutions of D-Glucose or 3OMG (20 mM) were prepared at different pH values and Z-spectra were acquired at several B1 levels at 37°C. In vivo glucoCEST images were obtained at 3 and 7 T over a period of 30 min after injection of D-Glucose or 3OMG (at doses of 1.5 or 3 g/kg) in a murine melanoma tumor model (n = 3-5 mice for each molecule, dose and B0 field). A markedly different pH dependence of CEST response was observed in vitro for D-Glucose and 3OMG. The glucoCEST contrast enhancement in the tumor region following intravenous administration (at the 3 g/kg dose) was comparable for both molecules: 1%-2% at 3 T and 2%-3% at 7 T. The percentage change in saturation transfer that resulted was almost constant for 3OMG over the 30-min period, whereas a significant increase was detected for D-Glucose. Our results show similar CEST contrast efficiency but different temporal kinetics for the metabolizable and the nonmetabolizable glucose derivatives in a tumor murine model when administered at the same doses.
Collapse
Affiliation(s)
- Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Francesca Arena
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Paola Bardini
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Enzo Terreno
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| |
Collapse
|
19
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
20
|
Lam B, Wendland M, Godines K, Shin SH, Vandsburger M. Accelerated multi-target chemical exchange saturation transfer magnetic resonance imaging of the mouse heart. Phys Med Biol 2021; 66. [PMID: 34167100 DOI: 10.1088/1361-6560/ac0e78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Cardiac chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) has been used to probe levels of various metabolites that provide insight into myocardial structure and function. However, imaging of the heart using CEST-MRI is prolonged by the need to repeatedly acquire multiple images for a full Z-spectrum and to perform saturation and acquisition around cardiac and respiratory cycles. Compressed sensing (CS) reconstruction of sparse data enables accelerated acquisition, but reconstruction artifacts may bias subsequently derived measures of CEST contrast. In this study, we examine the impact of CS reconstruction of increasingly under-sampled cardiac CEST-MRI data on subsequent CEST contrasts of amine-containing metabolites and amide-containing proteins. Cardiac CEST-MRI data sets were acquired in six mice using low and high RF saturation for single and dual contrast generation, respectively. CEST-weighted images were reconstructed using CS methods at 2-5× levels of under-sampling. CEST contrasts were derived from corresponding Z-spectra and the impact of accelerated imaging on accuracy was assessed via analysis of variance. CS reconstruction preserved myocardial signal to noise ratio as compared to conventional reconstruction. However, greater absolute error and distribution of derived contrasts was observed with increasing acceleration factors. The results from this study indicate that acquisition of radial cardiac CEST-MRI data can be modestly, but meaningfully, accelerated via CS reconstructions with little error in CEST contrast quantification.
Collapse
Affiliation(s)
- Bonnie Lam
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Michael Wendland
- Berkeley Pre-clinical Imaging Core, UC Berkeley, Berkeley CA, United States of America
| | - Kevin Godines
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Soo Hyun Shin
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Moriel Vandsburger
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| |
Collapse
|
21
|
Mamoune KE, Barantin L, Adriaensen H, Tillet Y. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging. J Chem Neuroanat 2021; 114:101944. [PMID: 33716103 DOI: 10.1016/j.jchemneu.2021.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
Collapse
Affiliation(s)
- Kahina El Mamoune
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; Siemens Healthcare SAS, Saint Denis, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Laurent Barantin
- iBrain, UMR 1253 INSERM, Université de Tours, 10 Bd Tonnellé, 37032 Tours, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Hans Adriaensen
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; CIRE UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France.
| |
Collapse
|
22
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
23
|
Multimodality In Vivo Imaging of Perfusion and Glycolysis in a Rat Model of C6 Glioma. Mol Imaging Biol 2021; 23:516-526. [PMID: 33534038 DOI: 10.1007/s11307-021-01585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Chemical exchange saturation transfer MRI using an infusion of glucose (glucoCEST) is sensitive to the distribution of glucose in vivo; however, whether glucoCEST is more related to perfusion or glycolysis is still debatable. We compared glucoCEST to computed tomography perfusion (CTP), [18F] fluorodeoxyglucose positron emission tomography (FDG-PET), and hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy imaging (MRSI) in a C6 rat model of glioma to determine if glucoCEST is more strongly correlated with measurements of perfusion or glycolysis. METHODS 106 C6 glioma cells were implanted in Wistar rat brains (n = 11). CTP (including blood volume, BV; blood flow, BF; and permeability surface area product, PS) and FDG-PET standardized uptake value (SUV) were acquired at 11 to 13 days post-surgery. GlucoCEST measurements (∆CEST) were acquired the following day on a 9.4 T MRI before and after an infusion of glucose solution. This was followed by MRSI on a 3.0 T MRI after the injection of hyperpolarized [1-13C] pyruvate to generate regional maps of the lactate:pyruvate ratio (Lac:Pyr). Pearson's correlations between glucoCEST, CTP, FDG-PET, and Lac:Pyr ratio were evaluated. RESULTS Tumors had significantly higher SUV, BV, and PS than the contralateral brain. Tumor ∆CEST was most strongly correlated with CTP measurements of BV (ρ = 0.74, P = 0.01) and PS (ρ = 0.55, P = 0.04). No significant correlation was found between glycolysis measurements of SUV or Lac:Pyr with tumor ∆CEST. PS significantly correlated with SUV (ρ = 0.58, P = 0.005) and Lac:Pyr (ρ = 0.75, P = 0.005). BV significantly correlated with Lac:Pyr (ρ = 0.57, P = 0.02), and BF significantly correlated with SUV (ρ = 0.49, P = 0.02). CONCLUSION This study determined that glucoCEST is more strongly correlated to measurements of perfusion than glycolysis. GlucoCEST measurements have additional confounds, such as sensitivity to changing pH, that merit additional investigation.
Collapse
|
24
|
Rivlin M, Navon G. Molecular imaging of cancer by glucosamine chemical exchange saturation transfer MRI: A preclinical study. NMR IN BIOMEDICINE 2021; 34:e4431. [PMID: 33103831 DOI: 10.1002/nbm.4431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosamine (GlcN) was recently proposed as an agent with an excellent safety profile to detect cancer with the chemical exchange saturation transfer (CEST) MRI technique. Translation of the GlcN CEST method to the clinical application requires evaluation of its sensitivity to the different frequency regions of irradiation. Hence, imaging of the GlcN signal was established for the full Z spectra recorded following GlcN administration to mice bearing implanted 4T1 breast tumors. Significant CEST effects were observed at around 1.5, 3.6 and -3.4 ppm, corresponding to the hydroxyl, amine/amide exchangeable protons and for the Nuclear Overhauser Enhancement (NOE), respectively. The sources of the observed CEST effects were investigated by identifying the GlcN metabolic products as observed by 13 C NMR spectroscopy studies of extracts from the same tumor model following treatment with [UL-13 C] -GlcN·HCl. The CEST contribution can be attributed to several phosphorylated products of GlcN, including uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), which is a substrate for the O-linked and N-linked glycosylated proteins that may be associated with the increase of the NOE signal. The observation of a significant amount of lactate among the metabolic products hints at acidification as one of the sources of the enhanced CEST effect of GlcN. The proposed method may offer a new approach for clinical molecular imaging that enables the detection of metabolically active tumors and may play a role in other diseases.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Liu G, van Zijl PC. CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Repurposing Clinical Agents for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2020; 14:ph14010011. [PMID: 33374213 PMCID: PMC7824058 DOI: 10.3390/ph14010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging is becoming an indispensable tool to pursue precision medicine. However, quickly translating newly developed magnetic resonance imaging (MRI) agents into clinical use remains a formidable challenge. Recently, Chemical Exchange Saturation Transfer (CEST) MRI is emerging as an attractive approach with the capability of directly using low concentration, exchangeable protons-containing agents for generating quantitative MRI contrast. The ability to utilize diamagnetic compounds has been extensively exploited to detect many clinical compounds, such as FDA approved drugs, X-ray/CT contrast agents, nutrients, supplements, and biopolymers. The ability to directly off-label use clinical compounds permits CEST MRI to be rapidly translated to clinical settings. In this review, the current status of CEST MRI based on clinically available compounds will be briefly introduced. The advancements and limitations of these studies are reviewed in the context of their pre-clinical or clinical applications. Finally, future directions will be briefly discussed.
Collapse
|
27
|
Abstract
Conventional medical imaging techniques use contrast agents that are chemically labeled, for example, iodine in the case of computed tomography, radioisotopes in the case of PET, or gadolinium in the case of MR imaging to create or enhance signal contrast and to visualize tissue compartments and features. Dynamic glucose-enhanced MR imaging represents a novel technique that uses natural, unlabeled d-glucose as a nontoxic biodegradable contrast agent in chemical exchange-sensitive MR imaging approaches.
Collapse
Affiliation(s)
- Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Alexander Radbruch
- Clinic for Diagnostic and Interventional Neuroradiology, Venusberg Campus 1, Bonn 53127, Germany
| |
Collapse
|
28
|
Wang J, Fukuda M, Chung JJ, Wang P, Jin T. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magn Reson Med 2020; 85:1953-1961. [PMID: 33107108 DOI: 10.1002/mrm.28557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Glucose and its analogs can be detected by CEST and chemical exchange spin-lock (CESL) MRI techniques, but sensitivity is still a bottleneck for human applications. Here, CESL and CEST sensitivity and the effect of injection on baseline physiology were evaluated for a glucose analog, xylose. METHODS The CEST and CESL sensitivity were evaluated at 9.4 T in phantoms and by in vivo rat experiments with 0.5 and 1 g/kg xylose injections. Arterial blood glucose level was sampled before and after 1 g/kg xylose injection. The effect of injection on baseline neuronal activity was measured by electrophysiology data during injections of saline, xylose, and 2-deoxy-D-glucose. RESULTS In phantoms, xylose shows similar chemical exchange sensitivity and pH-dependence with that of glucose. In rat experiments with a bolus injection, CESL shows higher sensitivity in the detection of xylose than CEST, and the sensitivity of xylose is much higher than glucose. Injection of xylose does not significantly affect blood glucose level and baseline neural activity for 1-g/kg and 0.6-g/kg doses, respectively. CONCLUSION Due to its relatively high sensitivity and safety, xylose is a promising contrast agent for the study of glucose uptake.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Xu X, Sehgal AA, Yadav NN, Laterra J, Blair L, Blakeley J, Seidemo A, Coughlin JM, Pomper MG, Knutsson L, van Zijl PCM. d-glucose weighted chemical exchange saturation transfer (glucoCEST)-based dynamic glucose enhanced (DGE) MRI at 3T: early experience in healthy volunteers and brain tumor patients. Magn Reson Med 2020; 84:247-262. [PMID: 31872916 PMCID: PMC7083699 DOI: 10.1002/mrm.28124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Dynamic glucose enhanced (DGE) MRI has shown potential for imaging glucose delivery and blood-brain barrier permeability at fields of 7T and higher. Here, we evaluated issues involved with translating d-glucose weighted chemical exchange saturation transfer (glucoCEST) experiments to the clinical field strength of 3T. METHODS Exchange rates of the different hydroxyl proton pools and the field-dependent T2 relaxivity of water in d-glucose solution were used to simulate the water saturation spectra (Z-spectra) and DGE signal differences as a function of static field strength B0 , radiofrequency field strength B1 , and saturation time tsat . Multislice DGE experiments were performed at 3T on 5 healthy volunteers and 3 glioma patients. RESULTS Simulations showed that DGE signal decreases with B0 , because of decreased contributions of glucoCEST and transverse relaxivity, as well as coalescence of the hydroxyl and water proton signals in the Z-spectrum. At 3T, because of this coalescence and increased interference of direct water saturation and magnetization transfer contrast, the DGE effect can be assessed over a broad range of saturation frequencies. Multislice DGE experiments were performed in vivo using a B1 of 1.6 µT and a tsat of 1 second, leading to a small glucoCEST DGE effect at an offset frequency of 2 ppm from the water resonance. Motion correction was essential to detect DGE effects reliably. CONCLUSION Multislice glucoCEST-based DGE experiments can be performed at 3T with sufficient temporal resolution. However, the effects are small and prone to motion influence. Therefore, motion correction should be used when performing DGE experiments at clinical field strengths.
Collapse
Affiliation(s)
- Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Akansha Ashvani Sehgal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaishri Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anina Seidemo
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jennifer M. Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
30
|
Huang J, van Zijl PCM, Han X, Dong CM, Cheng GWY, Tse KH, Knutsson L, Chen L, Lai JHC, Wu EX, Xu J, Chan KWY. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI. SCIENCE ADVANCES 2020; 6:eaba3884. [PMID: 32426510 PMCID: PMC7220384 DOI: 10.1126/sciadv.aba3884] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/09/2023]
Abstract
Altered cerebral glucose uptake is one of the hallmarks of Alzheimer's disease (AD). A dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) approach was developed to simultaneously monitor d-glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF). We observed substantially higher uptake in parenchyma of young (6 months) transgenic AD mice compared to age-matched wild-type (WT) mice. Notably lower uptakes were observed in parenchyma and CSF of old (16 months) AD mice. Both young and old AD mice had an obviously slower CSF clearance than age-matched WT mice. This resembles recent reports of the hampered CSF clearance that leads to protein accumulation in the brain. These findings suggest that DGE MRI can identify altered glucose uptake and clearance in young AD mice upon the emergence of amyloid plaques. DGE MRI of brain parenchyma and CSF has potential for early AD stratification, especially at 3T clinical field strength MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Celia M. Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Gerald W. Y. Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Corresponding author. (K.W.Y.C.); (J.X.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. (K.W.Y.C.); (J.X.)
| |
Collapse
|
31
|
Shaffer JJ, Mani M, Schmitz SL, Xu J, Owusu N, Wu D, Magnotta VA, Wemmie JA. Proton Exchange Magnetic Resonance Imaging: Current and Future Applications in Psychiatric Research. Front Psychiatry 2020; 11:532606. [PMID: 33192650 PMCID: PMC7542226 DOI: 10.3389/fpsyt.2020.532606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Proton exchange provides a powerful contrast mechanism for magnetic resonance imaging (MRI). MRI techniques sensitive to proton exchange provide new opportunities to map, with high spatial and temporal resolution, compounds important for brain metabolism and function. Two such techniques, chemical exchange saturation transfer (CEST) and T1 relaxation in the rotating frame (T1ρ), are emerging as promising tools in the study of neurological and psychiatric illnesses to study brain metabolism. This review describes proton exchange for non-experts, highlights the current status of proton-exchange MRI, and presents advantages and drawbacks of these techniques compared to more traditional methods of imaging brain metabolism, including positron emission tomography (PET) and MR spectroscopy (MRS). Finally, this review highlights new frontiers for the use of CEST and T1ρ in brain research.
Collapse
Affiliation(s)
- Joseph J Shaffer
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Samantha L Schmitz
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Nana Owusu
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Dee Wu
- Department of Radiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
32
|
Thomas AM, Xu J, Calabresi PA, van Zijl PCM, Bulte JWM. Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. Neuroimage 2019; 204:116245. [PMID: 31605825 DOI: 10.1016/j.neuroimage.2019.116245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder that targets myelin proteins and results in extensive damage in the central nervous system in the form of focal lesions as well as diffuse molecular changes. Lesions are currently detected using T1-weighted, T2-weighted, and gadolinium-enhanced magnetic resonance imaging (MRI); however, monitoring such lesions has been shown to be a poor predictor of disease progression. Chemical exchange saturation transfer (CEST) MRI is sensitive to many of the biomolecules in the central nervous system altered in MS that cannot be detected using conventional MRI. We monitored disease progression in an experimental autoimmune encephalomyelitis (EAE) model of MS using on resonance variable delay multiple pulse (onVDMP) CEST MRI. Alterations in onVDMP signal were observed in regions responsible for hindlimb function throughout the central nervous system. Histological analysis revealed glial activation in areas highlighted in onVDMP CEST MRI. onVDMP signal changes in the 3rd ventricle preceded paralysis onset that could not be observed with conventional MRI techniques. Hence, the onVDMP CEST MRI signal has potential as a novel imaging biomarker and predictor of disease progression in MS.
Collapse
Affiliation(s)
- Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Han Z, Liu G. Sugar-based biopolymers as novel imaging agents for molecular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1551. [PMID: 30666829 DOI: 10.1002/wnan.1551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Sugar-based biopolymers have been recognized as attractive materials to develop macromolecule- and nanoparticle-based cancer imaging and therapy. However, traditional biopolymer-based imaging approaches rely on the use of synthetic or isotopic labeling, and because of it, clinical translation often is hindered. Recently, a novel magnetic resonance imaging (MRI) technology, chemical exchange saturation transfer (CEST), has emerged, which allows the exploitation of sugar-based biopolymers as MRI agents by their hydroxyl protons-rich nature. In the study, we reviewed recent studies on the topic of CEST MRI detection of sugar-based biopolymers. The CEST MRI property of each biopolymer was briefly introduced, followed by the pre-clinical and clinical applications. The findings of these preliminary studies imply the enormous potential of CEST detectable sugar-based biopolymers in developing highly sensitive and translatable molecular imaging agents and constructing image-guided biopolymer-based drug delivery systems. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|