1
|
Janas A, Jordan J, Bertalan G, Meyer T, Bukatz J, Sack I, Senger C, Nieminen-Kelhä M, Brandenburg S, Kremenskaia I, Krantchev K, Al-Rubaiey S, Mueller S, Koch SP, Boehm-Sturm P, Reiter R, Zips D, Vajkoczy P, Acker G. In vivo characterization of brain tumor biomechanics: magnetic resonance elastography in intracranial B16 melanoma and GL261 glioma mouse models. Front Oncol 2024; 14:1402578. [PMID: 39324003 PMCID: PMC11422132 DOI: 10.3389/fonc.2024.1402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties in vivo. With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing. Methods Intracranial B16 MBM (n = 6) and GL261 GBM (n = 7) mouse models were used. Magnetic Resonance Imaging (MRI) was performed at set intervals after tumor implantation: 5, 7, 12, 14 days for MBM and 13 and 22 days for GBM. The investigations were performed using a 7T preclinical MRI with 20 mm head coil. The protocol consisted of single-shot spin echo-planar multifrequency MRE with tomoelastography post processing, contrast-enhanced T1- and T2-weighted imaging and diffusion-weighted imaging (DWI) with quantification of apparent diffusion coefficient of water (ADC). Elastography quantified shear wave speed (SWS), magnitude of complex MR signal (T2/T2*) and loss angle (φ). Immunohistological investigations were performed to assess vascularization, blood-brain-barrier integrity and extent of glucosaminoglucan coverage. Results Volumetric analyses displayed rapid growth of both tumor entities and softer tissue properties than healthy brain (healthy: 5.17 ± 0.48, MBM: 3.83 ± 0.55, GBM: 3.7 ± 0.23, [m/s]). SWS of MBM remained unchanged throughout tumor progression with decreased T2/T2* intensity and increased ADC on days 12 and 14 (p<0.0001 for both). Conversely, GBM presented reduced φ values on day 22 (p=0.0237), with no significant alterations in ADC. Histological analysis revealed substantial vascularization and elevated glycosaminoglycan content in both tumor types compared to healthy contralateral brain. Discussion Our results indicate that while both, MBM and GBM, exhibited softer properties compared to healthy brain, imaging and histological analysis revealed different underlying microstructural causes: hemorrhages in MBM and increased vascularization and glycosaminoglycan content in GBM, further corroborated by DWI and T2/T2* contrast. These findings underscore the complementary nature of MRE and its potential to enhance our understanding of tumor characteristics when used alongside established techniques. This comprehensive approach could lead to improved clinical outcomes and a deeper understanding of brain tumor pathophysiology.
Collapse
Affiliation(s)
- Anastasia Janas
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Bukatz
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Irina Kremenskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf Reiter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
3
|
Wassenaar NPM, van Schelt AS, Schrauben EM, Kop MPM, Nio CY, Wilmink JW, Besselink MGH, van Laarhoven HWM, Stoker J, Nederveen AJ, Runge JH. MR Elastography of the Pancreas: Bowel Preparation and Repeatability Assessment in Pancreatic Cancer Patients and Healthy Controls. J Magn Reson Imaging 2024; 59:1582-1592. [PMID: 37485870 DOI: 10.1002/jmri.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE Prospective. POPULATION 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marnix P M Kop
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Yung Nio
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
6
|
Bertalan G, Becker J, Tzschätzsch H, Morr A, Herthum H, Shahryari M, Greenhalgh RD, Guo J, Schröder L, Alzheimer C, Budday S, Franze K, Braun J, Sack I. Mechanical behavior of the hippocampus and corpus callosum: An attempt to reconcile ex vivo with in vivo and micro with macro properties. J Mech Behav Biomed Mater 2023; 138:105613. [PMID: 36549250 DOI: 10.1016/j.jmbbm.2022.105613] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mechanical properties of brain tissue are very complex and vary with the species, region, method, and dynamic range, and between in vivo and ex vivo measurements. To reconcile this variability, we investigated in vivo and ex vivo stiffness properties of two distinct regions in the human and mouse brain - the hippocampus (HP) and the corpus callosum (CC) - using different methods. Under quasi-static conditions, we examined ex vivo murine HP and CC by atomic force microscopy (AFM). Between 16 and 40Hz, we investigated the in vivo brains of healthy volunteers by magnetic resonance elastography (MRE) in a 3-T clinical scanner. At high-frequency stimulation between 1000 and 1400Hz, we investigated the murine HP and CC ex vivo and in vivo with MRE in a 7-T preclinical system. HP and CC showed pronounced stiffness dispersion, as reflected by a factor of 32-36 increase in shear modulus from AFM to low-frequency human MRE and a 25-fold higher shear wave velocity in murine MRE than in human MRE. At low frequencies, HP was softer than CC, in both ex vivo mouse specimens (p < 0.05) and in vivo human brains (p < 0.01) while, at high frequencies, CC was softer than HP under in vivo (p < 0.01) and ex vivo (p < 0.05) conditions. The standard linear solid model comprising three elements reproduced the observed HP and CC stiffness dispersions, while other two- and three-element models failed. Our results indicate a remarkable consistency of brain stiffness across species, ex vivo and in vivo states, and different measurement techniques when marked viscoelastic dispersion properties combining equilibrium and non-equilibrium mechanical elements are considered.
Collapse
Affiliation(s)
- Gergerly Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ryan D Greenhalgh
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif Schröder
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Budday
- Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Institute of Medical Physics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Morr AS, Nowicki M, Bertalan G, Vieira Silva R, Infante Duarte C, Koch SP, Boehm-Sturm P, Krügel U, Braun J, Steiner B, Käs JA, Fuhs T, Sack I. Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography. Sci Rep 2022; 12:16723. [PMID: 36202964 PMCID: PMC9537158 DOI: 10.1038/s41598-022-21105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.
Collapse
Affiliation(s)
- Anna S Morr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Steiner
- Clinic for Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef A Käs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Thomas Fuhs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
8
|
Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, Escolano JC, Müller T, Braun J, Wabitsch M, Tschöp M, Sack I, Brankatschk M, Guck J, Stemmer K, Taubenberger AV. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep 2022; 12:10325. [PMID: 35725987 PMCID: PMC9209483 DOI: 10.1038/s41598-022-13324-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders.
Collapse
Affiliation(s)
- Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Petra Kotzbeck
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Joan-Carles Escolano
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Torsten Müller
- JPK Instruments/Bruker, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Wabitsch
- Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marko Brankatschk
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum Für Physik Und Medizin, Staudtstr. 2, 91058, Erlangen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Molecular Cell Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Meyer T, Marticorena Garcia S, Tzschätzsch H, Herthum H, Shahryari M, Stencel L, Braun J, Kalra P, Kolipaka A, Sack I. Comparison of inversion methods in MR elastography: An open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brain. Magn Reson Med 2022; 88:1840-1850. [PMID: 35691940 DOI: 10.1002/mrm.29320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Magnetic resonance elastography (MRE) maps the viscoelastic properties of soft tissues for diagnostic purposes. However, different MRE inversion methods yield different results, which hinder comparison of values, standardization, and establishment of quantitative MRE markers. Here, we introduce an expandable, open-access, webserver-based platform that offers multiple inversion techniques for multifrequency, 3D MRE data. METHODS The platform comprises a data repository and standard MRE inversion methods including local frequency estimation (LFE), direct-inversion based multifrequency dual elasto-visco (MDEV) inversion, and wavenumber-based (k-) MDEV. The use of the platform is demonstrated in phantom data and in vivo multifrequency MRE data of the kidneys and brains of healthy volunteers. RESULTS Detailed maps of stiffness were generated by all inversion methods showing similar detail of anatomy. Specifically, the inner renal cortex had higher shear wave speed (SWS) than renal medulla and outer cortex without lateral differences. k-MDEV yielded higher SWS values than MDEV or LFE (full kidney/brain k-MDEV: 2.71 ± 0.19/1.45 ± 0.14 m/s, MDEV: 2.14 ± 0.16/0.99 ± 0.11 m/s, LFE: 2.12 ± 0.15/0.89 ± 0.06 m/s). CONCLUSION The freely accessible platform supports the comparison of MRE results obtained with different inversion methods, filter thresholds, or excitation frequencies, promoting reproducibility in MRE across community-developed methods.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Herthum
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Stencel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Prateek Kalra
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Herthum H, Carrillo H, Osses A, Uribe S, Sack I, Bertoglio C. Multiple motion encoding in phase-contrast MRI: A general theory and application to elastography imaging. Med Image Anal 2022; 78:102416. [PMID: 35334444 DOI: 10.1016/j.media.2022.102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 01/04/2023]
Abstract
While MRI allows to encode the motion of tissue in the magnetization's phase, it remains yet a challenge to obtain high fidelity motion images due to wraps in the phase for high encoding efficiencies. Therefore, we propose an optimal multiple motion encoding method (OMME) and exemplify it in Magnetic Resonance Elastography (MRE) data. OMME is formulated as a non-convex least-squares problem for the motion using an arbitrary number of phase-contrast measurements with different motion encoding gradients (MEGs). The mathematical properties of OMME are proved in terms of standard deviation and dynamic range of the motion's estimate for arbitrary MEGs combination which are confirmed using synthetically generated data. OMME's performance is assessed on MRE data from in vivo human brain experiments and compared to dual encoding strategies. The unwrapped images are further used to reconstruct stiffness maps and compared to the ones obtained using conventional unwrapping methods. OMME allowed to successfully combine several MRE phase images with different MEGs, outperforming dual encoding strategies in either motion-to-noise ratio (MNR) or number of successfully reconstructed voxels with good noise stability. This lead to stiffness maps with greater resolution of details than obtained with conventional unwrapping methods. The proposed OMME method allows for a flexible and noise robust increase in the dynamic range and thus provides wrap-free phase images with high MNR. In MRE, the method may be especially suitable when high resolution images with high MNR are needed.
Collapse
Affiliation(s)
- Helge Herthum
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universitt zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Hugo Carrillo
- Center for Mathematical Modeling, Universidad de Chile, Santiago, 8370456, Chile; Bernoulli Institute, University of Groningen, Groningen, 9747AG, the Netherlands
| | - Axel Osses
- Center for Mathematical Modeling, Universidad de Chile, Santiago, 8370456, Chile; Department of Mathematical Engineering, Universidad de Chile, Santiago, 8370456, Chile; ANID - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile; ANID - Millenium Nucleus in Applied Control and Inverse Problems ACIP, Santiago, 7820436, Chile
| | - Sergio Uribe
- ANID - Millennium Nucleus in Cardiovascular Magnetic Resonance, Santiago, 7820436, Chile; Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Ingolf Sack
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universitt zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - Cristóbal Bertoglio
- Bernoulli Institute, University of Groningen, Groningen, 9747AG, the Netherlands.
| |
Collapse
|
11
|
Mangarova DB, Bertalan G, Jordan J, Brangsch J, Kader A, Möckel J, Adams LC, Sack I, Taupitz M, Hamm B, Braun J, Makowski MR. Microscopic multifrequency magnetic resonance elastography of ex vivo abdominal aortic aneurysms for extracellular matrix imaging in a mouse model. Acta Biomater 2022; 140:389-397. [PMID: 34818577 DOI: 10.1016/j.actbio.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a permanent dilatation of the abdominal aorta, usually accompanied by thrombus formation. The current clinical imaging modalities cannot reliably visualize the thrombus composition. Remodeling of the extracellular matrix (ECM) during AAA development leads to stiffness changes, providing a potential imaging marker. 14 apolipoprotein E-deficient mice underwent surgery for angiotensin II-loaded osmotic minipump implantation. 4 weeks post-op, 5 animals developed an AAA. The aneurysm was imaged ex vivo by microscopic multifrequency magnetic resonance elastography (µMMRE) with an in-plane resolution of 40 microns. Experiments were performed on a 7-Tesla preclinical magnetic resonance imaging scanner with drive frequencies between 1000 Hz and 1400 Hz. Shear wave speed (SWS) maps indicating stiffness were computed based on tomoelastography multifrequency inversion. As control, the aortas of 5 C57BL/6J mice were examined with the same imaging protocol. The regional variation of SWS in the thrombus ranging from 0.44 ± 0.07 to 1.20 ± 0.31 m/s was correlated fairly strong with regional histology-quantified ECM accumulation (R2 = 0.79). Our results suggest that stiffness changes in aneurysmal thrombus reflect ECM remodeling, which is critical for AAA risk assessment. In the future, µMMRE could be used for a mechanics-based clinical characterization of AAAs in patients. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first study mapping the stiffness of abdominal aortic aneurysms with microscopic resolution of 40 µm. Our work revealed that stiffness critically changes due to extracellular matrix (ECM) remodeling in the aneurysmal thrombus. We were able to image various levels of ECM remodeling in the aneurysm reflected in distinct shear wave speed patterns with a strong correlation to regional histology-quantified ECM accumulation. The generated results are significant for the application of microscopic multifrequency magnetic resonance elastography for quantification of pathological remodeling of the ECM and may be of great interest for detailed characterization of AAAs in patients.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, Berlin 4163, Germany.
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Avan Kader
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| | - Jana Möckel
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Lisa C Adams
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Matthias Taupitz
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany.
| | - Jürgen Braun
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Institute for Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, Berlin 12200, Germany.
| | - Marcus R Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany.
| |
Collapse
|
12
|
Liquid-Liver Phantom: Mimicking the Viscoelastic Dispersion of Human Liver for Ultrasound- and MRI-Based Elastography. Invest Radiol 2022; 57:502-509. [PMID: 35195086 DOI: 10.1097/rli.0000000000000862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Tissue stiffness can guide medical diagnoses and is exploited as an imaging contrast in elastography. However, different elastography devices show different liver stiffness values in the same subject, hindering comparison of values and establishment of system-independent thresholds for disease detection. There is a need for standardized phantoms that specifically address the viscosity-related dispersion of stiffness over frequency. To improve standardization of clinical elastography across devices and platforms including ultrasound and magnetic resonance imaging (MRI), a comprehensively characterized phantom is introduced that mimics the dispersion of stiffness of the human liver and can be generated reproducibly. MATERIALS AND METHODS The phantom was made of linear polymerized polyacrylamide (PAAm) calibrated to the viscoelastic properties of healthy human liver in vivo as reported in the literature. Stiffness dispersion was analyzed using the 2-parameter springpot model fitted to the dispersion of shear wave speed of PAAm, which was measured by shear rheometry, ultrasound-based time-harmonic elastography, clinical magnetic resonance elastography (MRE), and tabletop MRE in the frequency range of 5 to 3000 Hz. Imaging parameters for ultrasound and MRI, reproducibility, aging behavior, and temperature dependency were assessed. In addition, the frequency bandwidth of shear wave speed of clinical elastography methods (Aplio i900, Canon; Acuson Sequoia, Siemens; FibroScan, EchoSense) was characterized. RESULTS Within the entire frequency range analyzed in this study, the PAAm phantom reproduced well the stiffness dispersion of human liver in vivo despite its fluid properties under static loading (springpot stiffness parameter, 2.14 [95% confidence interval, 2.08-2.19] kPa; springpot powerlaw exponent, 0.367 [95% confidence interval, 0.362-0.373]). Imaging parameters were close to those of liver in vivo with only slight variability in stiffness values of 0.5% (0.4%, 0.6%), 4.1% (3.9%, 4.5%), and -0.63% (-0.67%, -0.58%), respectively, between batches, over a 6-month period, and per °C increase in temperature. CONCLUSIONS The liquid-liver phantom has useful properties for standardization and development of liver elastography. First, it can be used across clinical and experimental elastography devices in ultrasound and MRI. Second, being a liquid, it can easily be adapted in size and shape to specific technical requirements, and by adding inclusions and scatterers. Finally, because the phantom is based on noncrosslinked linear PAAm constituents, it is easy to produce, indicating potential widespread use among researchers and vendors to standardize liver stiffness measurements.
Collapse
|
13
|
Batzdorf CS, Morr AS, Bertalan G, Sack I, Silva RV, Infante-Duarte C. Sexual Dimorphism in Extracellular Matrix Composition and Viscoelasticity of the Healthy and Inflamed Mouse Brain. BIOLOGY 2022; 11:biology11020230. [PMID: 35205095 PMCID: PMC8869215 DOI: 10.3390/biology11020230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary In multiple sclerosis (MS), an autoimmune disease of the central nervous system that primarily affects women, gender differences in disease course and in brain softening have been reported. It has been shown that the molecular network found between the cells of the tissue, the extracellular matrix (ECM), influences tissue stiffness. However, it is still unclear if sex influences ECM composition. Therefore, here we investigated how brain ECM and stiffness differ between sexes in the healthy mouse, and in an MS mouse model. We applied multifrequency magnetic resonance elastography and gene expression analysis for associating in vivo brain stiffness with ECM protein content in the brain, such as collagen and laminin. We found that the cortex was softer in males than in females in both healthy and sick mice. Softening was associated with sex differences in expression levels of collagen and laminin. Our findings underscore the importance of considering sex when studying the constitution of brain tissue in health and disease, particularly when investigating the processes underlying gender differences in MS. Abstract Magnetic resonance elastography (MRE) has revealed sexual dimorphism in brain stiffness in healthy individuals and multiple sclerosis (MS) patients. In an animal model of MS, named experimental autoimmune encephalomyelitis (EAE), we have previously shown that inflammation-induced brain softening was associated with alterations of the extracellular matrix (ECM). However, it remained unclear whether the brain ECM presents sex-specific properties that can be visualized by MRE. Therefore, here we aimed at quantifying sexual dimorphism in brain viscoelasticity in association with ECM changes in healthy and inflamed brains. Multifrequency MRE was applied to the midbrain of healthy and EAE mice of both sexes to quantitatively map regional stiffness. To define differences in brain ECM composition, the gene expression of the key basement membrane components laminin (Lama4, Lama5), collagen (Col4a1, Col1a1), and fibronectin (Fn1) were investigated by RT-qPCR. We showed that the healthy male cortex expressed less Lama4, Lama5, and Col4a1, but more Fn1 (all p < 0.05) than the healthy female cortex, which was associated with 9% softer properties (p = 0.044) in that region. At peak EAE cortical softening was similar in both sexes compared to healthy tissue, with an 8% difference remaining between males and females (p = 0.006). Cortical Lama4, Lama5 and Col4a1 expression increased 2 to 3-fold in EAE in both sexes while Fn1 decreased only in males (all p < 0.05). No significant sex differences in stiffness were detected in other brain regions. In conclusion, sexual dimorphism in the ECM composition of cortical tissue in the mouse brain is reflected by in vivo stiffness measured with MRE and should be considered in future studies by sex-specific reference values.
Collapse
Affiliation(s)
- Clara Sophie Batzdorf
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
| | - Anna Sophie Morr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Gergely Bertalan
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.S.M.); (G.B.); (I.S.)
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Einstein Center for Neurosciences Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (C.S.B.); (R.V.S.)
- Correspondence:
| |
Collapse
|
14
|
Wang R, Chen Y, Li R, Qiu S, Zhang Z, Yan F, Feng Y. Fast magnetic resonance elastography with multiphase radial encoding and harmonic motion sparsity based reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4a42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To achieve fast magnetic resonance elastography (MRE) at a low frequency for better shear modulus estimation of the brain. Approach. We proposed a multiphase radial DENSE MRE (MRD-MRE) sequence and an improved GRASP algorithm utilizing the sparsity of the harmonic motion (SH-GRASP) for fast MRE at 20 Hz. For the MRD-MRE sequence, the initial position encoded by spatial modulation of magnetization (SPAMM) was decoded by an arbitrary number of readout blocks without increasing the number of phase offsets. Based on the harmonic motion, a modified total variation and temporal Fourier transform were introduced to utilize the sparsity in the temporal domain. Both phantom and brain experiments were carried out and compared with that from multiphase Cartesian DENSE-MRE (MCD-MRE), and conventional gradient echo sequence (GRE-MRE). Reconstruction performance was also compared with GRASP and compressed sensing. Main results. Results showed the scanning time of a fully sampled image with four phase offsets for MRD-MRE was only 1/5 of that from GRE-MRE. The wave patterns and estimated stiffness maps were similar to those from MCD-MRE and GRE-MRE. With SH-GRASP, the total scan time could be shortened by additional 4 folds, achieving a total acceleration factor of 20. Better metric values were also obtained using SH-GRASP for reconstruction compared with other algorithms. Significance. The MRD-MRE sequence and SH-GRASP algorithm can be used either in combination or independently to accelerate MRE, showing the potentials for imaging the brain as well as other organs.
Collapse
|
15
|
Herthum H, Hetzer S, Scheel M, Shahryari M, Braun J, Paul F, Sack I. In vivo stiffness of multiple sclerosis lesions is similar to that of normal-appearing white matter. Acta Biomater 2022; 138:410-421. [PMID: 34757062 DOI: 10.1016/j.actbio.2021.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
In 1868, French neurologist Jean-Martin Charcot coined the term multiple sclerosis (MS) after his observation that numerous white matter (WM) glial scars felt like sclerotic tissue. Nowadays, magnetic resonance elastography (MRE) can generate images with contrast of stiffness (CS) in soft in vivo tissues and may therefore be sensitive to MS lesions, provided that sclerosis is indeed a mechanical signature of this disease. We analyzed CS in a total of 147 lesions in patients with relapsing-remitting MS, compared with control regions in contralateral brain regions, and phantom data as well as performed numerical simulations to determine the delineation limits of multifrequency MRE (20 - 40 Hz) in MS. MRE analysis of simulated waves revealed a delineation limit of approximately 10% CS for detecting 9-mm lesions (mean size in our patient population). Due to inversion bias, this limit is reached when true CS is -11% for soft and 35% for stiff lesions. In vivo MRE identified 35 stiffer lesions and 17 softer lesions compared with surrounding WM (mean stiffness: 934±82 Pa). However, a similar pattern was found in the contralateral brain, suggesting that the range of stiffness changes in WM lesions due to MS is within the normal range of WM variability and normal heterogeneity-related CS. Consequently, Charcot's original intuition that MS is a focal sclerotic disease can neither be dismissed nor confirmed by in vivo MRE. However, the observation that MS lesions do not markedly differ in stiffness from surrounding brain tissue suggests that marked tissue sclerosis is not a mechanical signature of MS. STATEMENT OF SIGNIFICANCE: Multiple sclerosis (MS) was named by J.M. Charcot after the sclerotic changes in brain tissue he found in post-mortem autopsies. Since then, nothing has been revealed about the actual stiffening of MS lesions in vivo. Studying the viscoelastic properties of plaques in their natural environment is a major challenge that can only be overcome by MR elastography (MRE). Therefore, we used multifrequency MRE to answer the question whether MS lesions in patients with a relapsing-remitting disease course are mechanically different than surrounding tissue. Our findings suggest that the range of stiffness changes in white matter lesions due to MS is within the normal range of white matter variability and in vivo tissue sclerosis might not be a mechanical signature of MS.
Collapse
|
16
|
Jordan JEL, Bertalan G, Meyer T, Tzschätzsch H, Gauert A, Bramè L, Herthum H, Safraou Y, Schröder L, Braun J, Hagemann AIH, Sack I. Microscopic multifrequency MR elastography for mapping viscoelasticity in zebrafish. Magn Reson Med 2021; 87:1435-1445. [PMID: 34752638 DOI: 10.1002/mrm.29066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues. METHODS Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies. RESULTS Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue. CONCLUSION Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values.
Collapse
Affiliation(s)
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anton Gauert
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luca Bramè
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helge Herthum
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja I H Hagemann
- Department of Hematology/Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Silva RV, Morr AS, Mueller S, Koch SP, Boehm-Sturm P, Rodriguez-Sillke Y, Kunkel D, Tzschätzsch H, Kühl AA, Schnorr J, Taupitz M, Sack I, Infante-Duarte C. Contribution of Tissue Inflammation and Blood-Brain Barrier Disruption to Brain Softening in a Mouse Model of Multiple Sclerosis. Front Neurosci 2021; 15:701308. [PMID: 34497486 PMCID: PMC8419310 DOI: 10.3389/fnins.2021.701308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by in vivo magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE). However, it is unknown how confined BBB changes and other inflammatory processes may determine local elasticity changes. Therefore, we aim to elucidate which inflammatory hallmarks are determinant for local viscoelastic changes observed in EAE brains. Hence, novel multifrequency MRE was applied in combination with GBCA-based MRI or very small superparamagnetic iron oxide particles (VSOPs) in female SJL mice with induced adoptive transfer EAE (n = 21). VSOPs were doped with europium (Eu-VSOPs) to facilitate the post-mortem analysis. Accumulation of Eu-VSOPs, which was previously demonstrated to be sensitive to immune cell infiltration and ECM remodeling, was also found to be independent of GBCA enhancement. Following registration to a reference brain atlas, viscoelastic properties of the whole brain and areas visualized by either Gd or VSOP were quantified. MRE revealed marked disseminated softening across the whole brain in mice with established EAE (baseline: 3.1 ± 0.1 m/s vs. EAE: 2.9 ± 0.2 m/s, p < 0.0001). A similar degree of softening was observed in sites of GBCA enhancement i.e., mainly within cerebral cortex and brain stem (baseline: 3.3 ± 0.4 m/s vs. EAE: 3.0 ± 0.5 m/s, p = 0.018). However, locations in which only Eu-VSOP accumulated, mainly in fiber tracts (baseline: 3.0 ± 0.4 m/s vs. EAE: 2.6 ± 0.5 m/s, p = 0.023), softening was more pronounced when compared to non-hypointense areas (percent change of stiffness for Eu-VSOP accumulation: -16.81 ± 16.49% vs. for non-hypointense regions: -5.85 ± 3.81%, p = 0.048). Our findings suggest that multifrequency MRE is sensitive to differentiate between local inflammatory processes with a strong immune cell infiltrate that lead to VSOP accumulation, from disseminated inflammation and BBB leakage visualized by GBCA. These pathological events visualized by Eu-VSOP MRI and MRE may include gliosis, macrophage infiltration, alterations of endothelial matrix components, and/or extracellular matrix remodeling. MRE may therefore represent a promising imaging tool for non-invasive clinical assessment of different pathological aspects of neuroinflammation.
Collapse
Affiliation(s)
- Rafaela Vieira Silva
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Stefan Paul Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Yasmina Rodriguez-Sillke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Schnorr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
18
|
Lilaj L, Herthum H, Meyer T, Shahryari M, Bertalan G, Caiazzo A, Braun J, Fischer T, Hirsch S, Sack I. Inversion-recovery MR elastography of the human brain for improved stiffness quantification near fluid-solid boundaries. Magn Reson Med 2021; 86:2552-2561. [PMID: 34184306 DOI: 10.1002/mrm.28898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE In vivo MR elastography (MRE) holds promise as a neuroimaging marker. In cerebral MRE, shear waves are introduced into the brain, which also stimulate vibrations in adjacent CSF, resulting in blurring and biased stiffness values near brain surfaces. We here propose inversion-recovery MRE (IR-MRE) to suppress CSF signal and improve stiffness quantification in brain surface areas. METHODS Inversion-recovery MRE was demonstrated in agar-based phantoms with solid-fluid interfaces and 11 healthy volunteers using 31.25-Hz harmonic vibrations. It was performed by standard single-shot, spin-echo EPI MRE following 2800-ms IR preparation. Wave fields were acquired in 10 axial slices and analyzed for shear wave speed (SWS) as a surrogate marker of tissue stiffness by wavenumber-based multicomponent inversion. RESULTS Phantom SWS values near fluid interfaces were 7.5 ± 3.0% higher in IR-MRE than MRE (P = .01). In the brain, IR-MRE SNR was 17% lower than in MRE, without influencing parenchymal SWS (MRE: 1.38 ± 0.02 m/s; IR-MRE: 1.39 ± 0.03 m/s; P = .18). The IR-MRE tissue-CSF interfaces appeared sharper, showing 10% higher SWS near brain surfaces (MRE: 1.01 ± 0.03 m/s; IR-MRE: 1.11 ± 0.01 m/s; P < .001) and 39% smaller ventricle sizes than MRE (P < .001). CONCLUSIONS Our results show that brain MRE is affected by fluid oscillations that can be suppressed by IR-MRE, which improves the depiction of anatomy in stiffness maps and the quantification of stiffness values in brain surface areas. Moreover, we measured similar stiffness values in brain parenchyma with and without fluid suppression, which indicates that shear wavelengths in solid and fluid compartments are identical, consistent with the theory of biphasic poroelastic media.
Collapse
Affiliation(s)
- Ledia Lilaj
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Herthum
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alfonso Caiazzo
- Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Herthum H, Shahryari M, Tzschätzsch H, Schrank F, Warmuth C, Görner S, Hetzer S, Neubauer H, Pfeuffer J, Braun J, Sack I. Real-Time Multifrequency MR Elastography of the Human Brain Reveals Rapid Changes in Viscoelasticity in Response to the Valsalva Maneuver. Front Bioeng Biotechnol 2021; 9:666456. [PMID: 34026743 PMCID: PMC8131519 DOI: 10.3389/fbioe.2021.666456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Modulation of cerebral blood flow and vascular compliance plays an important role in the regulation of intracranial pressure (ICP) and also influences the viscoelastic properties of brain tissue. Therefore, magnetic resonance elastography (MRE), the gold standard for measuring in vivo viscoelasticity of brain tissue, is potentially sensitive to cerebral autoregulation. In this study, we developed a multifrequency MMRE technique that provides serial maps of viscoelasticity at a frame rate of nearly 6 Hz without gating, i.e., in quasi-real time (rt-MMRE). This novel method was used to monitor rapid changes in the viscoelastic properties of the brains of 17 volunteers performing the Valsalva maneuver (VM). rt-MMRE continuously sampled externally induced vibrations comprising three frequencies of 30.03, 30.91, and 31.8 Hz were over 90 s using a steady-state, spiral-readout gradient-echo sequence. Data were processed by multifrequency dual elasto-visco (MDEV) inversion to generate maps of magnitude shear modulus | G∗| (stiffness) and loss angle φ at a frame rate of 5.4 Hz. As controls, the volunteers were examined to study the effects of breath-hold following deep inspiration and breath-hold following expiration. We observed that | G∗| increased while φ decreased due to VM and, less markedly, due to breath-hold in inspiration. Group mean VM values showed an early overshoot of | G∗| 2.4 ± 1.2 s after the onset of the maneuver with peak values of 6.7 ± 4.1% above baseline, followed by a continuous increase in stiffness during VM. A second overshoot of | G∗| occurred 5.5 ± 2.0 s after the end of VM with peak values of 7.4 ± 2.8% above baseline, followed by 25-s sustained recovery until the end of image acquisition. φ was constantly reduced by approximately 2% during the entire VM without noticeable peak values. This is the first report of viscoelasticity changes in brain tissue induced by physiological maneuvers known to alter ICP and detected by clinically applicable rt-MMRE. Our results show that apnea and VM slightly alter brain properties toward a more rigid-solid behavior. Overshooting stiffening reactions seconds after onset and end of VM reveal rapid autoregulatory processes of brain tissue viscoelasticity.
Collapse
Affiliation(s)
- Helge Herthum
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schrank
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Warmuth
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Görner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging (BCAN), Berlin, Germany
| | - Hennes Neubauer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josef Pfeuffer
- Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Herthum H, Dempsey SCH, Samani A, Schrank F, Shahryari M, Warmuth C, Tzschätzsch H, Braun J, Sack I. Superviscous properties of the in vivo brain at large scales. Acta Biomater 2021; 121:393-404. [PMID: 33326885 DOI: 10.1016/j.actbio.2020.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
There is growing awareness that brain mechanical properties are important for neural development and health. However, published values of brain stiffness differ by orders of magnitude between static measurements and in vivo magnetic resonance elastography (MRE), which covers a dynamic range over several frequency decades. We here show that there is no fundamental disparity between static mechanical tests and in vivo MRE when considering large-scale properties, which encompass the entire brain including fluid filled compartments. Using gradient echo real-time MRE, we investigated the viscoelastic dispersion of the human brain in, so far, unexplored dynamic ranges from intrinsic brain pulsations at 1 Hz to ultralow-frequency vibrations at 5, 6.25, 7.8 and 10 Hz to the normal frequency range of MRE of 40 Hz. Surprisingly, we observed variations in brain stiffness over more than two orders of magnitude, suggesting that the in vivo human brain is superviscous on large scales with very low shear modulus of 42±13 Pa and relatively high viscosity of 6.6±0.3 Pa∙s according to the two-parameter solid model. Our data shed light on the crucial role of fluid compartments including blood vessels and cerebrospinal fluid (CSF) for whole brain properties and provide, for the first time, an explanation for the variability of the mechanical brain responses to manual palpation, local indentation, and high-dynamic tissue stimulation as used in elastography.
Collapse
|
21
|
Ariyurek C, Tasdelen B, Ider YZ, Atalar E. SNR Weighting for Shear Wave Speed Reconstruction in Tomoelastography. NMR IN BIOMEDICINE 2021; 34:e4413. [PMID: 32956538 DOI: 10.1002/nbm.4413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
In tomoelastography, to achieve a final wave speed map by combining reconstructions obtained from all spatial directions and excitation frequencies, the use of weights is inevitable. Here, a new weighting scheme, which maximizes the signal-to-noise ratio (SNR) of the final wave speed map, has been proposed. To maximize the SNR of the final wave speed map, the use of squares of estimated SNR values of reconstructed individual maps has been proposed. Therefore, derivations of the SNR of the reconstructed wave speed maps have become necessary. Considering the noise on the complex MRI signal, the SNR of the reconstructed wave speed map was formulated by an analytical approach assuming a high SNR, and the results were verified using Monte Carlo simulations (MCSs). It has been assumed that the noise remains approximately Gaussian when the image SNR is high enough, despite the nonlinear operations in tomoelastography inversion. Hence, the SNR threshold was determined by comparing the SNR computed by MCSs and analytical approximations. The weighting scheme was evaluated for accuracy, spatial resolution and SNR performances on simulated phantoms. MR elastography (MRE) experiments on two different phantoms were conducted. Wave speed maps were generated for simulated 3D human abdomen MRE data and experimental human abdomen MRE data. The simulation results demonstrated that the SNR-weighted inversion improved the SNR performance of the wave speed map by a factor of two compared to the performance of the original (i.e., amplitude-weighted) reconstruction. In the case of a low SNR, no bias occurred in the wave speed map when SNR weighting was used, whereas 10% bias occurred when the original weighting (i.e., amplitude weighting) was used. Thus, while not altering the accuracy or spatial resolution of the wave speed map with the proposed weighting method, the SNR of the wave speed map has been significantly improved.
Collapse
Affiliation(s)
- Cemre Ariyurek
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Bilal Tasdelen
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yusuf Ziya Ider
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
22
|
Manduca A, Bayly PJ, Ehman RL, Kolipaka A, Royston TJ, Sack I, Sinkus R, Van Beers BE. MR elastography: Principles, guidelines, and terminology. Magn Reson Med 2020; 85:2377-2390. [PMID: 33296103 DOI: 10.1002/mrm.28627] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance elastography (MRE) is a phase contrast-based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, has become widespread in the diagnosis and staging of liver fibrosis, and additional clinical applications are being explored. However, publications have reported MRE results using many different parameters, acquisition techniques, processing methods, and varied nomenclature. The diversity of terminology can lead to confusion (particularly among clinicians) about the meaning of and interpretation of MRE results. This paper was written by the MRE Guidelines Committee, a group formalized at the first meeting of the ISMRM MRE Study Group, to clarify and move toward standardization of MRE nomenclature. The purpose of this paper is to (1) explain MRE terminology and concepts to those not familiar with them, (2) define "good practices" for practitioners of MRE, and (3) identify opportunities to standardize terminology, to avoid confusion.
Collapse
Affiliation(s)
- Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip J Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Richard L Ehman
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arunark Kolipaka
- Department of Radiology, Ohio State University, Columbus, Ohio, USA
| | - Thomas J Royston
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ingolf Sack
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Sinkus
- Imaging Sciences & Biomedical Engineering, Kings College London, London, United Kingdom
| | | |
Collapse
|
23
|
Distinguishing pancreatic cancer and autoimmune pancreatitis with in vivo tomoelastography. Eur Radiol 2020; 31:3366-3374. [PMID: 33125553 DOI: 10.1007/s00330-020-07420-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To prospectively investigate the stiffness and fluidity of pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP) with tomoelastography, and to evaluate its diagnostic performance in distinguishing the two entities. METHODS Tomoelastography provided high-resolution maps of shear wave speed (c in m/s) and phase angle (φ in rad), allowing mechanical characterization of the stiffness and fluidity properties of the pancreas. Forty patients with untreated PDAC and 33 patients with untreated AIP who underwent diagnostic pancreatic MRI at 3-T together with multifrequency MR elastography and tomoelastography data processing were prospectively enrolled. Ten healthy volunteers served as controls. Two radiologists and a technician measured pancreatic stiffness and fluidity independently. The two radiologists also independently evaluated the patients' conventional MR sequences using the following diagnostic score: 1, definitely PDAC; 2, probably PDAC; 3, indeterminate; 4, probably AIP; and 5, definitely AIP. Interobserver agreement was assessed. Stiffness and fluidity of PDAC, AIP, and healthy pancreas, as well as diagnostic performance of tomoelastography and conventional MRI, were compared. RESULTS AIP showed significantly lower stiffness and fluidity than PDAC and significantly higher stiffness and fluidity than healthy pancreas. Pancreatic fluidity was not influenced by secondary obstructive changes. The intraclass correlation coefficient for pancreatic stiffness and fluidity by the 3 readers was near-perfect (0.951-0.979, all p < 0.001). Both stiffness and fluidity allowed distinguishing PDAC from AIP. AUCs were 0.906 for stiffness, 0.872 for fluidity, and 0.842 for conventional MRI. CONCLUSIONS Pancreatic stiffness and fluidity both allow differentiation of PDAC and AIP with high accuracy. KEY POINTS • AIP showed significantly lower stiffness and fluidity than PDAC and significantly higher stiffness and fluidity than healthy pancreas. • Both stiffness and fluidity allowed distinguishing PDAC from AIP. • Pancreatic fluidity could distinguish malignancy from non-malignant secondary obstructive changes.
Collapse
|
24
|
Schrank F, Warmuth C, Tzschätzsch H, Kreft B, Hirsch S, Braun J, Elgeti T, Sack I. Cardiac-gated steady-state multifrequency magnetic resonance elastography of the brain: Effect of cerebral arterial pulsation on brain viscoelasticity. J Cereb Blood Flow Metab 2020; 40:991-1001. [PMID: 31142226 PMCID: PMC7181097 DOI: 10.1177/0271678x19850936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/29/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
In-vivo brain viscoelasticity measured by magnetic resonance elastography (MRE) is a sensitive imaging marker for long-term biophysical changes in brain tissue due to aging and disease; however, it is still unknown whether MRE can reveal short-term periodic alterations of brain viscoelasticity related to cerebral arterial pulsation (CAP). We developed cardiac-gated steady-state MRE (ssMRE) with spiral readout and stroboscopic sampling of continuously induced mechanical vibrations in the brain at 20, 31.25, and 40 Hz frequencies. Maps of magnitude |G*| and phase ϕ of the complex shear modulus were generated by multifrequency dual visco-elasto inversion with a temporal resolution of 40 ms over 4 s. The method was tested in 12 healthy volunteers. During cerebral systole, |G*| decreased by 6.6 ± 1.9% (56 ± 22 Pa, p < 0.001, mean ± SD), whereas ϕ increased by 0.5 ± 0.5% (0.006 ± 0.005 rad, p = 0.002). The effect size of CAP-induced softening slightly decreased with age by 0.10 ± 0.05% per year (p = 0.04), indicating lower cerebral vascular compliance in older individuals. Our data show for the first time that the brain softens and becomes more viscous during systole, possibly due to an effect of CAP-induced arterial expansion and increased blood volume on effective-medium tissue properties. This sensitivity to vascular-solid tissue interactions makes ssMRE potentially useful for detection of cerebral vascular disease.
Collapse
Affiliation(s)
- Felix Schrank
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Warmuth
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Kreft
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging,
Charité – Universitätsmedizin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics,
Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Elgeti
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité –
Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Mura J, Schrank F, Sack I. An analytical solution to the dispersion‐by‐inversion problem in magnetic resonance elastography. Magn Reson Med 2020; 84:61-71. [DOI: 10.1002/mrm.28247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Joaquin Mura
- Department of Mechanical Engineering Universidad Técnica Federico Santa María Santiago Chile
| | - Felix Schrank
- Department of Radiology Charité ‐ Universitätsmedizin Berlin Germany
| | - Ingolf Sack
- Department of Radiology Charité ‐ Universitätsmedizin Berlin Germany
| |
Collapse
|
26
|
Wang S, Millward JM, Hanke-Vela L, Malla B, Pilch K, Gil-Infante A, Waiczies S, Mueller S, Boehm-Sturm P, Guo J, Sack I, Infante-Duarte C. MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis. Front Neurol 2020; 10:1382. [PMID: 31998225 PMCID: PMC6970413 DOI: 10.3389/fneur.2019.01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) with gadolinium based contrast agents (GBCA) is routinely used in the clinic to visualize lesions in multiple sclerosis (MS). Although GBCA reveal endothelial permeability, they fail to expose other aspects of lesion formation such as the magnitude of inflammation or tissue changes occurring at sites of blood-brain barrier (BBB) disruption. Moreover, evidence pointing to potential side effects of GBCA has been increasing. Thus, there is an urgent need to develop GBCA-independent imaging tools to monitor pathology in MS. Using MR-elastography (MRE), we previously demonstrated in both MS and the animal model experimental autoimmune encephalomyelitis (EAE) that inflammation was associated with a reduction of brain stiffness. Now, using the relapsing-remitting EAE model, we show that the cerebellum—a region with predominant inflammation in this model—is especially prone to loss of stiffness. We also demonstrate that, contrary to GBCA-MRI, reduction of brain stiffness correlates with clinical disability and is associated with enhanced expression of the extracellular matrix protein fibronectin (FN). Further, we show that FN is largely expressed by activated astrocytes at acute lesions, and reflects the magnitude of tissue remodeling at sites of BBB breakdown. Therefore, MRE could emerge as a safe tool suitable to monitor disease activity in MS.
Collapse
Affiliation(s)
- Shuangqing Wang
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Jason M Millward
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Laura Hanke-Vela
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Bimala Malla
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Kjara Pilch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Ana Gil-Infante
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
27
|
Streitberger KJ, Lilaj L, Schrank F, Braun J, Hoffmann KT, Reiss-Zimmermann M, Käs JA, Sack I. How tissue fluidity influences brain tumor progression. Proc Natl Acad Sci U S A 2020; 117:128-134. [PMID: 31843897 PMCID: PMC6955323 DOI: 10.1073/pnas.1913511116] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical properties of biological tissues and, above all, their solid or fluid behavior influence the spread of malignant tumors. While it is known that solid tumors tend to have higher mechanical rigidity, allowing them to aggressively invade and spread in solid surrounding healthy tissue, it is unknown how softer tumors can grow within a more rigid environment such as the brain. Here, we use in vivo magnetic resonance elastography (MRE) to elucidate the role of anomalous fluidity for the invasive growth of soft brain tumors, showing that aggressive glioblastomas (GBMs) have higher water content while behaving like solids. Conversely, our data show that benign meningiomas (MENs), which contain less water than brain tissue, are characterized by fluid-like behavior. The fact that the 2 tumor entities do not differ in their soft properties suggests that fluidity plays an important role for a tumor's aggressiveness and infiltrative potential. Using tissue-mimicking phantoms, we show that the anomalous fluidity of neurotumors physically enables GBMs to penetrate surrounding tissue, a phenomenon similar to Saffman-Taylor viscous-fingering instabilities, which occur at moving interfaces between fluids of different viscosity. Thus, targeting tissue fluidity of malignant tumors might open horizons for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
| | - Ledia Lilaj
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Felix Schrank
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, Universitätsmedizin Leipzig, 04103 Leipzig, Germany
| | - Martin Reiss-Zimmermann
- Department of Neuroradiology, Universitätsmedizin Leipzig, 04103 Leipzig, Germany
- Radiologie Erfurt, 99084 Erfurt, Germany
| | - Josef A Käs
- Division of Soft Matter Physics, Faculty of Physics and Geosciences, 04103 Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany;
| |
Collapse
|
28
|
Bertalan G, Klein C, Schreyer S, Steiner B, Kreft B, Tzschätzsch H, de Schellenberger AA, Nieminen-Kelhä M, Braun J, Guo J, Sack I. Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography. Acta Biomater 2020; 101:395-402. [PMID: 31726251 DOI: 10.1016/j.actbio.2019.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
Respiratory arrest is a major life-threatening condition leading to cessation of vital functions and hypoxic-anoxic injury of the brain. The progressive structural tissue changes characterizing the dying brain biophysically are unknown. Here we use noninvasive magnetic resonance elastography to show that biomechanical tissue properties are highly sensitive to alterations in the brain in the critical period before death. Our findings demonstrate that brain stiffness increases after respiratory arrest even when cardiac function is still preserved. Within 5 min of cardiac arrest, cerebral stiffness further increases by up to 30%. This early mechanical signature of the dying brain can be explained by water accumulation and redistribution from extracellular spaces into cells. These processes, together, increase interstitial and intracellular pressure as revealed by magnetic resonance spectroscopy and diffusion-weighted imaging. Our data suggest that the fast response of cerebral stiffness to respiratory arrest enables the monitoring of life-threatening brain pathology using noninvasive in vivo imaging. STATEMENT OF SIGNIFICANCE: Hypoxia-anoxia is a life-threatening condition eventually leading to brain death. Therefore, monitoring vital brain functions in patients at risk is urgently required during emergency care or treatment of acute brain damage due to insufficient oxygen supply. In mouse model of hypoxia-anoxia, we have shown for the first time that biophysical tissue parameters such as brain stiffness changed markedly during the process of death.
Collapse
Affiliation(s)
- Gergely Bertalan
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Charlotte Klein
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Stefanie Schreyer
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Barbara Steiner
- Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Bernhard Kreft
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Angela Ariza de Schellenberger
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jürgen Braun
- Institute for Medical Informatics, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jing Guo
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Ingolf Sack
- Department of Radiology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
29
|
Schrank F, Warmuth C, Görner S, Meyer T, Tzschätzsch H, Guo J, Uca YO, Elgeti T, Braun J, Sack I. Real‐time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med 2019; 84:103-114. [DOI: 10.1002/mrm.28095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Felix Schrank
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Carsten Warmuth
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Steffen Görner
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Tom Meyer
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Yavuz Oguz Uca
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Thomas Elgeti
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin Berlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
30
|
Guo J, Bertalan G, Meierhofer D, Klein C, Schreyer S, Steiner B, Wang S, Vieira da Silva R, Infante-Duarte C, Koch S, Boehm-Sturm P, Braun J, Sack I. Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomater 2019; 99:433-442. [PMID: 31449927 DOI: 10.1016/j.actbio.2019.08.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Biomechanical cues guide proliferation, growth and maturation of neurons. Yet the molecules that shape the brain's biomechanical properties are unidentified and the relationship between neural development and viscoelasticity of brain tissue remains elusive. Here we combined novel in-vivo tomoelastography and ex-vivo proteomics to investigate whether viscoelasticity of the mouse brain correlates with protein alterations within the critical phase of brain maturation. For the first time, high-resolution atlases of viscoelasticity of the mouse brain were generated, revealing that (i) brain stiffness increased alongside progressive accumulation of microtubular structures, myelination, cytoskeleton linkage and cell-matrix attachment, and that (ii) viscosity-related tissue fluidity decreased alongside downregulated actin crosslinking and axonal organization. Taken together, our results show that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity. This shift appears to be driven by several molecular processes associated with myelination, cytoskeletal crosslinking and axonal organization. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of brain tissue shape the environment in which neurons proliferate, grow, and mature. In the present study, novel tomoelastography was used to spatially map tissue mechanical properties of the in-vivo mouse brain during maturation. In vivo tomoelastography was also combined with ex vivo mass spectrometry proteomic analysis to identify the molecules which shape the biomechanical properties of brain tissue. With the combined technique, we observed that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity which is driven by multiple molecular processes. We believe that this shift of brain mechanical properties discovered in our study reflects a fundamental biophysical signature of brain maturation.
Collapse
|
31
|
Bertalan G, Boehm-Sturm P, Schreyer S, Morr AS, Steiner B, Tzschätzsch H, Braun J, Guo J, Sack I. The influence of body temperature on tissue stiffness, blood perfusion, and water diffusion in the mouse brain. Acta Biomater 2019; 96:412-420. [PMID: 31247381 DOI: 10.1016/j.actbio.2019.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
While hypothermia of the brain is used to reduce neuronal damage in patients with conditions such as traumatic brain injury or stroke, little is known about how temperature affects the biophysical properties of in vivo brain tissue. Therefore, we measured shear wave speed (SWS), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) in the mouse brain at different body temperatures to investigate the relationship between temperature and tissue stiffness, water diffusion, and blood perfusion in the living brain. Multifrequency magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), and arterial spin labeling (ASL) were performed in seven mice while increasing and recording body temperature from hypothermia (28-30 °C) to normothermia (36-38 °C). SWS, ADC, and CBF were analyzed in regions of whole brain, cortex, hippocampus, and diencephalon. Our results show that SWS decreases while ADC and CBF increase from hypothermia to normothermia (whole brain SWS: -6.2%, ADC: +34.0%, CBF: +80.2%; cortex SWS: -10.1%, ADC: +30.9%, CBF: +82.4%; all p > 0.05). We found a significant inverse correlation between SWS and both ADC and CBF in all analyzed regions except diencephalon (whole brain SWS-ADC: r = -0.8, p < 0.005; SWS-CBF: r = -0.84, p < 0.005; cortex SWS-ADC: r = -0.74, p < 0.05; SWS-CBF: r = -0.65, p < 0.05). These results show that in vivo brain stiffness is inversely correlated with temperature, extracellular water mobility, and microvascular blood flow. Regional differences indicate that cortical areas are more markedly affected by hypothermia than central regions such as diencephalon. Temperature should be considered as a confounder in elastographic measurements, especially in preclinical settings. STATEMENT OF SIGNIFICANCE: Hibernating mammals lower their body temperature and metabolic activity. A hypothermic state can also be induced for medical purposes to reduce the risk of neural damage in patients with neurological disease or injury. However, little is known how physical soft-tissue properties of the in-vivo brain such as water diffusion, blood perfusion or mechanical parameters correlate with each other when temperature changes. Our study demonstrates for the first time that those quantitative imaging markers are tightly linked to changes in body temperature. While water diffusion and blood perfusion are reduced during hypothermia, brain stiffness significantly increases, suggesting that multiparametric quantitative MRI should be used for the noninvasive assessment of brain metabolic activity.
Collapse
|