1
|
Wilson NE, Elliott MA, Nanga RPR, Swago S, Witschey WR, Reddy R. Optimization of 1H-MRS methods for large-volume acquisition of low-concentration downfield resonances at 3 T and 7 T. Magn Reson Med 2025; 93:18-30. [PMID: 39250517 PMCID: PMC11518639 DOI: 10.1002/mrm.30273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE This goal of this study was to optimize spectrally selective 1H-MRS methods for large-volume acquisition of low-concentration metabolites with downfield resonances at 7 T and 3 T, with particular attention paid to detection of nicotinamide adenine dinucleotide (NAD+) and tryptophan. METHODS Spectrally selective excitation was used to avoid magnetization-transfer effects with water, and various sinc pulses were compared with a band-selective, uniform response, pure-phase (E-BURP) pulse. Localization using a single-slice selective pulse was compared with voxel-based localization that used three orthogonal refocusing pulses, and low bandwidth refocusing pulses were used to take advantage of the chemical shift displacement of water. A technique for water sideband removal was added, and a method of coil channel combination for large volumes was introduced. RESULTS Proposed methods were compared qualitatively with previously reported techniques at 7 T. Sinc pulses resulted in reduced water signal excitation and improved spectral quality, with a symmetric, low bandwidth-time product pulse performing best. Single-slice localization allowed shorter TEs with large volumes, enhancing signal, whereas low-bandwidth slice-selective localization greatly reduced the observed water signal. Gradient cycling helped remove water sidebands, and frequency aligning and pruning individual channels narrowed spectral linewidths. High-quality brain spectra of NAD+ and tryptophan are shown in 4 subjects at 3 T. CONCLUSION Improved spectral quality with higher downfield signal, shorter TE, lower nuisance signal, reduced artifacts, and narrower peaks was realized at 7 T. These methodological improvements allowed for previously unachievable detection of NAD+ and tryptophan in human brain at 3 T in under 5 min.
Collapse
Affiliation(s)
- Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Swago
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wang Y, Saha U, Rubakhin SS, Roy EJ, Smith AM, Sweedler JV, Lam F. High-resolution 1H-MRSI at 9.4 T by integrating relaxation enhancement and subspace imaging. NMR IN BIOMEDICINE 2024; 37:e5161. [PMID: 38715469 PMCID: PMC11469943 DOI: 10.1002/nbm.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
Achieving high-resolution and high signal-to-noise ratio (SNR) in vivo metabolic imaging via fast magnetic resonance spectroscopic imaging (MRSI) has been a longstanding challenge. This study combines the methods of relaxation enhancement (RE) and subspace imaging for the first time, enabling high-resolution and high-SNR in vivo MRSI of rodent brains at 9.4 T. Specifically, an RE-based chemical shift imaging sequence, which combines a frequency-selective pulse to excite only the metabolite frequencies with minimum perturbation of the water spins and a pair of adiabatic pulses to spatially localize the slice of interest, is designed and evaluated in vivo. This strategy effectively shortens the apparent T1 of metabolites, thereby increasing the SNR during relatively short repetition time ((TR) compared with acquisitions with only spatially selective wideband excitations, and does not require water suppression. The SNR was further enhanced via a state-of-the-art subspace reconstruction method. A novel subspace learning strategy tailored for 9.4 T and RE acquisitions is developed. In vivo, high-resolution (e.g., voxel size of 0.6 × 0.6 × 1.5 mm3) MRSI of both healthy mouse brains and a glioma-bearing mouse brain in 12.5 min has been demonstrated.
Collapse
Affiliation(s)
- Yizun Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Urbi Saha
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S. Rubakhin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Edward J. Roy
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrew M. Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Fan Lam
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, Urbana, Illinois, USA
| |
Collapse
|
3
|
Özdemir İ, Etyemez S, Barker PB. High-field downfield MR spectroscopic imaging in the human brain. Magn Reson Med 2024; 92:890-899. [PMID: 38469953 PMCID: PMC11209804 DOI: 10.1002/mrm.30075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding,1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY
- Department of Psychiatry, Weill Cornell Medicine, New York, NY
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Wilson NE, Elliott MA, Nanga RPR, Swago S, Witschey WR, Reddy R. Optimization of 1H MR spectroscopy methods for large volume acquisition of low concentration downfield resonances at 3T and 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305552. [PMID: 38645233 PMCID: PMC11030301 DOI: 10.1101/2024.04.09.24305552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Purpose This goal of this study was to optimize spectrally selective 1H MRS methods for large volume acquisition of low concentration metabolites with downfield resonances at 7T and 3T, with particular attention paid to detection of nicotinamide adenine dinucleotide (NAD+) and tryptophan. Methods Spectrally selective excitation was used to avoid magnetization transfer effects with water, and various sinc pulses were compared to a pure-phase E-BURP pulse. Localization using a single slice selective pulse was compared to voxel-based localization that used three orthogonal refocusing pulses, and low bandwidth refocusing pulses were used to take advantage of the chemical shift displacement of water. A technique for water sideband removal was added, and a method of coil channel combination for large volumes was introduced. Results Proposed methods were compared qualitatively to previously-reported techniques at 7T. Sinc pulses resulted in reduced water signal excitation and improved spectral quality, with a symmetric, low bandwidth-time product pulse performing best. Single slice localization allowed shorter TEs with large volumes, enhancing signal, while low bandwidth slice selective localization greatly reduced the observed water signal. Gradient cycling helped remove water sidebands, and frequency aligning and pruning individual channels narrowed spectral linewidths. High quality brain spectra of NAD+ and tryptophan are shown in four subjects at 3T. Conclusion Improved spectral quality with higher downfield signal, shorter TE, lower nuisance signal, reduced artifacts, and narrower peaks was realized at 7T. These methodological improvements allowed for previously unachievable detection of NAD+ and tryptophan in human brain at 3T in under five minutes.
Collapse
Affiliation(s)
- Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Swago
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Özdemir İ, Ganji S, Gillen J, Etyemez S, Považan M, Barker PB. Downfield proton MRSI with whole-brain coverage at 3T. Magn Reson Med 2023; 90:814-822. [PMID: 37249071 PMCID: PMC10330175 DOI: 10.1002/mrm.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. METHODS A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.7 cm3 were recorded in eight slices at 3T in a scan time of 22 m 40 s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine DF peaks. RESULTS LCModel analysis showed Cramer Rao lower bounds average values of 3%-4% for protein amide resonances in the three selected regions (anterior cingulate, dorsolateral prefrontal cortex, and centrum semiovale); Cramer Rao lower bounds were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between centrum semiovale and dorsolateral prefrontal cortex for peaks at 7.09 ppm (p = 0.014), 7.90 ppm (p = 0.009), 8.18 ppm (p = 0.009), combined amides (p = 0.009), and between anterior cingulate and dorsolateral prefrontal cortex for the 7.30 ppm peak (p = 0.020). Cramer Rao lower bounds values were not significantly different between brain regions for any of the DF peaks. CONCLUSION The 3D DF MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm3 .
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, United States
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
6
|
Özdemir İ, Kamson DO, Etyemez S, Blair L, Lin DDM, Barker PB. Downfield Proton MRSI at 3 Tesla: A Pilot Study in Human Brain Tumors. Cancers (Basel) 2023; 15:4311. [PMID: 37686587 PMCID: PMC10486526 DOI: 10.3390/cancers15174311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O. Kamson
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Blair
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris D. M. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain MRI, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Özdemir İ, Ganji S, Joseph Gillen BS, Etyemez S, Považan M, Barker PB. Downfield Proton MRSI with whole-brain coverage at 3T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525726. [PMID: 36747802 PMCID: PMC9900941 DOI: 10.1101/2023.01.27.525726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose To develop a 3D downfield magnetic resonance spectroscopic imaging (DF-MRSI) protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. Methods A 3D, circularly phase-encoded version of the previously developed 2D DF-MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in 5 healthy volunteers at 3T. Downfield metabolite maps with a nominal spatial resolution of 0.7 cm 3 were recorded in 8 slices at 3T in a scan time of 22m 40s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine downfield peaks. Results LCModel analysis showed CRLB average values of 3-4% for protein amide resonances in the three selected regions (anterior cingulate (ACC), dorsolateral prefrontal cortex (DLPFC), and centrum semiovale (CSO)); CRLBs were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between CSO and DLPFC for peaks at 7.09 ppm (p= 0.014), 7.90 ppm (p=0.009), 8.18 ppm (p=0.009), combined amides (p=0.009), and between ACC and DLPFC for the 7.30 ppm peak (p=0.020). CRLB values were not significantly different between brain regions for any of the DF peaks. Conclusion 3D DF-MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm 3 .
Collapse
|
8
|
Dziadosz M, Hoefemann M, Döring A, Marjańska M, Auerbach EJ, Kreis R. Quantification of
NAD
+
in human brain with
1
H MR
spectroscopy at 3 T: Comparison of three localization techniques with different handling of water magnetization. Magn Reson Med 2022; 88:1027-1038. [PMID: 35526238 PMCID: PMC9322547 DOI: 10.1002/mrm.29267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
Purpose The detection of nicotinamide‐adenine‐dinucleotide (NAD+) is challenging using standard 1H MR spectroscopy, because it is of low concentration and affected by polarization‐exchange with water. Therefore, this study compares three techniques to access NAD+ quantification at 3 T–one with and two without water presaturation. Methods A large brain volume in 10 healthy subjects was investigated with three techniques: semi‐LASER with water‐saturation (WS) (TE = 35 ms), semi‐LASER with metabolite‐cycling (MC) (TE = 35 ms), and the non‐water‐excitation (nWE) technique 2D ISIS‐localization with chemical‐shift‐selective excitation (2D I‐CSE) (TE = 10.2 ms). Spectra were quantified with optimized modeling in FiTAID. Results NAD+ could be well quantified in cohort‐average spectra with all techniques. Obtained apparent NAD+ tissue contents are all lower than expected from literature confirming restricted visibility by 1H MRS. The estimated value from WS‐MRS (58 μM) was considerably lower than those obtained with non‐WS techniques (146 μM for MC‐semi‐LASER and 125 μM for 2D I‐CSE). The nWE technique with shortest TE gave largest NAD+ signals but suffered from overlap with large amide signals. MC‐semi‐LASER yielded best estimation precision as reflected in relative Cramer‐Rao bounds (14%, 21 μM/146 μM) and also best robustness as judged by the coefficient‐of‐variance over the cohort (11%, 10 μM/146 μM). The MR‐visibility turned out as 16% with WS and 41% with MC. Conclusion Three methods to assess NAD+ in human brain at 3 T have been compared. NAD+ could be detected with a visibility of ∼41% for the MC method. This may open a new window for the observation of pathological changes in the clinical research setting.
Collapse
Affiliation(s)
- Martyna Dziadosz
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology & Department for Biomedical Research University of Bern Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences University of Bern Bern Switzerland
- Translational Imaging Center (TIC) Swiss Institute for Translational and Entrepreneurial Medicine Bern Switzerland
| | - Maike Hoefemann
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology & Department for Biomedical Research University of Bern Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences University of Bern Bern Switzerland
- Translational Imaging Center (TIC) Swiss Institute for Translational and Entrepreneurial Medicine Bern Switzerland
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology Cardiff University Cardiff UK
| | - Malgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
| | - Edward John Auerbach
- Department of Radiology, Center for Magnetic Resonance Research University of Minnesota Minneapolis Minnesota USA
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology & Department for Biomedical Research University of Bern Bern Switzerland
- Translational Imaging Center (TIC) Swiss Institute for Translational and Entrepreneurial Medicine Bern Switzerland
| |
Collapse
|
9
|
Gonçalves SI, Simões RV, Shemesh N. Short TE downfield magnetic resonance spectroscopy in a mouse model of brain glioma. Magn Reson Med 2022; 88:524-536. [PMID: 35315536 DOI: 10.1002/mrm.29243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Enhanced cell proliferation in tumors can be associated with altered metabolic profiles and dramatic microenvironmental changes. Downfield magnetic resonance spectroscopy (MRS) has received increasing attention due to its ability to report on labile resonances of molecules not easily detected in upfield 1 H MRS. Image-selected-in-vivo-spectroscopy-relaxation enhanced MRS (iRE-MRS) was recently introduced for acquiring short echo-time (TE) spectra. Here, iRE-MRS was used to investigate in-vivo downfield spectra in glioma-bearing mice. METHODS Experiments were performed in vivo in an immunocompetent glioma mouse model at 9.4 T using a cryogenic coil. iRE-MRS spectra were acquired in N = 6 glioma-bearing mice (voxel size = 2.23 mm3 ) and N = 6 control mice. Spectra were modeled by a sum of Lorentzian peaks simulating known downfield resonances, and differences between controls and tumors were quantified using relative peak areas. RESULTS Short TE tumor spectra exhibited large qualitative differences compared to control spectra. Most peaks appeared modulated, with strong attenuation of NAA (∼7.82, 7.86 ppm) and changes in relative peak areas between 6.75 and 8.49 ppm. Peak areas tended to be smaller for DF6.83 , DF7.60 , DF8.18 and NAA; and larger for DF7.95 and DF8.24 . Differences were also detected in signals resonating above 8.5 ppm, assumed to arise from NAD+. CONCLUSIONS In-vivo downfield 1 H iRE-MRS of mouse glioma revealed differences between controls and tumor bearing mice, including in metabolites which are not easily detectable in the more commonly investigated upfield spectrum. These findings motivate future downfield MRS investigations exploring pH and exchange contributions to these differences.
Collapse
Affiliation(s)
| | - Rui V Simões
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
10
|
Považan M, Schär M, Gillen J, Barker PB. Magnetic resonance spectroscopic imaging of downfield proton resonances in the human brain at 3 T. Magn Reson Med 2021; 87:1661-1672. [PMID: 34971460 DOI: 10.1002/mrm.29142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop an MRSI technique capable of mapping downfield proton resonances in the human brain. METHODS A spectral-spatial excitation and frequency-selective refocusing scheme, in combination with 2D phase encoding, was developed for mapping of downfield resonances without any perturbation of the water magnetization. An alternative scheme using spectral-spatial refocusing was also investigated for simultaneous detection of both downfield and upfield resonances. The method was tested in 5 healthy human volunteers. RESULTS Downfield metabolite maps with a nominal spatial resolution of 1.5 cm3 were recorded at 3 T in a scan time of 12 minutes. Cramer-Rao lower bounds for nine different downfield peaks were 20% or less over a single supraventricular slice. Downfield spectral profiles were similar to those in the literature recorded previously using single-voxel localization methods. The same approach was also used for upfield MRSI, and simultaneous upfield and downfield acquisitions. CONCLUSION The developed MRSI pulse sequence was shown to be an efficient way of rapidly mapping downfield resonances in the human brain at 3 T, maximizing sensitivity through the relaxation enhancement effect. Because the MRSI approach is efficient in terms of data collection and can be readily implemented at short TE, somewhat higher spatial resolution can be achieved than has been reported in previous single-voxel downfield MRS studies. With this approach, nine downfield resonances could be mapped in a single slice for the first time using MRSI at 3 T.
Collapse
Affiliation(s)
- Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Borbath T, Murali-Manohar S, Wright AM, Henning A. In vivo characterization of downfield peaks at 9.4 T: T 2 relaxation times, quantification, pH estimation, and assignments. Magn Reson Med 2020; 85:587-600. [PMID: 32783249 DOI: 10.1002/mrm.28442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Relaxation times are a valuable asset when determining spectral assignments. In this study, apparent T2 relaxation times ( T 2 app ) of downfield peaks are reported in the human brain at 9.4 T and are used to guide spectral assignments of some downfield metabolite peaks. METHODS Echo time series of downfield metabolite spectra were acquired at 9.4 T using a metabolite-cycled semi-LASER sequence. Metabolite spectral fitting was performed using LCModel V6.3-1L while fitting a pH sweep to estimate the pH of the homocarnosine (hCs) imidazole ring. T 2 app were calculated by fitting the resulting relative amplitudes of the peaks to a mono-exponential decay across the TE series. Furthermore, estimated tissue concentrations of molecules were calculated using the relaxation times and internal water as a reference. RESULTS T 2 app of downfield metabolites are reported within a range from 16 to 32 ms except for homocarnosine with T 2 app of 50 ms. Correcting T 2 app for exchange rates ( T 2 c o r r ) resulted in relaxation times between 20 and 33 ms. The estimated pH values based on hCs imidazole range from 7.07 to 7.12 between subjects. Furthermore, analyzing the linewidths of the downfield peaks and their T 2 app contribution led to possible peak assignments. CONCLUSION T 2 app relaxation times were longer for the assigned metabolite peaks compared to the unassigned peaks. Tissue pH estimation in vivo with proton MRS and simultaneous quantification of amide protons at 8.30 ± 0.15 ppm is likely possible. Based on concentration, linewidth, and exchange rates measurements, tentative peak assignments are discussed for adenosine triphosphate (ATP), N-acetylaspartylglutamate (NAAG), and urea.
Collapse
Affiliation(s)
- Tamas Borbath
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Saipavitra Murali-Manohar
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive & Systems Neuroscience, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Dziadosz M, Bogner W, Kreis R. Non-water-excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T. Magn Reson Med 2020; 84:2352-2363. [PMID: 32602971 DOI: 10.1002/mrm.28322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. METHODS Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms. RESULTS The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times. CONCLUSION Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
Collapse
Affiliation(s)
- Martyna Dziadosz
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Wolfgang Bogner
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Landheer K, Noeske R, Garwood M, Juchem C. UTE-SPECIAL for3D localization at an echo time of 4 ms on a clinical 3 T scanner. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 311:106670. [PMID: 31927513 PMCID: PMC7045707 DOI: 10.1016/j.jmr.2019.106670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Reducing the echo time of magnetic resonance spectroscopy experiments is appealing because it increases the available signal and reduces J-evolution of coupled metabolites. In this manuscript a novel sequence, referred to as Ultrashort echo TimE, SPin ECho, full Intensity Acquired Localized (UTE-SPECIAL), is described which is able to achieve ultrashort echo times (4 ms) on a standard clinical 3 T MR system while recovering the entirety of the available magnetization. UTE-SPECIAL obtains full 3D spatial localization through a 2D adiabatic inversion pulse which is cycled "on" and "off" every other repetition, in combination with a slice-selective excitation pulse. In addition to an ultrashort echo time, UTE-SPECIAL has negligible chemical shift displacement artefact and, because it uses no slice-selective refocusing pulse, has no signal cancellation at the borders for J-coupled metabolites. Spectra with an ultrashort echo time of 4 ms are demonstrated in vivo at 3 T, as well as J-resolved spectra obtained in a phantom and a healthy volunteer.
Collapse
Affiliation(s)
- Karl Landheer
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States.
| | | | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Christoph Juchem
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, NY, United States; Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|