1
|
Wilson NE, Elliott MA, Nanga RPR, Swago S, Witschey WR, Reddy R. Optimization of 1H-MRS methods for large-volume acquisition of low-concentration downfield resonances at 3 T and 7 T. Magn Reson Med 2025; 93:18-30. [PMID: 39250517 PMCID: PMC11518639 DOI: 10.1002/mrm.30273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE This goal of this study was to optimize spectrally selective 1H-MRS methods for large-volume acquisition of low-concentration metabolites with downfield resonances at 7 T and 3 T, with particular attention paid to detection of nicotinamide adenine dinucleotide (NAD+) and tryptophan. METHODS Spectrally selective excitation was used to avoid magnetization-transfer effects with water, and various sinc pulses were compared with a band-selective, uniform response, pure-phase (E-BURP) pulse. Localization using a single-slice selective pulse was compared with voxel-based localization that used three orthogonal refocusing pulses, and low bandwidth refocusing pulses were used to take advantage of the chemical shift displacement of water. A technique for water sideband removal was added, and a method of coil channel combination for large volumes was introduced. RESULTS Proposed methods were compared qualitatively with previously reported techniques at 7 T. Sinc pulses resulted in reduced water signal excitation and improved spectral quality, with a symmetric, low bandwidth-time product pulse performing best. Single-slice localization allowed shorter TEs with large volumes, enhancing signal, whereas low-bandwidth slice-selective localization greatly reduced the observed water signal. Gradient cycling helped remove water sidebands, and frequency aligning and pruning individual channels narrowed spectral linewidths. High-quality brain spectra of NAD+ and tryptophan are shown in 4 subjects at 3 T. CONCLUSION Improved spectral quality with higher downfield signal, shorter TE, lower nuisance signal, reduced artifacts, and narrower peaks was realized at 7 T. These methodological improvements allowed for previously unachievable detection of NAD+ and tryptophan in human brain at 3 T in under 5 min.
Collapse
Affiliation(s)
- Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Swago
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Özdemir İ, Etyemez S, Barker PB. High-field downfield MR spectroscopic imaging in the human brain. Magn Reson Med 2024; 92:890-899. [PMID: 38469953 PMCID: PMC11209804 DOI: 10.1002/mrm.30075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding,1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY
- Department of Psychiatry, Weill Cornell Medicine, New York, NY
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
3
|
Wilson NE, Elliott MA, Nanga RPR, Swago S, Witschey WR, Reddy R. Optimization of 1H MR spectroscopy methods for large volume acquisition of low concentration downfield resonances at 3T and 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305552. [PMID: 38645233 PMCID: PMC11030301 DOI: 10.1101/2024.04.09.24305552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Purpose This goal of this study was to optimize spectrally selective 1H MRS methods for large volume acquisition of low concentration metabolites with downfield resonances at 7T and 3T, with particular attention paid to detection of nicotinamide adenine dinucleotide (NAD+) and tryptophan. Methods Spectrally selective excitation was used to avoid magnetization transfer effects with water, and various sinc pulses were compared to a pure-phase E-BURP pulse. Localization using a single slice selective pulse was compared to voxel-based localization that used three orthogonal refocusing pulses, and low bandwidth refocusing pulses were used to take advantage of the chemical shift displacement of water. A technique for water sideband removal was added, and a method of coil channel combination for large volumes was introduced. Results Proposed methods were compared qualitatively to previously-reported techniques at 7T. Sinc pulses resulted in reduced water signal excitation and improved spectral quality, with a symmetric, low bandwidth-time product pulse performing best. Single slice localization allowed shorter TEs with large volumes, enhancing signal, while low bandwidth slice selective localization greatly reduced the observed water signal. Gradient cycling helped remove water sidebands, and frequency aligning and pruning individual channels narrowed spectral linewidths. High quality brain spectra of NAD+ and tryptophan are shown in four subjects at 3T. Conclusion Improved spectral quality with higher downfield signal, shorter TE, lower nuisance signal, reduced artifacts, and narrower peaks was realized at 7T. These methodological improvements allowed for previously unachievable detection of NAD+ and tryptophan in human brain at 3T in under five minutes.
Collapse
Affiliation(s)
- Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Swago
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Özdemir İ, Ganji S, Gillen J, Etyemez S, Považan M, Barker PB. Downfield proton MRSI with whole-brain coverage at 3T. Magn Reson Med 2023; 90:814-822. [PMID: 37249071 PMCID: PMC10330175 DOI: 10.1002/mrm.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. METHODS A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.7 cm3 were recorded in eight slices at 3T in a scan time of 22 m 40 s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine DF peaks. RESULTS LCModel analysis showed Cramer Rao lower bounds average values of 3%-4% for protein amide resonances in the three selected regions (anterior cingulate, dorsolateral prefrontal cortex, and centrum semiovale); Cramer Rao lower bounds were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between centrum semiovale and dorsolateral prefrontal cortex for peaks at 7.09 ppm (p = 0.014), 7.90 ppm (p = 0.009), 8.18 ppm (p = 0.009), combined amides (p = 0.009), and between anterior cingulate and dorsolateral prefrontal cortex for the 7.30 ppm peak (p = 0.020). Cramer Rao lower bounds values were not significantly different between brain regions for any of the DF peaks. CONCLUSION The 3D DF MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm3 .
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, United States
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
5
|
Nanga RPR, Elliott MA, Swain A, Wilson NE, Swago S, Witschey WR, Reddy R. Identification of new resonances in downfield 1 H MRS of human calf muscle in vivo: Potentially metabolite precursors for skeletal muscle NAD . Magn Reson Med 2023; 90:1166-1171. [PMID: 37125620 PMCID: PMC10330283 DOI: 10.1002/mrm.29687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE The purpose of this study was to identify and characterize newly discovered resonances appearing in the downfield proton MR spectrum (DF 1 H MRS) of the human calf muscle in vivo at 7T. METHODS Downfield 1 H MRS was performed on the calf muscle of five healthy volunteers at 7T. A spectrally selective 90° E-BURP RF pulse with an excitation center frequency at 10.3 ppm and an excitation bandwidth of 2 ppm was used for DF 1 H MRS acquisition. RESULTS In all participants, we observed new resonances at 9.7, 10.1, 10.3, and 10.9 ppm in the DF 1 H MRS. Phantom experiments at 37°C strongly suggest the new resonance at 9.7 ppm could be from H2-proton of the nicotinamide rings in nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) while the resonance at 10.1 ppm could be attributed to the indole -NH proton of L-tryptophan. We observed that the resonances at 10.1 and 10.9 ppm are significantly suppressed when the water resonance is saturated, indicating that these peaks have either 1 H chemical exchange or cross-relaxation with water. Conversely, the resonances at 9.7 and 10.3 ppm exhibit moderate signal reduction in the presence of water saturation. CONCLUSION We have identified new proton resonances in vivo in human calf muscle occurring at chemical shifts of 9.7, 10.1, 10.3, and 10.9 ppm. These preliminary results are promising for investigating the role of NR/NMN and L-tryptophan metabolism in understanding the de novo and salvage pathways of NAD+ synthesis in skeletal muscle.
Collapse
Affiliation(s)
- Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Anshuman Swain
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Neil E. Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Sophia Swago
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Walter R. Witschey
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Özdemir İ, Kamson DO, Etyemez S, Blair L, Lin DDM, Barker PB. Downfield Proton MRSI at 3 Tesla: A Pilot Study in Human Brain Tumors. Cancers (Basel) 2023; 15:4311. [PMID: 37686587 PMCID: PMC10486526 DOI: 10.3390/cancers15174311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O. Kamson
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Blair
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris D. M. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain MRI, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Özdemir İ, Ganji S, Joseph Gillen BS, Etyemez S, Považan M, Barker PB. Downfield Proton MRSI with whole-brain coverage at 3T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525726. [PMID: 36747802 PMCID: PMC9900941 DOI: 10.1101/2023.01.27.525726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose To develop a 3D downfield magnetic resonance spectroscopic imaging (DF-MRSI) protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. Methods A 3D, circularly phase-encoded version of the previously developed 2D DF-MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in 5 healthy volunteers at 3T. Downfield metabolite maps with a nominal spatial resolution of 0.7 cm 3 were recorded in 8 slices at 3T in a scan time of 22m 40s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine downfield peaks. Results LCModel analysis showed CRLB average values of 3-4% for protein amide resonances in the three selected regions (anterior cingulate (ACC), dorsolateral prefrontal cortex (DLPFC), and centrum semiovale (CSO)); CRLBs were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between CSO and DLPFC for peaks at 7.09 ppm (p= 0.014), 7.90 ppm (p=0.009), 8.18 ppm (p=0.009), combined amides (p=0.009), and between ACC and DLPFC for the 7.30 ppm peak (p=0.020). CRLB values were not significantly different between brain regions for any of the DF peaks. Conclusion 3D DF-MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm 3 .
Collapse
|
8
|
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med 2023; 89:177-191. [PMID: 36063502 PMCID: PMC9617768 DOI: 10.1002/mrm.29440] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS GuanCEST can be extracted with the PLOF method at 3 T, and the optimumB 1 = 0.6 μ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 μT in gray matter (GM). The optimum B1 = 0.8-1 μT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Gonçalves SI, Simões RV, Shemesh N. Short TE downfield magnetic resonance spectroscopy in a mouse model of brain glioma. Magn Reson Med 2022; 88:524-536. [PMID: 35315536 DOI: 10.1002/mrm.29243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Enhanced cell proliferation in tumors can be associated with altered metabolic profiles and dramatic microenvironmental changes. Downfield magnetic resonance spectroscopy (MRS) has received increasing attention due to its ability to report on labile resonances of molecules not easily detected in upfield 1 H MRS. Image-selected-in-vivo-spectroscopy-relaxation enhanced MRS (iRE-MRS) was recently introduced for acquiring short echo-time (TE) spectra. Here, iRE-MRS was used to investigate in-vivo downfield spectra in glioma-bearing mice. METHODS Experiments were performed in vivo in an immunocompetent glioma mouse model at 9.4 T using a cryogenic coil. iRE-MRS spectra were acquired in N = 6 glioma-bearing mice (voxel size = 2.23 mm3 ) and N = 6 control mice. Spectra were modeled by a sum of Lorentzian peaks simulating known downfield resonances, and differences between controls and tumors were quantified using relative peak areas. RESULTS Short TE tumor spectra exhibited large qualitative differences compared to control spectra. Most peaks appeared modulated, with strong attenuation of NAA (∼7.82, 7.86 ppm) and changes in relative peak areas between 6.75 and 8.49 ppm. Peak areas tended to be smaller for DF6.83 , DF7.60 , DF8.18 and NAA; and larger for DF7.95 and DF8.24 . Differences were also detected in signals resonating above 8.5 ppm, assumed to arise from NAD+. CONCLUSIONS In-vivo downfield 1 H iRE-MRS of mouse glioma revealed differences between controls and tumor bearing mice, including in metabolites which are not easily detectable in the more commonly investigated upfield spectrum. These findings motivate future downfield MRS investigations exploring pH and exchange contributions to these differences.
Collapse
Affiliation(s)
| | - Rui V Simões
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|