1
|
Lutz M, Aigner CS, Flassbeck S, Krueger F, Gatefait CGF, Kolbitsch C, Silemek B, Seifert F, Schaeffter T, Schmitter S. B1-MRF: Large dynamic range MRF-based absolute B 1 + mapping in the human body at 7T. Magn Reson Med 2024; 92:2473-2490. [PMID: 39133639 DOI: 10.1002/mrm.30242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE This study aims to map the transmit magnetic field (B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS A FLASH-based MRF sequence (B1-MRF) with highB 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS The MRF signal curve was highly sensitive toB 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement ofB 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in lowB 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION B1-MRF provides accurate and preciseB 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring preciseB 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.
Collapse
Affiliation(s)
- Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Sebastian Flassbeck
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | | | - Berk Silemek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Kent JL, de Buck MHS, Dragonu I, Chiew M, Valkovič L, Hess AT. Accelerated 3D multi-channel B 1 + mapping at 7 T for the brain and heart. Magn Reson Med 2024; 92:2007-2020. [PMID: 38934380 DOI: 10.1002/mrm.30201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To acquire accurate volumetric multi-channelB 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit arrayB 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absoluteB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in aB 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampledB 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS Simulation and in vivo results show that volumetric multi-channelB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.
Collapse
Affiliation(s)
- James L Kent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthijs H S de Buck
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Iulius Dragonu
- Research & Collaborations GB&I, Siemens Healthcare Ltd, Camberley, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Egger N, Nagelstraßer S, Wildenberg S, Bitz A, Ruck L, Herrler J, Meixner CR, Kimmlingen R, Lanz T, Schmitter S, Uder M, Nagel AM. Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and robust parallel transmit pulse design for heart and prostate imaging at 7 T. Magn Reson Med 2024; 92:1933-1951. [PMID: 38888143 DOI: 10.1002/mrm.30185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To investigate the impact of reduced k-space sampling onB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS Channel-wise 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With theseB 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity andB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based onB 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV),B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS For both organs, the universal phase shims showed significantly higherB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION AcceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity,B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.
Collapse
Affiliation(s)
- Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Andreas Bitz
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Krueger F, Aigner CS, Lutz M, Riemann LT, Degenhardt K, Hadjikiriakos K, Zimmermann FF, Hammernik K, Schulz-Menger J, Schaeffter T, Schmitter S. Deep learning-based whole-brain B 1 +-mapping at 7T. Magn Reson Med 2024. [PMID: 39462473 DOI: 10.1002/mrm.30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE This study investigates the feasibility of using complex-valued neural networks (NNs) to estimate quantitative transmit magnetic RF field (B1 +) maps from multi-slice localizer scans with different slice orientations in the human head at 7T, aiming to accelerate subject-specific B1 +-calibration using parallel transmission (pTx). METHODS Datasets containing channel-wise B1 +-maps and corresponding multi-slice localizers were acquired in axial, sagittal, and coronal orientation in 15 healthy subjects utilizing an eight-channel pTx transceiver head coil. Training included five-fold cross-validation for four network configurations:NN cx tra $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{tra}} $$ used transversal,NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ sagittal,NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ coronal data, andNN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ was trained on all slice orientations. The resulting maps were compared to B1 +-reference scans using different quality metrics. The proposed network was applied in-vivo at 7T in two unseen test subjects using dynamic kt-point pulses. RESULTS Predicted B1 +-maps demonstrated a high similarity with measured B1 +-maps across multiple orientations. The estimation matched the reference with a mean relative error in the magnitude of (2.70 ± 2.86)% and mean absolute phase difference of (6.70 ± 1.99)° for transversal, (1.82 ± 0.69)% and (4.25 ± 1.62)° for sagittal (NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ ), as well as (1.33 ± 0.27)% and (2.66 ± 0.60)° for coronal slices (NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ ) considering brain tissue.NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ trained on all orientations enables a robust prediction of B1 +-maps across different orientations. Achieving a homogenous excitation over the whole brain for an in-vivo application displayed the approach's feasibility. CONCLUSION This study demonstrates the feasibility of utilizing complex-valued NNs to estimate multi-slice B1 +-maps in different slice orientations from localizer scans in the human brain at 7T.
Collapse
Affiliation(s)
- Felix Krueger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
- Einstein Centre Digital Future, Technische Universität Berlin, Biomedical Engineering, Berlin, Germany
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Layla Tabea Riemann
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
- Institute for Applied Medical Informatics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Kerstin Hammernik
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Experimental Clinical Research Center, Berlin, Germany
- Working Group On CMR, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
- Einstein Centre Digital Future, Technische Universität Berlin, Biomedical Engineering, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Maatman IT, Schulz J, Ypma S, Block KT, Schmitter S, Hermans JJ, Smit EJ, Maas MC, Scheenen TWJ. Free-breathing high-resolution respiratory-gated radial stack-of-stars magnetic resonance imaging of the upper abdomen at 7 T. NMR IN BIOMEDICINE 2024; 37:e5180. [PMID: 38775032 DOI: 10.1002/nbm.5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 10/12/2024]
Abstract
Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view. Free-breathing 3D gradient-recalled echo (GRE) water-excited radial stack-of-stars data were acquired in seven healthy volunteers (five males/two females, body mass index: 19.6-24.8 kg/m2) at 7 T using an eight-channel transceive array coil. Two volunteers were also examined at 3 T. In each volunteer, the liver and kidney regions were scanned in two separate acquisitions. To homogenize signal excitation, the time-interleaved acquisition of modes (TIAMO) method was used with personalized pairs of B1 shims, based on a 23-s Cartesian fast low angle shot (FLASH) acquisition. Utilizing free-induction decay navigator signals, respiratory-gated images were reconstructed at a spatial resolution of 0.8 × 0.8 × 1.0 mm3. Two experienced radiologists rated the image quality and the impact of B1 inhomogeneity and motion-related artifacts on multipoint scales. The images of all volunteers showcased effective water excitation and were accurately corrected for respiratory motion. The impact of B1 inhomogeneity on image quality was minimal, underscoring the efficacy of the multitransmit TIAMO shim. The high spatial resolution allowed excellent depiction of small structures such as the adrenal glands, the proximal ureter, the diaphragm, and small blood vessels, although some streaking artifacts persisted in liver image data. In direct comparisons with 3 T performed for two volunteers, 7-T acquisitions demonstrated increases in signal-to-noise ratio of 77% and 58%. Overall, this work demonstrates the feasibility of free-breathing MRI in the upper abdomen at submillimeter spatial resolution at a magnetic field strength of 7 T.
Collapse
Affiliation(s)
- Ivo T Maatman
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenni Schulz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| | - Sjoerd Ypma
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kai Tobias Block
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - John J Hermans
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marnix C Maas
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Erwin L Hahn Institute for MR Imaging, Essen, Germany
| |
Collapse
|
6
|
Aigner CS, Sánchez Alarcon MF, D'Astous A, Alonso-Ortiz E, Cohen-Adad J, Schmitter S. Calibration-free parallel transmission of the cervical, thoracic, and lumbar spinal cord at 7T. Magn Reson Med 2024; 92:1496-1510. [PMID: 38733068 DOI: 10.1002/mrm.30137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To address the limitations of spinal cord imaging at ultra-high field (UHF) due to time-consuming parallel transmit (pTx) adjustments. This study introduces calibration-free offline computed universal shim modes that can be applied seamlessly for different pTx RF coils and spinal cord target regions, substantially enhancing spinal cord imaging efficiency at UHF. METHODS A library of channel-wise relativeB 1 + $$ {B}_1^{+} $$ maps for the cervical spinal cord (six datasets) and thoracic and lumbar spinal cord (nine datasets) was constructed to optimize transmit homogeneity and efficiency for these regions. A tailored B0 shim was optimized for the cervical spine to enhance spatial magnetic field homogeneity further. The performance of the universal shims was validated using absolute saturation basedB 1 + $$ {B}_1^{+} $$ mapping and high-resolution 2D and 3D multi-echo gradient-recalled echo (GRE) data to assess the image quality. RESULTS The proposed universal shims demonstrated a 50% improvement inB 1 + $$ {B}_1^{+} $$ efficiency compared to the default (zero phase) shim mode.B 1 + $$ {B}_1^{+} $$ homogeneity was also improved by 20%. The optimized universal shims achieved performance comparable to subject-specific pTx adjustments, while eliminating the need for lengthy pTx calibration times, saving about 10 min per experiment. CONCLUSION The development of universal shims represents a significant advance by eliminating time-consuming subject-specific pTx adjustments. This approach is expected to make UHF spinal cord imaging more accessible and user-friendly, particularly for non-pTx experts.
Collapse
Affiliation(s)
- Christoph S Aigner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Manuel F Sánchez Alarcon
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandre D'Astous
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Eva Alonso-Ortiz
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila-Quebec AI Institute, Montréal, Quebec, Canada
| | - Julien Cohen-Adad
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila-Quebec AI Institute, Montréal, Quebec, Canada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Aigner CS, Dietrich-Conzelmann S, Lutz M, Krüger F, Schmitter S. Tailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T. Magn Reson Med 2024; 92:730-740. [PMID: 38440957 DOI: 10.1002/mrm.30072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE To research and evaluate the performance of broadband tailored kT-point pulses (TP) and universal pulses (UP) for homogeneous excitation of the human heart at 7T. METHODS Relative 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the thorax were acquired from 29 healthy volunteers. TP and UP were designed using the small-tip-angle approximation for a different composition of up to seven resonance frequencies. TP were computed for each of the 29B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, and UPs were calculated using 22B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps and tested in seven testcases. The performance of the pulses was analyzed using the coefficient of variation (CV) in the 3D heart volumes. The 3D gradient-echo (GRE) scans were acquired for the seven testcases to qualitatively validate theB 1 + $$ {\mathrm{B}}_1^{+} $$ -predictions. RESULTS Single- and double-frequency optimized pulses achieved homogeneity in flip angle (FA) for the frequencies they were optimized for, while the broadband pulses achieved uniformity in FA across a 1300 Hz frequency range. CONCLUSION Broadband TP and UP can be used for homogeneous excitation of the heart volume across a 1300 Hz frequency range, including the water and the main six fat peaks, or with longer pulse durations and higher FAs for a smaller transmit bandwidth. Moreover, despite large inter-volunteer variations, broadband UP can be used for calibration-free 3D heart FA homogenization in time-critical situations.
Collapse
Affiliation(s)
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Felix Krüger
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Schmidt S, He X, Metzger GJ. Universal modes: Calibration-free time-interleaved acquisition of modes. Magn Reson Med 2024; 92:43-56. [PMID: 38303151 PMCID: PMC11055664 DOI: 10.1002/mrm.30032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE To introduce universal modes by applying the universal pulse concept to time-interleaved acquisition of modes (TIAMO), thereby achieving calibration-freeB 1 + $$ {B}_1^{+} $$ inhomogeneity mitigation for body imaging at ultra-high fields. METHODS Two databases of different RF arrays were used to demonstrate the feasibility of universal modes. The first comprised 31 cardiac in vivo data sets acquired at 7T while the second consisted of 6 simulated 10.5T pelvic data sets. Subject-specific solutions and universal modes were computed and subsequently evaluated alongside predefined default modes. For the cardiac database, subdivision into subpopulations was investigated. The optimization was performed using least-squares (LS) TIAMO and acquisition modes optimized for refocused echoes (AMORE). Finally, universal modes based on simulated pelvis data were applied in vivo at 10.5T. RESULTS In all studied cases, the universal modes yield improvements over the predefined default modes of up to 51% (cardiac) and 30% (pelvic) in terms of median excitation error when using two modes. The subpopulation-specific cardiac solutions revealed a further improvement of universal modes at the expense of increased errors when applied outside the appropriate subpopulation. Direct application of simulation-based universal modes in vivo resulted in up to a 14% reduction in excitation error compared to default modes and up to a 34% reduction in peak 10 g local specific absorption rate (SAR) compared to subject-specific solutions. CONCLUSIONS Universal modes are feasible for calibration-freeB 1 + $$ {B}_1^{+} $$ inhomogeneity mitigation at ultra-high fields. In addition, simulation-based solutions can be applied directly in vivo, eliminating the need for large in vivo databases.
Collapse
Affiliation(s)
- Simon Schmidt
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Wu Y, Wang Z, Chu Y, Peng R, Peng H, Yang H, Guo K, Zhang J. Current Research Status of Respiratory Motion for Thorax and Abdominal Treatment: A Systematic Review. Biomimetics (Basel) 2024; 9:170. [PMID: 38534855 DOI: 10.3390/biomimetics9030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.
Collapse
Affiliation(s)
- Yuwen Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhisen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuyi Chu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Renyuan Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haoran Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Schmidt S, Ertürk MA, He X, Haluptzok T, Eryaman Y, Metzger GJ. Improved 1 H body imaging at 10.5 T: Validation and VOP-enabled imaging in vivo with a 16-channel transceiver dipole array. Magn Reson Med 2024; 91:513-529. [PMID: 37705412 PMCID: PMC10850915 DOI: 10.1002/mrm.29866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. METHODS The inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE). RESULTS The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%. CONCLUSIONS By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.
Collapse
Affiliation(s)
- Simon Schmidt
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - M. Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tobey Haluptzok
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Runderkamp BA, Roos T, van der Zwaag W, Strijkers GJ, Caan MWA, Nederveen AJ. Whole-liver flip-angle shimming at 7 T using parallel-transmit k T -point pulses and Fourier phase-encoded DREAM B 1 + mapping. Magn Reson Med 2024; 91:75-90. [PMID: 37799015 DOI: 10.1002/mrm.29819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE To obtain homogeneous signal throughout the human liver at 7 T. Flip angle (FA) shimming in 7T whole-liver imaging was performed through parallel-transmit kT -point pulses based on subject-specific multichannel absoluteB 1 + $$ {\mathrm{B}}_1^{+} $$ maps from Fourier phase-encoded dual refocusing echo acquisition mode (PE-DREAM). METHODS The optimal number of Fourier phase-encoding steps for PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping was determined for a 7T eight-channel parallel-transmission system. FA shimming experiments were performed in the liver of 7 healthy subjects with varying body mass index. In these subjects, firstB 0 $$ {\mathrm{B}}_0 $$ shimming and Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping were performed. Subsequently, three small-flip-angle 3D gradient-echo scans were acquired, comparing a circularly polarized (CP) mode, a phase shim, and a kT -point pulse. Resulting homogeneity was assessed and compared with estimated FA maps and distributions. RESULTS Fourier PE-DREAM with 13 phase-encoding steps resulted in a good tradeoff betweenB 1 + $$ {\mathrm{B}}_1^{+} $$ accuracy and scan time. Lower coefficient of variation values (average [min-max] across subjects) of the estimated FA in the volume of interest were observed using kT -points (7.4 [6.6%-8.0%]), compared with phase shimming (18.8 [12.9%-23.4%], p < 0.001) and CP (43.2 [39.4%-47.1%], p < 0.001). kT -points delivered whole-liver images with the nominal FA and the highest degree of homogeneity. CP and phase shimming resulted in either inaccurate or imprecise FA distributions. Here, locations having suboptimal FA in the estimated FA maps corresponded to liver areas suffering from inconsistent signal intensity and T1 -weighting in the gradient-echo scans. CONCLUSION Homogeneous whole-liver 3D gradient-echo acquisitions at 7 T can be obtained with eight-channel kT -point pulses calculated based on subject-specific multichannel absolute Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ maps.
Collapse
Affiliation(s)
- Bobby A Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas Roos
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- High-Field Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Computational and Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Terekhov M, Elabyad IA, Lohr D, Reiter T, Kögler C, Lanz T, Schreiber LM. Complementary analysis of specific absorption rate safety for an 8Tx/16Rx array with central symmetry of elements for magnetic resonance imaging of the human heart and abdominopelvic organs at 7 T. NMR IN BIOMEDICINE 2023; 36:e5023. [PMID: 37620002 DOI: 10.1002/nbm.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023]
Abstract
A complementary safety assessment of the specific absorption rate (SAR) of the electromagnetic energy was performed in a prototype 8Tx/16Rx RF array for cardiac magnetic resonance imaging (MRI) at 7 T. The study aimed to address two critical aspects of 7-T SAR safety not always explicitly examined by coil vendors: (i) the influence of an RF-array position on a peak SAR value, and (ii) the risk of exceeding the permitted maximal SAR in the tissue surrounding conductive passive implants. The full-wave 3D electromagnetic simulations for the thorax with shifted array position and the whole-body volume in the presence of a dental retainer, an intrauterine contraceptive device (IUD), and a hip joint implant, were performed for two human voxel models. The effect of the array displacement on the SAR was simulated for seven array locations on the thorax shifted from the central position in different directions on 50 mm. The peak SAR values for both models were analyzed for the three phase-only transmit vectors optimized for B1 + homogeneity and transmit efficiency. Peak SAR values due to the shifts of the array position increase up to ≈50%. The worst-case peak SAR value for a dental retainer was found to be in the range of 10% of the maximal SAR in the tissue within the array's borders. For the IUD and artificial hip joint implants the effect was found to be negligible (peak SAR < 1% of the SAR within array borders). In addition to simulations for cardiac MRI, we performed a preliminary B1 + shimming and SAR-safety analysis for the same RF-array at various positions lower on the body trunk to assess a potential application in imaging abdominopelvic organs (prostate, kidney, and liver). The most promising target for an ad hoc alternative application of the array was found to be the prostate.
Collapse
Affiliation(s)
- Maxim Terekhov
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Ibrahim A Elabyad
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I/Cardiology, University Hospital Würzburg (UKW), Würzburg, Germany
| | | | | | - Laura M Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg (UKW), Würzburg, Germany
| |
Collapse
|
13
|
Nurzed B, Kuehne A, Aigner CS, Schmitter S, Niendorf T, Eigentler TW. Radiofrequency antenna concepts for human cardiac MR at 14.0 T. MAGMA (NEW YORK, N.Y.) 2023; 36:257-277. [PMID: 36920549 PMCID: PMC10140016 DOI: 10.1007/s10334-023-01075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 μT/√kW (SGBT), 0.73 μT/√kW (BT), and 0.56 μT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.
Collapse
Affiliation(s)
- Bilguun Nurzed
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
| | | | | | | | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany.
- MRI.TOOLS GmbH, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), Robert Rössle Strasse 10, 13125, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Terekhov M, Elabyad IA, Lohr D, Hofmann U, Schreiber LM. High-resolution imaging of the excised porcine heart at a whole-body 7 T MRI system using an 8Tx/16Rx pTx coil. MAGMA (NEW YORK, N.Y.) 2023; 36:279-293. [PMID: 37027119 PMCID: PMC10140105 DOI: 10.1007/s10334-023-01077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.
Collapse
Affiliation(s)
- Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I / Cardiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
15
|
D’Astous A, Cereza G, Papp D, Gilbert KM, Stockmann JP, Alonso-Ortiz E, Cohen-Adad J. Shimming toolbox: An open-source software toolbox for B0 and B1 shimming in MRI. Magn Reson Med 2023; 89:1401-1417. [PMID: 36441743 PMCID: PMC9910837 DOI: 10.1002/mrm.29528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.
Collapse
Affiliation(s)
- Alexandre D’Astous
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The
University of Western Ontario, London, Ontario, Canada
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de
Montréal, Montréal, QC, Canada
- Mila - Quebec AI Institute, Montréal, QC,
Canada
- Centre de recherche du CHU Sainte-Justine,
Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Krueger F, Aigner CS, Hammernik K, Dietrich S, Lutz M, Schulz-Menger J, Schaeffter T, Schmitter S. Rapid estimation of 2D relative B 1 + -maps from localizers in the human heart at 7T using deep learning. Magn Reson Med 2023; 89:1002-1015. [PMID: 36336877 DOI: 10.1002/mrm.29510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Subject-tailored parallel transmission pulses for ultra-high fields body applications are typically calculated based on subject-specific B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of all transmit channels, which require lengthy adjustment times. This study investigates the feasibility of using deep learning to estimate complex, channel-wise, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from a single gradient echo localizer to overcome long calibration times. METHODS 126 channel-wise, complex, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the human heart from 44 subjects were acquired at 7T using a Cartesian, cardiac gradient-echo sequence obtained under breath-hold to create a library for network training and cross-validation. The deep learning predicted maps were qualitatively compared to the ground truth. Phase-only B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimming was subsequently performed on the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps for a region of interest covering the heart. The proposed network was applied at 7T to 3 unseen test subjects. RESULTS The deep learning-based B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, derived in approximately 0.2 seconds, match the ground truth for the magnitude and phase. The static, phase-only pulse design performs best when maximizing the mean transmission efficiency. In-vivo application of the proposed network to unseen subjects demonstrates the feasibility of this approach: the network yields predicted B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps comparable to the acquired ground truth and anatomical scans reflect the resulting B 1 + $$ {\mathrm{B}}_1^{+} $$ -pattern using the deep learning-based maps. CONCLUSION The feasibility of estimating 2D relative B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from initial localizer scans of the human heart at 7T using deep learning is successfully demonstrated. Because the technique requires only sub-seconds to derive channel-wise B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, it offers high potential for advancing clinical body imaging at ultra-high fields.
Collapse
Affiliation(s)
- Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Technische Universität Berlin, Biomedical Engineering, Berlin, Germany
| | | | - Kerstin Hammernik
- Technical University of Munich, Munich, Germany.,Imperial College London, London, United Kingdom
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Experimental Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Technische Universität Berlin, Biomedical Engineering, Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Clipped DeepControl: Deep neural network two-dimensional pulse design with an amplitude constraint layer. Artif Intell Med 2023; 135:102460. [PMID: 36628795 DOI: 10.1016/j.artmed.2022.102460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Advanced radio-frequency pulse design used in magnetic resonance imaging has recently been demonstrated with deep learning of (convolutional) neural networks and reinforcement learning. For two-dimensionally selective radio-frequency pulses, the (convolutional) neural network pulse prediction time (a few milliseconds) was in comparison more than three orders of magnitude faster than the conventional optimal control computation. The network pulses were from the supervised training capable of compensating scan-subject dependent inhomogeneities of B0 and B1+ fields. Unfortunately, the network presented with a small percentage of pulse amplitude overshoots in the test subset, despite the optimal control pulses used in training were fully constrained. Here, we have extended the convolutional neural network with a custom-made clipping layer that completely eliminates the risk of pulse amplitude overshoots, while preserving the ability to compensate for the inhomogeneous field conditions.
Collapse
|
18
|
Elabyad IA, Terekhov M, Lohr D, Bille M, Hock M, Schreiber LM. A novel antisymmetric 16-element transceiver dipole antenna array for parallel transmit cardiac MRI in pigs at 7 T. NMR IN BIOMEDICINE 2022; 35:e4726. [PMID: 35277907 DOI: 10.1002/nbm.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
To improve parallel transmit (pTx) and receive performance for cardiac MRI (cMRI) in pigs at 7 T, a dedicated transmit/receive (Tx/Rx), 16-element antisymmetric dipole antenna array, which combines L-shaped and straight dipoles, was designed, implemented, and evaluated in both cadavers and animals in vivo. Electromagnetic-field simulations were performed with the new 16-element dipole antenna array loaded with a pig thorax-shaped phantom and compared with an eight-element array of straight dipoles. The new dipole array was interfaced to a 7 T scanner in pTx mode (8Tx/16Rx). Imaging performance of the novel array was validated through MRI measurements in a pig phantom, an 85 kg pig cadaver, and two pigs in vivo (74 and 81 kg). Due to the improved decoupling between interleaved L-shaped and straight dipole elements, the 16-element dipole array fits within the same outer dimensions as an eight-element array of straight dipoles. This provides improvement of both transmit and receive characteristics and additional degrees of freedom for B1+ shimming. The antisymmetric dipole array demonstrated efficient suppression of destructive interferences in the B1+ field, with up to 25% improvement in the B1+ homogeneity achieved using static pTx-RFPA B1+ shimming in comparison with the hardware-adjusted state, which was optimized for single transmit. High-resolution (0.5 × 0.5 × 4 mm3 ) anatomical images of the heart after cardiac arrest proved good transmit and receive characteristics of the novel array design. Parallel imaging with an acceleration factor up to R = 6 was possible while maintaining a mean g factor of 1.55 within the pig heart. CINE images acquired in vivo in two pigs demonstrated SNR and parallel imaging capabilities similar to those of a reference 8Tx/16Rx dedicated loop array for cMRI in pigs.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Hock
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
19
|
Schoen N, Seifert F, Petzold J, Metzger GJ, Speck O, Ittermann B, Schmitter S. The Impact of Respiratory Motion on Electromagnetic Fields and Specific Absorption Rate in Cardiac Imaging at 7T. Magn Reson Med 2022; 88:2645-2661. [PMID: 35906923 DOI: 10.1002/mrm.29402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.
Collapse
Affiliation(s)
- Natalie Schoen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver Speck
- Otto von Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Herz S, Stefanescu MR, Lohr D, Vogel P, Kosmala A, Terekhov M, Weng AM, Grunz JP, Bley TA, Schreiber LM. Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission. PLoS One 2022; 17:e0270689. [PMID: 35767553 PMCID: PMC9242506 DOI: 10.1371/journal.pone.0270689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the effects of B1-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0%, 20%, 40%, 60%, 80%, and 100%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B1-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B1-shimming showed shading artifacts due to local B1+-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B1-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60% and 80%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B1-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14%, outside the phantoms 32%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B1-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.
Collapse
Affiliation(s)
- Stefan Herz
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Maria R. Stefanescu
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Vogel
- Department of Experimental Physics V, University of Würzburg, Würzburg, Germany
| | - Aleksander Kosmala
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M. Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A. Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Laura M. Schreiber
- Comprehensive Heart Failure Center (CHFC), Chair of Molecular and Cellular Imaging, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Aigner CS, Dietrich S, Schmitter S. Respiration induced B 1 + changes and their impact on universal and tailored 3D kT-point parallel transmission pulses for 7T cardiac imaging. Magn Reson Med 2022; 87:2862-2871. [PMID: 35142400 DOI: 10.1002/mrm.29183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Human heart imaging at ultra-high fields is highly challenging because of respiratory motion-induced artefacts and spatially heterogeneous B 1 + profiles. This work demonstrates that respiration resolved 3D B 1 + -maps can be used with a dedicated tailored and universal parallel transmission (pTx) pulse design to compensate respiration related B 1 + changes in subjects performing shallow and deep breathing (SB/DB). METHODS Three-dimensional (3D) B 1 + -maps of the thorax were acquired in 31 subjects under SB and in 15 subjects under SB and DB. Different universal and tailored non-selective pTx pulses were designed from non-respiration resolved (NRR) and respiration resolved (RR) reconstructions of the SB/DB B 1 + -maps. The performance of all pulses was tested with RR-SB/DB B 1 + -maps. Respiration-robust tailored and universal pulses were applied in vivo in 5 subjects at 7T in 3D gradient-echo free-breathing scans. RESULTS All optimized pTx pulses performed well for SB. For DB, however, only the universal and the tailored respiration-robust pulses achieved homogeneous flip angles (FAs) in all subjects and across all respiration states, whereas the tailored respiration-specific pulses resulted in a higher FA variation. The respiration-robust universal pulse resulted in an average coefficient of variation in the FA maps of 12.6% compared to 8.2% achieved by tailored respiration-robust pulses. In vivo measurements at 7T demonstrate the benefits of using respiration-robust pulses for DB. CONCLUSION Universal and tailored respiration-robust pTx pulses based on RR B 1 + -maps are highly preferred to achieve 3D heart FA homogenization at 7T when subjects perform DB, whereas universal and tailored pulses based on NRR B 1 + -maps are sufficient when subjects perform SB.
Collapse
Affiliation(s)
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Dietrich S, Aigner CS, Mayer J, Kolbitsch C, Schulz-Menger J, Schaeffter T, Schmitter S. Motion-compensated fat-water imaging for 3D cardiac MRI at ultra-high fields. Magn Reson Med 2022; 87:2621-2636. [PMID: 35092090 DOI: 10.1002/mrm.29144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B 1 + shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B 1 + and B0 variations, as well as respiratory and cardiac motion.
Collapse
Affiliation(s)
- Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Helios Clinics Berlin-Buch Department of Cardiology and Nephrology, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Department of Medical Engineering, Technische Universität Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Aigner CS, Dietrich S, Schaeffter T, Schmitter S. Calibration-free pTx of the human heart at 7T via 3D universal pulses. Magn Reson Med 2021; 87:70-84. [PMID: 34399002 DOI: 10.1002/mrm.28952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B 1 + profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T. METHODS Twenty-two channel-wise 3D B 1 + data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m2 ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m2 ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D B 1 + data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m2 ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the B 1 + data sets in group 1 and 2. RESULTS The proposed UP22-4kT provides low B 1 + variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart. CONCLUSION UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.
Collapse
Affiliation(s)
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Terekhov M, Elabyad IA, Schreiber LM. Global optimization of default phases for parallel transmit coils for ultra-high-field cardiac MRI. PLoS One 2021; 16:e0255341. [PMID: 34358243 PMCID: PMC8346258 DOI: 10.1371/journal.pone.0255341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
The development of novel multiple-element transmit-receive arrays is an essential factor for improving B1+ field homogeneity in cardiac MRI at ultra-high magnetic field strength (B0 > = 7.0T). One of the key steps in the design and fine-tuning of such arrays during the development process is finding the default driving phases for individual coil elements providing the best possible homogeneity of the combined B1+-field that is achievable without (or before) subject-specific B1+-adjustment in the scanner. This task is often solved by time-consuming (brute-force) or by limited efficiency optimization methods. In this work, we propose a robust technique to find phase vectors providing optimization of the B1-homogeneity in the default setup of multiple-element transceiver arrays. The key point of the described method is the pre-selection of starting vectors for the iterative solver-based search to maximize the probability of finding a global extremum for a cost function optimizing the homogeneity of a shaped B1+-field. This strategy allows for (i) drastic reduction of the computation time in comparison to a brute-force method and (ii) finding phase vectors providing a combined B1+-field with homogeneity characteristics superior to the one provided by the random-multi-start optimization approach. The method was efficiently used for optimizing the default phase settings in the in-house-built 8Tx/16Rx arrays designed for cMRI in pigs at 7T.
Collapse
Affiliation(s)
- Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Ibrahim A. Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura M. Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
25
|
Hess AT, Dragonu I, Chiew M. Accelerated calibrationless parallel transmit mapping using joint transmit and receive low-rank tensor completion. Magn Reson Med 2021; 86:2454-2467. [PMID: 34196031 PMCID: PMC7611890 DOI: 10.1002/mrm.28880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Purpose To evaluate an algorithm for calibrationless parallel imaging to reconstruct undersampled parallel transmit field maps for the body and brain. Methods Using a combination of synthetic data and in vivo measurements from brain and body, 3 different approaches to a joint transmit and receive low-rank tensor completion algorithm are evaluated. These methods included: 1) virtual coils using the product of receive and transmit sensitivities, 2) joint-receiver coils that enforces a low rank structure across receive coils of all transmit modes, and 3) transmit low rank that uses a low rank structure for both receive and transmit modes simultaneously. The performance of each is investigated for different noise levels and different acceleration rates on an 8-channel parallel transmit 7 Tesla system. Results The virtual coils method broke down with increasing noise levels or acceleration rates greater than 2, producing normalized RMS error greater than 0.1. The joint receiver coils method worked well up to acceleration factors of 4, beyond which the normalized RMS error exceeded 0.1. Transmit low rank enabled an eightfold acceleration, with most normalized RMS errors remaining below 0.1. Conclusion This work demonstrates that undersampling factors of up to eightfold are feasible for transmit array mapping and can be reconstructed using calibrationless parallel imaging methods.
Collapse
Affiliation(s)
- Aaron T. Hess
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom
| | | | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
27
|
Aigner CS, Dietrich S, Schmitter S. Three-dimensional static and dynamic parallel transmission of the human heart at 7 T. NMR IN BIOMEDICINE 2021; 34:e4450. [PMID: 33325581 DOI: 10.1002/nbm.4450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) human heart imaging at ultra-high fields is highly challenging due to respiratory and cardiac motion-induced artifacts as well as spatially heterogeneous B1+ profiles. In this study, we investigate the feasibility of applying 3D flip angle (FA) homogenization targeting the whole heart via static phase-only and dynamic kT-point in vivo parallel transmission at 7 T. 3D B1+ maps of the thorax were acquired under free breathing in eight subjects to compute parallel transmission pulses that improve excitation homogeneity in the human heart. To analyze the number of kT-points required, excitation homogeneity and radiofrequency (RF) power were compared using different regions of interest in six subjects with different body mass index (BMI) values of 20-34 kg/m2 for a wide range of regularization parameters. One subset of the optimized subject-specific pulses was applied in vivo on a 7 T scanner for six subjects in Cartesian 3D breath-hold scans as well as in two subjects in a radial phase-encoded 3D free-breathing scan. Across all subjects, 3-4 kT-points achieved a good tradeoff between RF power and nominal FA homogeneity. For subjects with a BMI in the normal range, the 4 kT-point pulses reliably improved the coefficient of variation by less than 10% compared with less than 25% achieved by static phase-only parallel transmission. in vivo measurements on a 7 T scanner validated the B1+ estimations and the pulse design, despite neglecting ΔB0 in the optimizations and Bloch simulations. This study demonstrates in vivo that kT-point pTx pulses are highly suitable for mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T. Furthermore, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.
Collapse
Affiliation(s)
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota
| |
Collapse
|
28
|
Vinding MS, Aigner CS, Schmitter S, Lund TE. DeepControl: 2DRF pulses facilitating B 1 + inhomogeneity and B 0 off-resonance compensation in vivo at 7 T. Magn Reson Med 2021; 85:3308-3317. [PMID: 33480029 DOI: 10.1002/mrm.28667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Rapid 2DRF pulse design with subject-specific B 1 + inhomogeneity and B0 off-resonance compensation at 7 T predicted from convolutional neural networks is presented. METHODS The convolution neural network was trained on half a million single-channel transmit 2DRF pulses optimized with an optimal control method using artificial 2D targets, B 1 + and B0 maps. Predicted pulses were tested in a phantom and in vivo at 7 T with measured B 1 + and B0 maps from a high-resolution gradient echo sequence. RESULTS Pulse prediction by the trained convolutional neural network was done on the fly during the MR session in approximately 9 ms for multiple hand-drawn regions of interest and the measured B 1 + and B0 maps. Compensation of B 1 + inhomogeneity and B0 off-resonances has been confirmed in the phantom and in vivo experiments. The reconstructed image data agree well with the simulations using the acquired B 1 + and B0 maps, and the 2DRF pulse predicted by the convolutional neural networks is as good as the conventional RF pulse obtained by optimal control. CONCLUSION The proposed convolutional neural network-based 2DRF pulse design method predicts 2DRF pulses with an excellent excitation pattern and compensated B 1 + and B0 variations at 7 T. The rapid 2DRF pulse prediction (9 ms) enables subject-specific high-quality 2DRF pulses without the need to run lengthy optimizations.
Collapse
Affiliation(s)
- Mads Sloth Vinding
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Torben Ellegaard Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| |
Collapse
|