1
|
Liu Q, Gagoski B, Shaik IA, Westin CF, Wilde EA, Schneider W, Bilgic B, Grissom W, Nielsen JF, Zaitsev M, Rathi Y, Ning L. Time-division multiplexing (TDM) sequence removes bias in T 2 estimation and relaxation-diffusion measurements. Magn Reson Med 2024; 92:2506-2519. [PMID: 39136245 PMCID: PMC11436305 DOI: 10.1002/mrm.30246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. METHOD The ME, TDM, and the reference single-echo (SE) sequences with six TEs were implemented using Pulseq with single-band (SB) and multi-band 2 (MB2) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized RMS error (NRMSE). Shinnar-Le Roux (SLR) pulses were implemented for the SB-ME and SB-SE sequences to investigate the impact of slice profiles on ME sequences. For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). RESULTS TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. CONCLUSION Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.
Collapse
Affiliation(s)
- Qiang Liu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Imam Ahmed Shaik
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl-Fredrik Westin
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth A. Wilde
- Va Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - William Grissom
- Department of Biomedical Engineering, Case School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jon-Fredrik Nielsen
- Functional MRI Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lipeng Ning
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Kaika A, Topping GJ, Nagel L, Schilling F. Filter-exchange spectroscopy is sensitive to gradual cell membrane degradation. NMR IN BIOMEDICINE 2024; 37:e5202. [PMID: 38953779 DOI: 10.1002/nbm.5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 07/04/2024]
Abstract
Transmembrane water permeability changes occur after initialization of necrosis and are a mechanism for early detection of cell death. Filter-exchange spectroscopy (FEXSY) is sensitive to transmembrane water permeability and enables its quantification by magnetic resonance via the apparent exchange rate (AXR). In this study, we investigate AXR changes during necrotic cell death. FEXSY measurements of yeast cells in different necrotic stages were performed and compared with established fluorescence cell death markers and pulsed gradient spin echo measurements. Furthermore, the influence of T2 relaxation on AXR was examined in a two-compartment system. The AXR of yeast cells increased slightly after incubation with 20% isopropanol, whereas it peaked sharply after incubation with 25% isopropanol. At this point, almost all the yeast cells were vital but showed compromised membranes. After incubation with 30% isopropanol, AXR measurements showed high variability, at a point corresponding to a majority of the yeast cells being in late-stage necrosis with disrupted cell membranes. Simulations revealed that, for FEXSY measurements in a two-compartment system, a long filter echo time (TEf), compared with the T2 of the slow-diffusing compartment, filters out a fraction of the slow-diffusing compartment signal and leads to overestimation of apparent diffusion coefficient (ADC) and underestimation of AXR. Our results demonstrate that AXR is sensitive to gradual permeabilization of the cell membrane of living cells in different permeabilization stages without exogenous contrast agents. AXR measurements were sensitive to permeability changes induced by relatively low concentrations of isopropanol, at levels for which no measurable effect was detectable by ADC measurements. TEf may act as a signal filter that affects the estimated AXR value of a system consisting of a variety of local diffusivities and a range of T2 that includes T2 values shorter or comparable with the TEf.
Collapse
Affiliation(s)
- Athanasia Kaika
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, Munich, Germany
| | - Geoffrey J Topping
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Liu Q, Gagoski B, Shaik IA, Westin CF, Wilde EA, Schneider W, Bilgic B, Grissom W, Nielsen JF, Zaitsev M, Rathi Y, Ning L. Time-division multiplexing (TDM) sequence removes bias in T2 estimation and relaxation-diffusion measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597138. [PMID: 38895252 PMCID: PMC11185580 DOI: 10.1101/2024.06.03.597138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. Method The ME, TDM, and the reference single-echo (SE) sequences with six echo times (TE) were implemented using Pulseq with single-band (SB-) and multi-band 2 (MB2-) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized root mean squared error (NRMSE). For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). Results TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. Conclusion Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.
Collapse
Affiliation(s)
- Qiang Liu
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
| | - Imam Ahmed Shaik
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl-Fredrik Westin
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth A. Wilde
- Va Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Berkin Bilgic
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - William Grissom
- Department of Biomedical Engineering, Case School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jon-Fredrik Nielsen
- Functional MRI Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lipeng Ning
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Canales-Rodríguez EJ, Pizzolato M, Zhou FL, Barakovic M, Thiran JP, Jones DK, Parker GJM, Dyrby TB. Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI. Magn Reson Med 2024; 91:2579-2596. [PMID: 38192108 DOI: 10.1002/mrm.29991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.
Collapse
Affiliation(s)
- Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- MicroPhantoms Limited, Cambridge, UK
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d'Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Geoffrey J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London (UCL), London, UK
- Bioxydyn Limited, Manchester, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Flaherty R, Sui YV, Masurkar AV, Betensky RA, Rusinek H, Lazar M. Diffusion imaging markers of accelerated aging of the lower cingulum in subjective cognitive decline. Front Neurol 2024; 15:1360273. [PMID: 38784911 PMCID: PMC11111894 DOI: 10.3389/fneur.2024.1360273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Alzheimer's Disease (AD) typically starts in the medial temporal lobe, then develops into a neurodegenerative cascade which spreads to other brain regions. People with subjective cognitive decline (SCD) are more likely to develop dementia, especially in the presence of amyloid pathology. Thus, we were interested in the white matter microstructure of the medial temporal lobe in SCD, specifically the lower cingulum bundle that leads into the hippocampus. Diffusion tensor imaging (DTI) has been shown to differentiate SCD participants who will progress to mild cognitive impairment from those who will not. However, the biology underlying these DTI metrics is unclear, and results in the medial temporal lobe have been inconsistent. Methods To better characterize the microstructure of this region, we applied DTI to cognitively normal participants in the Cam-CAN database over the age of 55 with cognitive testing and diffusion MRI available (N = 325, 127 SCD). Diffusion MRI was processed to generate regional and voxel-wise diffusion tensor values in bilateral lower cingulum white matter, while T1-weighted MRI was processed to generate regional volume and cortical thickness in the medial temporal lobe white matter, entorhinal cortex, temporal pole, and hippocampus. Results SCD participants had thinner cortex in bilateral entorhinal cortex and right temporal pole. No between-group differences were noted for any of the microstructural metrics of the lower cingulum. However, correlations with delayed story recall were significant for all diffusion microstructure metrics in the right lower cingulum in SCD, but not in controls, with a significant interaction effect. Additionally, the SCD group showed an accelerated aging effect in bilateral lower cingulum with MD, AxD, and RD. Discussion The diffusion profiles observed in both interaction effects are suggestive of a mixed neuroinflammatory and neurodegenerative pathology. Left entorhinal cortical thinning correlated with decreased FA and increased RD, suggestive of demyelination. However, right entorhinal cortical thinning also correlated with increased AxD, suggestive of a mixed pathology. This may reflect combined pathologies implicated in early AD. DTI was more sensitive than cortical thickness to the associations between SCD, memory, and age. The combined effects of mixed pathology may increase the sensitivity of DTI metrics to variations with age and cognition.
Collapse
Affiliation(s)
- Ryn Flaherty
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, United States
| | - Yu Veronica Sui
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Rebecca A. Betensky
- Department of Biostatistics, New York University School of Global Public Health, New York, NY, United States
| | - Henry Rusinek
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Mariana Lazar
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Coelho S, Liao Y, Szczepankiewicz F, Veraart J, Chung S, Lui YW, Novikov DS, Fieremans E. Assessment of Precision and Accuracy of Brain White Matter Microstructure using Combined Diffusion MRI and Relaxometry. ARXIV 2024:arXiv:2402.17175v1. [PMID: 38463511 PMCID: PMC10925389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T 2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.
Collapse
Affiliation(s)
- Santiago Coelho
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ying Liao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohae Chung
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yvonne W Lui
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Els Fieremans
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Wu Y, Liu X, Zhang X, Huynh KM, Ahmad S, Yap PT. Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:152-162. [PMID: 39184022 PMCID: PMC11340880 DOI: 10.1007/978-3-031-43993-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.
Collapse
Affiliation(s)
- Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaoming Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyuan Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Kleban E, Jones DK, Tax CM. The impact of head orientation with respect to B 0 on diffusion tensor MRI measures. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-17. [PMID: 38405373 PMCID: PMC10884544 DOI: 10.1162/imag_a_00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 02/27/2024]
Abstract
Diffusion tensor MRI (DT-MRI) remains the most commonly used approach to characterise white matter (WM) anisotropy. However, DT estimates may be affected by tissue orientation w.r.t. B → 0 due to local gradients and intrinsic T 2 orientation dependence induced by the microstructure. This work aimed to investigate whether and how diffusion tensor MRI-derived measures depend on the orientation of the head with respect to the static magnetic field, B → 0 . By simulating WM as two compartments, we demonstrated that compartmental T 2 anisotropy can induce the dependence of diffusion tensor measures on the angle between WM fibres and the magnetic field. In in vivo experiments, reduced radial diffusivity and increased axial diffusivity were observed in white matter fibres perpendicular to B → 0 compared to those parallel to B → 0 . Fractional anisotropy varied by up to 20 % as a function of the angle between WM fibres and the orientation of the main magnetic field. To conclude, fibre orientation w.r.t. B → 0 is responsible for up to 7 % variance in diffusion tensor measures across the whole brain white matter from all subjects and head orientations. Fibre orientation w.r.t. B → 0 may introduce additional variance in clinical research studies using diffusion tensor imaging, particularly when it is difficult to control for (e.g., fetal or neonatal imaging, or when the trajectories of fibres change due to, e.g., space occupying lesions).
Collapse
Affiliation(s)
- Elena Kleban
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Inselspital, University of Bern, Bern, Switzerland
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- MMIHR, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Chantal M.W. Tax
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Feizollah S, Tardif CL. High-resolution diffusion-weighted imaging at 7 Tesla: single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy. Neuroimage 2023; 274:120159. [PMID: 37150332 DOI: 10.1016/j.neuroimage.2023.120159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6-1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures.
Collapse
Affiliation(s)
- Sajjad Feizollah
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Duff Medical Building, 3775 Rue University, Suite 316, Montreal, QC, Canada.
| |
Collapse
|
13
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
14
|
Howard AF, Cottaar M, Drakesmith M, Fan Q, Huang SY, Jones DK, Lange FJ, Mollink J, Rudrapatna SU, Tian Q, Miller KL, Jbabdi S. Estimating axial diffusivity in the NODDI model. Neuroimage 2022; 262:119535. [PMID: 35931306 PMCID: PMC9802007 DOI: 10.1016/j.neuroimage.2022.119535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 01/03/2023] Open
Abstract
To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d∥=1.7μm2/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ∼2-2.5μm2/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.
Collapse
Affiliation(s)
- Amy Fd Howard
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Michiel Cottaar
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Frederik J Lange
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jeroen Mollink
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Suryanarayana Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom; Philips Innovation Campus, Bangalore, India
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States
| | - Karla L Miller
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems. Neuroimage 2022; 257:119290. [PMID: 35545197 PMCID: PMC9248353 DOI: 10.1016/j.neuroimage.2022.119290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40and80mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are ≲10% voxelwise and 1-4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
Collapse
|
16
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
17
|
Fan Q, Eichner C, Afzali M, Mueller L, Tax CMW, Davids M, Mahmutovic M, Keil B, Bilgic B, Setsompop K, Lee HH, Tian Q, Maffei C, Ramos-Llordén G, Nummenmaa A, Witzel T, Yendiki A, Song YQ, Huang CC, Lin CP, Weiskopf N, Anwander A, Jones DK, Rosen BR, Wald LL, Huang SY. Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. Neuroimage 2022; 254:118958. [PMID: 35217204 PMCID: PMC9121330 DOI: 10.1016/j.neuroimage.2022.118958] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Massachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. Since that time, numerous technological advances have been made to enable the broader use of the Connectom high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advantages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical and neuroscientific studies. The goal of this review article is to summarize the technical developments that have emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient technology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide - one in the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology that have formed the backbone of Connectom-related research efforts, including the rich array of high-sensitivity receiver coils, pulse sequences, image artifact correction strategies and data preprocessing methods needed to optimize the quality of high-gradient strength diffusion MRI data for subsequent analyses. Finally, we review the scientific impact of the Connectom MRI scanner, including advances in diffusion tractography, tissue microstructural imaging, ex vivo validation, and clinical investigations that have been enabled by Connectom technology. We conclude with brief insights into the unique value of strong gradients for diffusion MRI and where the field is headed in the coming years.
Collapse
Affiliation(s)
- Qiuyun Fan
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Cornelius Eichner
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK; Image Sciences Institute, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yi-Qiao Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, UK
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Ji Y, Hoge WS, Gagoski B, Westin CF, Rathi Y, Ning L. Accelerating joint relaxation-diffusion MRI by integrating time division multiplexing and simultaneous multi-slice (TDM-SMS) strategies. Magn Reson Med 2022; 87:2697-2709. [PMID: 35092081 DOI: 10.1002/mrm.29160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Pizzolato M, Andersson M, Canales-Rodríguez EJ, Thiran JP, Dyrby TB. Axonal T 2 estimation using the spherical variance of the strongly diffusion-weighted MRI signal. Magn Reson Imaging 2021; 86:118-134. [PMID: 34856330 DOI: 10.1016/j.mri.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
In magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contributions from the less diffusion-restricted constituents of the brain's white matter, thus enabling the estimation of the transverse relaxation time T2 that arises from the more diffusion-restricted constituents such as the axons. However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T2, as diffusion within those structures is also restricted, causing the corresponding signal to survive the strong diffusion weighting. We devise an estimator of the axonal T2 based on the directional spherical variance of the strongly diffusion-weighted signal. The spherical variance T2 estimates are insensitive to the presence of isotropic contributions to the signal like those provided by cell nuclei and vacuoles. We show that with a strong diffusion weighting these estimates differ from those obtained using the directional spherical mean of the signal which contains both axonal and isotropically-restricted contributions. Our findings hint at the presence of an MRI-visible isotropically-restricted contribution to the signal in the white matter ex vivo fixed tissue (monkey) at 7T, and do not allow us to discard such a possibility also for in vivo human data collected with a clinical 3T system.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Mariam Andersson
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| |
Collapse
|
20
|
Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T 2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T 2 correlation MRI. Neuroimage 2021; 236:117967. [PMID: 33845062 PMCID: PMC8270891 DOI: 10.1016/j.neuroimage.2021.117967] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Muhamed Baraković
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Signal Processing Laboratory 5, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
21
|
Ji Y, Gagoski B, Hoge WS, Rathi Y, Ning L. Accelerated diffusion and relaxation-diffusion MRI using time-division multiplexing EPI. Magn Reson Med 2021; 86:2528-2541. [PMID: 34196032 DOI: 10.1002/mrm.28894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a time-division multiplexing echo-planar imaging (TDM-EPI) sequence for approximately two- to threefold acceleration when acquiring joint relaxation-diffusion MRI data with multiple TEs. METHODS The proposed TDM-EPI sequence interleaves excitation and data collection for up to 3 separate slices at different TEs and uses echo-shifting gradients to disentangle the overlapping echo signals during the readout period. By properly arranging the sequence event blocks for each slice and adjusting the echo-shifting gradients, diffusion-weighted images from separate slices can be acquired. Therefore, we present 2 variants of the sequence. A single-TE TDM-EPI is presented to demonstrate the concept. Next, a multi-TE TDM-EPI is presented to highlight the advantages of the TDM approach for relaxation-diffusion imaging. These sequences were evaluated on a 3 Tesla scanner with a water phantom and in vivo human brain data. RESULTS The single-TE TDM-EPI sequence can simultaneously acquire 2 slices with a maximum b value of 3000 s/mm2 and 2.5 mm isotropic resolution using interleaved readout windows with TE ≈ 78 ms. With the same b value and resolution, the multi-TE TDM-EPI sequence can simultaneously acquire 2 or 3 separate slices using interleaved readout sections with shortest TE ≈ 70 ms and ΔTE ≈ 30 ms. Phantom and in vivo experiments have shown that the proposed TDM-EPI sequences can provide similar image quality and diffusion measures as conventional EPI readouts with multiple echoes but can reduce the overall relaxation-diffusion protocol scan time by approximately two- to threefold. CONCLUSION TDM-EPI is a novel approach to acquire diffusion imaging data at multiple TEs. This enables a significant reduction in acquisition time for relaxation-diffusion MRI experiments but without compromising image quality and diffusion measurements, thus removing a significant barrier to the adoption of relaxation-diffusion MRI in clinical research studies of neurological and mental disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
23
|
Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Resolving bundle-specific intra-axonal T 2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage 2021; 227:117617. [PMID: 33301934 PMCID: PMC7615251 DOI: 10.1016/j.neuroimage.2020.117617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T1-relaxation properties, how to resolve intra-voxel T2 heterogeneity remains an open question. Here a novel framework, named COMMIT-T2, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T2 values within a voxel. Unlike previously-proposed voxel-based T2 estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T2 for all bundles in the voxel, COMMIT-T2 can recover specific T2 values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T2 values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T2 profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T2 compared to that of voxelwise approaches for mapping intra-axonal T2 exploiting diffusion, including a direction-averaged method and AMICO-T2, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Spain.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
24
|
de Almeida Martins JP, Tax CMW, Reymbaut A, Szczepankiewicz F, Chamberland M, Jones DK, Topgaard D. Computing and visualising intra-voxel orientation-specific relaxation-diffusion features in the human brain. Hum Brain Mapp 2021; 42:310-328. [PMID: 33022844 PMCID: PMC7776010 DOI: 10.1002/hbm.25224] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Diffusion MRI techniques are used widely to study the characteristics of the human brain connectome in vivo. However, to resolve and characterise white matter (WM) fibres in heterogeneous MRI voxels remains a challenging problem typically approached with signal models that rely on prior information and constraints. We have recently introduced a 5D relaxation-diffusion correlation framework wherein multidimensional diffusion encoding strategies are used to acquire data at multiple echo-times to increase the amount of information encoded into the signal and ease the constraints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets yields 5D relaxation-diffusion distributions where contributions from different sub-voxel tissue environments are separated with minimal assumptions on their microscopic properties. Here, we build on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subsequently mapped to a dense mesh of overlapping orientation bins to define a smooth orientation distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on the relaxation and diffusion features along with distinct fibre bundles. If combined with fibre-tracking algorithms, the methodology presented in this work has potential for increasing the depth of characterisation of microstructural properties along individual WM pathways.
Collapse
Affiliation(s)
- João P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUK
- University Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Alexis Reymbaut
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| | - Filip Szczepankiewicz
- Department of Clinical SciencesLund UniversityLundSweden
- Harvard Medical SchoolBostonMassachusettsUSA
- Radiology, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUK
- Mary MacKillop Institute for Health Research, Australian Catholic UniversityMelbourneAustralia
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Random Walk Imaging ABLundSweden
| |
Collapse
|
25
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
26
|
Gong T, Tong Q, He H, Sun Y, Zhong J, Zhang H. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times. Neuroimage 2020; 217:116906. [PMID: 32387626 DOI: 10.1016/j.neuroimage.2020.116906] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) has become a popular diffusion MRI technique for investigating microstructural alternations during brain development, maturation and aging in health and disease. However, the NODDI model of diffusion does not explicitly account for compartment-specific T2 relaxation and its model parameters are usually estimated from data acquired with a single echo time (TE). Thus, the NODDI-derived measures, such as the intra-neurite signal fraction, also known as the neurite density index, could be T2-weighted and TE-dependent. This may confound the interpretation of studies as one cannot disentangle differences in diffusion from those in T2 relaxation. To address this challenge, we propose a multi-TE NODDI (MTE-NODDI) technique, inspired by recent studies exploiting the synergy between diffusion and T2 relaxation. MTE-NODDI could give robust estimates of the non-T2-weighted signal fractions and compartment-specific T2 values, as demonstrated by both simulation and in vivo data experiments. Results showed that the estimated non-T2 weighted intra-neurite fraction and compartment-specific T2 values in white matter were consistent with previous studies. The T2-weighted intra-neurite fractions from the original NODDI were found to be overestimated compared to their non-T2-weighted estimates; the overestimation increases with TE, consistent with the reported intra-neurite T2 being larger than extra-neurite T2. Finally, the inclusion of the free water compartment reduces the estimation error in intra-neurite T2 in the presence of cerebrospinal fluid contamination. With the ability to disentangle non-T2-weighted signal fractions from compartment-specific T2 relaxation, MTE-NODDI could help improve the interpretability of future neuroimaging studies, especially those in brain development, maturation and aging.
Collapse
Affiliation(s)
- Ting Gong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China; Department of Computer Science & Centre for Medical Image Computing, University College London, UK
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China; Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, UK
| |
Collapse
|
27
|
Kleban E, Tax CMW, Rudrapatna US, Jones DK, Bowtell R. Strong diffusion gradients allow the separation of intra- and extra-axonal gradient-echo signals in the human brain. Neuroimage 2020; 217:116793. [PMID: 32335263 PMCID: PMC7613126 DOI: 10.1016/j.neuroimage.2020.116793] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
The quantification of brain white matter properties is a key area of application of Magnetic Resonance Imaging (MRI), with much effort focused on using MR techniques to quantify tissue microstructure. While diffusion MRI probes white matter (WM) microstructure by characterising the sensitivity of Brownian motion of water molecules to anisotropic structures, susceptibility-based techniques probe the tissue microstructure by observing the effect of interaction between the tissue and the magnetic field. Here, we unify these two complementary approaches by combining ultra-strong (300 mT/m) gradients with a novel Diffusion-Filtered Asymmetric Spin Echo (D-FASE) technique. Using D-FASE we can separately assess the evolution of the intra- and extra-axonal signals under the action of susceptibility effects, revealing differences in the behaviour in different fibre tracts. We observed that the effective relaxation rate of the ASE signal in the corpus callosum decreases with increasing b-value in all subjects (from 17.1 ± 0.7 s−1 at b = 0 s/mm2 to 14.6 ± 0.7 s−1 at b = 4800 s/mm2), while this dependence on b in the corticospinal tract is less pronounced (from 12.0± 1.1 s−1 at b = 0s/mm2 to 10.7 ± 0.5 s−1 at b = 4800 s/mm2). Voxelwise analysis of the signal evolution with respect to b-factor and acquisition delay using a microscopic model demonstrated differences in gradient echo signal evolution between the intra- and extra-axonal pools.
Collapse
Affiliation(s)
- Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Umesh S Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
28
|
Genc S, Tax CMW, Raven EP, Chamberland M, Parker GD, Jones DK. Impact of b-value on estimates of apparent fibre density. Hum Brain Mapp 2020; 41:2583-2595. [PMID: 32216121 PMCID: PMC7294071 DOI: 10.1002/hbm.24964] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre‐specific variations in white matter microstructure. Increasingly, studies are adopting multi‐shell dMRI acquisitions to improve the robustness of dMRI‐based inferences. However, the impact of b‐value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b‐value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra‐axonal signal fraction across multiple b‐value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n = 78) aged 8–18 (mean = 12.4, SD = 2.9 years) using hierarchical clustering and whole brain fixel‐based analyses. Multi‐shell dMRI data were collected at 3.0T using ultra‐strong gradients (300 mT/m), using 6 diffusion‐weighted shells ranging from b = 0 to 6,000 s/mm2. Simulations revealed that the correspondence between estimated AFD and simulated intra‐axonal signal fraction was improved with high b‐value shells due to increased suppression of the extra‐axonal signal. These results were supported by in vivo data, as sensitivity to developmental age‐relationships was improved with increasing b‐value (b = 6,000 s/mm2, median R2 = .34; b = 4,000 s/mm2, median R2 = .29; b = 2,400 s/mm2, median R2 = .21; b = 1,200 s/mm2, median R2 = .17) in a tract‐specific fashion. Overall, estimates of AFD and age‐related microstructural development were better characterised at high diffusion‐weightings due to improved correspondence with intra‐axonal properties.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK
| | - Greg D Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK.,Experimental MRI Centre (EMRIC), School of Biosciences, Cardiff University, Wales, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Wales, UK.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
29
|
Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Hansson O, Westin CF, Nilsson M. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magn Reson Med 2020; 84:1605-1623. [PMID: 32141131 DOI: 10.1002/mrm.28216] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE To optimize diffusion-relaxation MRI with tensor-valued diffusion encoding for precise estimation of compartment-specific fractions, diffusivities, and T2 values within a two-compartment model of white matter, and to explore the approach in vivo. METHODS Sampling protocols featuring different b-values (b), b-tensor shapes (bΔ ), and echo times (TE) were optimized using Cramér-Rao lower bounds (CRLB). Whole-brain data were acquired in children, adults, and elderly with white matter lesions. Compartment fractions, diffusivities, and T2 values were estimated in a model featuring two microstructural compartments represented by a "stick" and a "zeppelin." RESULTS Precise parameter estimates were enabled by sampling protocols featuring seven or more "shells" with unique b/bΔ /TE-combinations. Acquisition times were approximately 15 minutes. In white matter of adults, the "stick" compartment had a fraction of approximately 0.5 and, compared with the "zeppelin" compartment, featured lower isotropic diffusivities (0.6 vs. 1.3 μm2 /ms) but higher T2 values (85 vs. 65 ms). Children featured lower "stick" fractions (0.4). White matter lesions exhibited high "zeppelin" isotropic diffusivities (1.7 μm2 /ms) and T2 values (150 ms). CONCLUSIONS Diffusion-relaxation MRI with tensor-valued diffusion encoding expands the set of microstructure parameters that can be precisely estimated and therefore increases their specificity to biological quantities.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Department of Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | | | - Oskar Hansson
- Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Carl-Fredrik Westin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Ning L, Gagoski B, Szczepankiewicz F, Westin CF, Rathi Y. Joint RElaxation-Diffusion Imaging Moments to Probe Neurite Microstructure. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:668-677. [PMID: 31398113 PMCID: PMC7164590 DOI: 10.1109/tmi.2019.2933982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Joint relaxation-diffusion measurements can provide new insight about the tissue microstructural properties. Most recent methods have focused on inverting the Laplace transform to recover the joint distribution of relaxation-diffusion. However, as is well-known, this problem is notoriously ill-posed and numerically unstable. In this work, we address this issue by directly computing the joint moments of transverse relaxation rate and diffusivity, which can be robustly estimated. To zoom into different parts of the joint distribution, we further enhance our method by applying multiplicative filters to the joint probability density function of relaxation and diffusion and compute the corresponding moments. We propose an approach to use these moments to compute several novel scalar indices to characterize specific properties of the underlying tissue microstructure. Furthermore, for the first time, we propose an algorithm to estimate diffusion signals that are independent of echo time based on the moments of the marginal probability density function of diffusion. We demonstrate its utility in extracting tissue information not contaminated with multiple intra-voxel relaxation rates. We compare the performance of four types of filters that zoom into tissue components with different relaxation and diffusion properties and demonstrate it on an in-vivo human dataset. Experimental results show that these filters are able to characterize heterogeneous tissue microstructure. Moreover, the filtered diffusion signals are also able to distinguish fiber bundles with similar orientations but different relaxation rates. The proposed method thus allows to characterize the neural microstructure information in a robust and unique manner not possible using existing techniques.
Collapse
|
31
|
Tax CMW, Szczepankiewicz F, Nilsson M, Jones DK. The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain. Neuroimage 2020; 210:116534. [PMID: 31931157 PMCID: PMC7429990 DOI: 10.1016/j.neuroimage.2020.116534] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The so-called “dot-compartment” is conjectured in diffusion MRI to represent small spherical spaces, such as cell bodies, in which the diffusion is restricted in all directions. Previous investigations inferred its existence from data acquired with directional diffusion encoding which does not permit a straightforward separation of signals from ‘sticks’ (axons) and signals from ‘dots’. Here we combine isotropic diffusion encoding with ultra-strong diffusion gradients (240 mT/m) to achieve high diffusion-weightings with high signal to noise ratio, while suppressing signal arising from anisotropic water compartments with significant mobility along at least one axis (e.g., axons). A dot-compartment, defined to have apparent diffusion coefficient equal to zero and no exchange, would result in a non-decaying signal at very high b-values (b≳7000s/mm2). With this unique experimental setup, a residual yet slowly decaying signal above the noise floor for b-values as high as 15000s/mm2 was seen clearly in the cerebellar grey matter (GM), and in several white matter (WM) regions to some extent. Upper limits of the dot-signal-fraction were estimated to be 1.8% in cerebellar GM and 0.5% in WM. By relaxing the assumption of zero diffusivity, the signal at high b-values in cerebellar GM could be represented more accurately by an isotropic water pool with a low apparent diffusivity of 0.12 μm2/ms and a substantial signal fraction of 9.7%. The T2 of this component was estimated to be around 61ms. This remaining signal at high b-values has potential to serve as a novel and simple marker for isotropically-restricted water compartments in cerebellar GM. The “dot-compartment” is conjectured in diffusion MRI to represent e.g. cell bodies. We combine isotropic encoding with ultra-strong gradients to study the dot-compartment. A slowly decaying signal for high b-values was seen in cerebellar GM. An apparent diffusivity of 0.12 and signal fraction of 9.7% were estimated. The signal could serve as a novel and simple marker for spherical compartments.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.
| | - Filip Szczepankiewicz
- Radiology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Nilsson
- Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
32
|
Ramanna S, Moss HG, McKinnon ET, Yacoub E, Helpern JA, Jensen JH. Triple diffusion encoding MRI predicts intra-axonal and extra-axonal diffusion tensors in white matter. Magn Reson Med 2019; 83:2209-2220. [PMID: 31763730 DOI: 10.1002/mrm.28084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To demonstrate how triple diffusion encoding (TDE) MRI can be applied to separately estimate the intra-axonal and extra-axonal diffusion tensors in white matter (WM). METHODS Using a TDE pulse sequence with an axially symmetric b-matrix, diffusion MRI data were acquired at 3T for 3 healthy adults with an axial b-value of 4000 s/mm2 , a radial b-value of 307 s/mm2 , and 64 diffusion encoding directions. This acquisition was then repeated with the radial b-value set to 0. A previously proposed theory was applied to these data in order to estimate the intra-axonal diffusivity and axonal water fraction for each WM voxel. Conventional single diffusion encoding data were also obtained with b-values of 1000 and 2000 s/mm2 , which provided additional information sufficient for determining both the intra-axonal and extra-axonal diffusion tensors. RESULTS From the TDE data, the average intra-axonal diffusivity in WM was found to be 2.24 ± 0.18 µm2 /ms, and the average axonal water fraction was found to be 0.60 ± 0.11. From the 2 diffusion tensors, average WM values were estimated for several compartment-specific diffusion parameters. In particular, the extra-axonal mean diffusivity was 1.09 ± 0.19 µm2 /ms, the intra-axonal fractional anisotropy was 0.50 ± 0.14, and the extra-axonal fractional anisotropy was 0.23 ± 0.13. CONCLUSION By using a simple TDE pulse sequence with an axially symmetric b-matrix, the diffusion tensors for the intra-axonal and extra-axonal spaces can be separately estimated in adult WM. This allows one to determine compartment-specific diffusion properties for these 2 water pools.
Collapse
Affiliation(s)
- Sudhir Ramanna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Hunter G Moss
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Essa Yacoub
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
33
|
Bagnato F, Franco G, Li H, Kaden E, Ye F, Fan R, Chen A, Alexander DC, Smith SA, Dortch R, Xu J. Probing axons using multi-compartmental diffusion in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:1595-1605. [PMID: 31407532 PMCID: PMC6764633 DOI: 10.1002/acn3.50836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/10/2022] Open
Abstract
Objects The diffusion‐based spherical mean technique (SMT) provides a novel model to relate multi‐b‐value diffusion magnetic resonance imaging (MRI) data to features of tissue microstructure. We propose the first clinical application of SMT to image the brain of patients with multiple sclerosis (MS) and investigate clinical feasibility and translation. Methods Eighteen MS patients and nine age‐ and sex‐matched healthy controls (HCs) underwent a 3.0 Tesla scan inclusive of clinical sequences and SMT images (isotropic resolution of 2 mm). Axial diffusivity (AD), apparent axonal volume fraction (Vax), and effective neural diffusivity (Dax) parametric maps were fitted. Differences in AD, Vax, and Dax between anatomically matched regions reflecting different tissues types were estimated using generalized linear mixed models for binary outcomes. Results Differences were seen in all SMT‐derived parameters between chronic black holes (cBHs) and T2‐lesions (P ≤ 0.0016), in Vax and AD between T2‐lesions and normal appearing white matter (NAWM) (P < 0.0001), but not between the NAWM and normal WM in HCs. Inverse correlations were seen between Vax and AD in cBHs (r = −0.750, P = 0.02); in T2‐lesions Dax values were associated with Vax (r = 0.824, P < 0.0001) and AD (r = 0.570, P = 0.014). Interpretations SMT‐derived metrics are sensitive to pathological changes and hold potential for clinical application in MS patients.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit/Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee.,Neurology Department, VA, TN Valley Healthcare System, Nashville, Tennessee, 37215
| | - Giulia Franco
- Neuroimaging Unit/Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee.,IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Hua Li
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Run Fan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amalie Chen
- Neuroimaging Unit/Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Seth A Smith
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard Dortch
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Junzhong Xu
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Moss HG, McKinnon ET, Glenn GR, Helpern JA, Jensen JH. Optimization of data acquisition and analysis for fiber ball imaging. Neuroimage 2019; 200:690-703. [PMID: 31284026 DOI: 10.1016/j.neuroimage.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022] Open
Abstract
The inverse Funk transform of high angular resolution diffusion imaging (HARDI) data provides an estimate for the fiber orientation density function (fODF) in white matter (WM). Since the inverse Funk transform is a straightforward linear transformation, this technique, referred to as fiber ball imaging (FBI), offers a practical means of calculating the fODF that avoids the need for a response function or nonlinear numerical fitting. Nevertheless, the accuracy of FBI depends on both the choice of b-value and the number of diffusion-encoding directions used to acquire the HARDI data. To inform the design of optimal scan protocols for its implementation, FBI predictions are investigated here with in vivo data from healthy adult volunteers acquired at 3 T for b-values spanning 1000 to 10,000 s/mm2, for diffusion-encoding directions varying in number from 30 to 256 and for TE ranging from 90 to 120 ms. Our results suggest b-values above 4000 s/mm2 with at least 64 diffusion-encoding directions are adequate to achieve reasonable accuracy with FBI for calculating axon-specific diffusion measures and for performing WM fiber tractography (WMFT).
Collapse
Affiliation(s)
- Hunter G Moss
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - G Russell Glenn
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Internal Medicine, Palmetto Health Richland Hospital, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|