1
|
McNabb CB, Driver ID, Hyde V, Hughes G, Chandler HL, Thomas H, Allen C, Messaritaki E, Hodgetts CJ, Hedge C, Engel M, Standen SF, Morgan EL, Stylianopoulou E, Manolova S, Reed L, Ploszajski M, Drakesmith M, Germuska M, Shaw AD, Mueller L, Rossiter H, Davies-Jenkins CW, Lancaster T, Evans CJ, Owen D, Perry G, Kusmia S, Lambe E, Partridge AM, Cooper A, Hobden P, Lu H, Graham KS, Lawrence AD, Wise RG, Walters JTR, Sumner P, Singh KD, Jones DK. WAND: A multi-modal dataset integrating advanced MRI, MEG, and TMS for multi-scale brain analysis. Sci Data 2025; 12:220. [PMID: 39915473 PMCID: PMC11803114 DOI: 10.1038/s41597-024-04154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Accepted: 11/18/2024] [Indexed: 02/09/2025] Open
Abstract
This paper introduces the Welsh Advanced Neuroimaging Database (WAND), a multi-scale, multi-modal imaging dataset comprising in vivo brain data from 170 healthy volunteers (aged 18-63 years), including 3 Tesla (3 T) magnetic resonance imaging (MRI) with ultra-strong (300 mT/m) magnetic field gradients, structural and functional MRI and nuclear magnetic resonance spectroscopy at 3 T and 7 T, magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS), together with trait questionnaire and cognitive data. Data are organised using the Brain Imaging Data Structure (BIDS). In addition to raw data, we provide brain-extracted T1-weighted images, and quality reports for diffusion, T1- and T2-weighted structural data, and blood-oxygen level dependent functional tasks. Reasons for participant exclusion are also included. Data are available for download through our GIN repository, a data access management system designed to reduce storage requirements. Users can interact with and retrieve data as needed, without downloading the complete dataset. Given the depth of neuroimaging phenotyping, leveraging ultra-high-gradient, high-field MRI, MEG and TMS, this dataset will facilitate multi-scale and multi-modal investigations of the healthy human brain.
Collapse
Affiliation(s)
- Carolyn B McNabb
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK.
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Vanessa Hyde
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Garin Hughes
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hannah Thomas
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | | | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Craig Hedge
- School of Psychology, Aston University, Birmingham, UK
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Sophie F Standen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Emma L Morgan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Elena Stylianopoulou
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Svetla Manolova
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Lucie Reed
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Matthew Ploszajski
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Michael Germuska
- Department of Radiology, University of California Davis Medical Center, Sacramento, California, USA
| | - Alexander D Shaw
- Washington Singer Laboratories, University of Exeter, Exeter, UK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Holly Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Kreiger Institute, Baltimore, Maryland, USA
| | - Tom Lancaster
- Department of Psychology, University of Bath, Bath, UK
| | - C John Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - David Owen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- IBM Polska Sp. z o. o., Department of Content Design, Cracow, Poland
| | - Emily Lambe
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Adam M Partridge
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- University of Sheffield, Research Services, New Spring House, 231 Glossop Road, Sheffield, S10 2GW, UK
| | - Allison Cooper
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Peter Hobden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Kreiger Institute, Baltimore, Maryland, USA
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - James T R Walters
- School of Medicine, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Vucic S, Pavey N, Menon P, Babayev M, Maslyukova A, Muraviev A, Kiernan MC. Neurophysiological assessment of cortical motor function: A direct comparison of methodologies. Clin Neurophysiol 2024; 170:14-21. [PMID: 39647177 DOI: 10.1016/j.clinph.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE Assessment of cortical function with threshold tracking transcranial magnetic stimulation (TT-TMS) has developed as a biomarker to inform disease pathophysiology, particularly in neurodegenerative disease and dementia. At present, a fully integrated testing system does not exist. To advance clinical utility, and to streamline software design to integrate with diagnostic approaches in an outpatient setting, the present series of studies assessed the effects of altering diagnostic paradigms to measure interstimulus interval (ISI) including serial ascending [T-SICIs] and parallel [T-SICIp] methodologies as measures of cortical motor function (the MagXite software). METHODS Cortical excitability was assessed in 30 healthy controls with a figure-of-eight coil, using an integrated approach compared to previously established experimental paradigms. Motor evoked responses were recorded over the contralateral abductor pollicis brevis muscle. Short interval intracortical inhibition (SICI) was recorded with each testing paradigm and validated in a healthy control cohort. RESULTS The integrated system determined a robust measure of T-SICIs between ISI 1-to-7 ms (16.6 ± 2.2 %) that was comparable to previously established testing paradigms (P = 0.34), but greater than T-SICIp (MagXite 10.7 ± 1.5 %, P = 0.016; Sydney TT-TMS 8.7 ± 1.4 %, P = 0.03). SICI peaks at ISI 1 and 2.5-to-3 ms were evident with both protocols. Significant correlations were evident between mean T-SICIs-MagXite and T-SICIp-MagXite (R = 0.599, P < 0.001). CONCLUSION The present series validates a fully integrated motor cortical functional assessment to provide reproducible measures of SICI, with data obtained for intracortical inhibition that is more prominent when assessed using the method of serial ascending order. SIGNIFICANCE An integrated system for transcranial magnetic stimulation of the human motor system has been validated for clinical practice, suitable for the assessment of cortical function in neurological disease in an outpatient clinic setting.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia.
| | - Nathan Pavey
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Hospital Rd, Concord West, 2139, Sydney, Australia
| | | | | | | | - Matthew C Kiernan
- Neuroscience Research Australia, 139 Barker Street, Randwick, 2031, Sydney, Australia; University of NSW and Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Area Health Service, Sydney, Australia
| |
Collapse
|
3
|
Souza VH, Castro KVFD, de Melo-Carneiro P, de Oliveira Gomes I, Camatti JR, Oliveira IAVFD, Sá KN, Baptista AF, Lucena R, Zugaib J. tDCS and local scalp cooling do not change corticomotor and intracortical excitability in healthy humans. Clin Neurophysiol 2024; 168:1-9. [PMID: 39388788 DOI: 10.1016/j.clinph.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Scalp cooling might increase the long-term potentiation (LTP)-like effect of transcranial direct current stimulation (tDCS) by reducing the threshold for after-effects according to metaplasticity and increasing electrical current density reaching the cortical neurons. We aimed to investigate whether priming scalp cooling potentiates the tDCS after-effect on motor cortex excitability. METHODS This study had a randomized, parallel-arms, sham-controlled, double-blinded design with an adequately powered sample of 105 healthy subjects. Corticomotor and intracortical excitability were assessed with motor evoked potentials (MEP) from transcranial magnetic stimulation (TMS) in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) paradigms. Subjects were randomly allocated into six intervention groups, including anodal and cathodal tDCS (1-mA/20-min), scalp cooling, and sham. MEPs were recorded before, immediately, and 15 min after the interventions. RESULTS We did not observe changes in MEP amplitude from single-pulse TMS, SICI, and ICF with any intervention protocol. CONCLUSION Anodal and cathodal tDCS did not have an LTP-like neuromodulatory effect on corticospinal and did not provide detectable GABAergic and glutamatergic neurotransmission changes, which were not influenced by priming scalp cooling. SIGNIFICANCE We provide strong evidence that tDCS (1-mA/20-min) does not alter corticomotor and intracortical excitability with or without priming scalp cooling.
Collapse
Affiliation(s)
- Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
| | | | | | | | - Janine Ribeiro Camatti
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | | | - Katia Nunes Sá
- Postgraduation and Research, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil; Faculty of Medicine, Federal University of Bahia, Salvador, Brazil; Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - João Zugaib
- Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Pavey N, Hannaford A, Higashihara M, van den Bos M, Geevasinga N, Vucic S, Menon P. Cortical inexcitability in ALS: correlating a clinical phenotype. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333928. [PMID: 39137976 DOI: 10.1136/jnnp-2024-333928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cortical inexcitability, a less studied feature of upper motor neuron (UMN) dysfunction in amyotrophic lateral sclerosis (ALS), was identified in a large cross-sectional cohort of ALS patients and their demographic and clinical characteristics were contrasted with normal or hyperexcitable ALS cohorts to assess the impact of cortical inexcitability on ALS phenotype and survival. METHODS Threshold-tracking transcranial magnetic stimulation (TMS) technique with measurement of mean short interval intracortical inhibition (SICI) differentiated ALS patients into three groups (1) inexcitable (no TMS response at maximal stimulator output in the setting of preserved lower motor neuron (LMN) function), (2) hyperexcitable (SICI≤5.5%) and (3) normal cortical excitability (SICI>5.5%). Clinical phenotyping and neurophysiological assessment of LMN function were undertaken, and survival was recorded in the entire cohort. RESULTS 417 ALS patients were recruited, of whom 26.4% exhibited cortical inexcitability. Cortical inexcitability was associated with a younger age of disease onset (p<0.05), advanced Awaji criteria (p<0.01) and Kings stage (p<0.01) scores. Additionally, patients with cortical inexcitability had higher UMN score (p<0.01), lower revised ALS Functional Rating Scale score (p<0.01) and reduced upper limb strength score (MRC UL, p<0.01). Patient survival (p=0.398) was comparable across the groups, despite lower riluzole use in the cortical inexcitability patient group (p<0.05). CONCLUSION The present study established that cortical inexcitability was associated with a phenotype characterised by prominent UMN signs, greater motor and functional decline, and a younger age of onset. The present findings inform patient management and could improve patient stratification in clinical trials.
Collapse
Affiliation(s)
- Nathan Pavey
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Andrew Hannaford
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Mehdi van den Bos
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Nimeshan Geevasinga
- The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Steve Vucic
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Parvathi Menon
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Calma AD, van den Bos M, Pavey N, Santos Silva C, Menon P, Vucic S. Physiological Biomarkers of Upper Motor Neuron Dysfunction in ALS. Brain Sci 2024; 14:760. [PMID: 39199454 PMCID: PMC11352893 DOI: 10.3390/brainsci14080760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Upper motor neuron (UMN) dysfunction is an important feature of amyotrophic lateral sclerosis (ALS) for the diagnosis and understanding of pathogenesis. The identification of UMN signs forms the basis of ALS diagnosis, although may be difficult to discern, especially in the setting of severe muscle weakness. Transcranial magnetic stimulation (TMS) techniques have yielded objective physiological biomarkers of UMN dysfunction in ALS, enabling the interrogation of cortical and subcortical neuronal networks with diagnostic, pathophysiological, and prognostic implications. Transcranial magnetic stimulation techniques have provided pertinent pathogenic insights and yielded novel diagnostic and prognostic biomarkers. Cortical hyperexcitability, as heralded by a reduction in short interval intracortical inhibition (SICI) and an increase in short interval intracortical facilitation (SICF), has been associated with lower motor neuron degeneration, patterns of disease evolution, as well as the development of specific ALS clinical features including the split hand phenomenon. Reduction in SICI has also emerged as a potential diagnostic aid in ALS. More recently, physiological distinct inhibitory and facilitatory cortical interneuronal circuits have been identified, which have been shown to contribute to ALS pathogenesis. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction. Resting-state EEG is a novel neurophysiological technique developed for directly interrogating cortical neuronal networks in ALS, that have yielded potentially useful physiological biomarkers of UMN dysfunction. The present review discusses physiological biomarkers of UMN dysfunction in ALS, encompassing conventional and novel TMS techniques developed to interrogate the functional integrity of the corticomotoneuronal system, focusing on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Aicee Dawn Calma
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Cláudia Santos Silva
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
- Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, 1649-028 Lisbon, Portugal
- Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2139, Australia (C.S.S.)
| |
Collapse
|
6
|
Otani R, Shibuya K, Suzuki YI, Suichi T, Morooka M, Aotsuka Y, Ogushi M, Kuwabara S. Effects of motor cortical and peripheral axonal hyperexcitability on survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:730-736. [PMID: 38418214 DOI: 10.1136/jnnp-2023-333039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Increased 'cortical' and 'peripheral' excitability are reportedly associated with shorter survival in amyotrophic lateral sclerosis (ALS) patients, suggesting that hyperexcitability contributes to motor neuron death. However, whether upper or lower motor function has a greater impact on survival is unclear. We aimed to investigate the component that strongly impacts the prognosis of ALS. METHODS A total of 103 consecutive patients with ALS who underwent cortical (threshold tracking transcranial magnetic stimulation (TMS)) and motor nerve excitability tests were included. Motor cortical excitability was evaluated using short-interval intracortical inhibition (SICI) during TMS. Motor axonal excitability was assessed using the strength-duration time constant (SDTC). Survival time was defined as the time from examination to death or tracheostomy. RESULTS Compared with healthy subjects, patients with ALS had lower SICI and longer SDTC (p<0.05), indicating increased excitability of cortical motor neurons and motor axons. According to the SICI and SDTC findings, patients were divided into the following four groups: 'cortical high and peripheral high (high-high)', 'high-low', 'low-high' and 'low-low' groups. In Kaplan-Meier curves, the 'high-high' and 'low-high' groups showed significantly shorter survival than the other groups. Multivariate analysis revealed that increased cortical (HR=5.3, p<0.05) and peripheral (HR=20.0, p<0.001) excitability were significantly associated with shorter survival. CONCLUSIONS In patients with ALS, both motor cortical and peripheral hyperexcitability independently affected survival time, with peripheral hyperexcitability having a greater impact on shorter survival. The modulation of neuronal/axonal excitability is a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Ryo Otani
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Kazumoto Shibuya
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Yo-Ichi Suzuki
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Tomoki Suichi
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Marie Morooka
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Yuya Aotsuka
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Moeko Ogushi
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Pavey N, Hannaford A, van den Bos M, Kiernan MC, Menon P, Vucic S. Distinct neuronal circuits mediate cortical hyperexcitability in amyotrophic lateral sclerosis. Brain 2024; 147:2344-2356. [PMID: 38374770 DOI: 10.1093/brain/awae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Cortical hyperexcitability is an important pathophysiological mechanism in amyotrophic lateral sclerosis (ALS), reflecting a complex interaction of inhibitory and facilitatory interneuronal processes that evolves in the degenerating brain. The advances in physiological techniques have made it possible to interrogate progressive changes in the motor cortex. Specifically, the direction of transcranial magnetic stimulation (TMS) stimulus within the primary motor cortex can be utilized to influence descending corticospinal volleys and to thereby provide information about distinct interneuronal circuits. Cortical motor function and cognition was assessed in 29 ALS patients with results compared to healthy volunteers. Cortical dysfunction was assessed using threshold-tracking TMS to explore alterations in short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), the index of excitation and stimulus response curves using a figure-of-eight coil with the coil oriented relative to the primary motor cortex in a posterior-anterior, lateral-medial and anterior-posterior direction. Mean SICI, between interstimulus interval of 1-7 ms, was significantly reduced in ALS patients compared to healthy controls when assessed with the coil oriented in posterior-anterior (P = 0.044) and lateral-medial (P = 0.005) but not the anterior-posterior (P = 0.08) directions. A significant correlation between mean SICI oriented in a posterior-anterior direction and the total Edinburgh Cognitive and Behavioural ALS Screen score (Rho = 0.389, P = 0.037) was evident. In addition, the mean SICF, between interstimulus interval 1-5 ms, was significantly increased in ALS patients when recorded with TMS coil oriented in posterior-anterior (P = 0.035) and lateral-medial (P < 0.001) directions. In contrast, SICF recorded with TMS coil oriented in the anterior-posterior direction was comparable between ALS and controls (P = 0.482). The index of excitation was significantly increased in ALS patients when recorded with the TMS coil oriented in posterior-anterior (P = 0.041) and lateral-medial (P = 0.003) directions. In ALS patients, a significant increase in the stimulus response curve gradient was evident compared to controls when recorded with TMS coil oriented in posterior-anterior (P < 0.001), lateral-medial (P < 0.001) and anterior-posterior (P = 0.002) directions. The present study has established that dysfunction of distinct interneuronal circuits mediates the development of cortical hyperexcitability in ALS. Specifically, complex interplay between inhibitory circuits and facilitatory interneuronal populations, that are preferentially activated by stimulation in posterior-to-anterior or lateral-to-medial directions, promotes cortical hyperexcitability in ALS. Mechanisms that underlie dysfunction of these specific cortical neuronal circuits will enhance understanding of the pathophysiological processes in ALS, with the potential to uncover focussed therapeutic targets.
Collapse
Affiliation(s)
- Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Andrew Hannaford
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Mehdi van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2139, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2139, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Concord Hospital, Sydney, NSW 2139, Australia
| |
Collapse
|
8
|
Higashihara M, Pavey N, Menon P, van den Bos M, Shibuya K, Kuwabara S, Kiernan MC, Koinuma M, Vucic S. Reduction in short interval intracortical inhibition from the early stage reflects the pathophysiology in amyotrophic lateral sclerosis: A meta-analysis study. Eur J Neurol 2024; 31:e16281. [PMID: 38504632 PMCID: PMC11235657 DOI: 10.1111/ene.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Cortical hyperexcitability has been identified as a diagnostic and pathogenic biomarker of amyotrophic lateral sclerosis (ALS). Cortical excitability is assessed by transcranial magnetic stimulation (TMS), a non-invasive neurophysiological technique. The TMS biomarkers exhibiting highest sensitivity for cortical hyperexcitability in ALS remain to be elucidated. A meta-analysis was performed to determine the TMS biomarkers exhibiting the highest sensitivity for cortical hyperexcitability in ALS. METHODS A systematic literature review was conducted of all relevant studies published in the English language by searching PubMed, MEDLINE, Embase and Scopus electronic databases from 1 January 2006 to 28 February 2023. Inclusion criteria included studies reporting the utility of threshold tracking TMS (serial ascending method) in ALS and controls. RESULTS In total, more than 2500 participants, incorporating 1530 ALS patients and 1102 controls (healthy, 907; neuromuscular, 195) were assessed with threshold tracking TMS across 25 studies. Significant reduction of mean short interval intracortical inhibition (interstimulus interval 1-7 ms) exhibited the highest standardized mean difference with moderate heterogeneity (-0.994, 95% confidence interval -1.12 to -0.873, p < 0.001; Q = 38.61, p < 0.05; I2 = 40%). The reduction of cortical silent period duration along with an increase in motor evoked potential amplitude and intracortical facilitation also exhibited significant, albeit smaller, standardized mean differences. CONCLUSION This large meta-analysis study disclosed that mean short interval intracortical inhibition reduction exhibited the highest sensitivity for cortical hyperexcitability in ALS. Combined findings from this meta-analysis suggest that research strategies aimed at understanding the cause of inhibitory interneuronal circuit dysfunction could enhance understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Mana Higashihara
- Department of NeurologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Nathan Pavey
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Parvathi Menon
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Mehdi van den Bos
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Kazumoto Shibuya
- Neurology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Satoshi Kuwabara
- Neurology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Matthew C. Kiernan
- Neuroscience Resarch AustraliaUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Masayoshi Koinuma
- Faculty of Pharmaceutical SciencesTeikyo Heisei UniversityTokyoJapan
- Healthy Aging Innovation CenterTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Steve Vucic
- Brain and Nerve Research CenterUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Vucic S, de Carvalho M, Bashford J, Alix JJP. Contribution of neurophysiology to the diagnosis and monitoring of ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:87-118. [PMID: 38802184 DOI: 10.1016/bs.irn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/29/2024]
Abstract
This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Mamede de Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosciences, CHULN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Strunge K, Bostock H, Howells J, Cengiz B, Samusyte G, Koltzenburg M, Tankisi H. Caffeine and cortical excitability, as measured with paired-pulse transcranial magnetic stimulation. Muscle Nerve 2024; 69:206-212. [PMID: 38124685 DOI: 10.1002/mus.28027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION/AIMS The transcranial magnetic stimulation tests of short-interval intracortical inhibition (SICI) by both conventional amplitude measurements (A-SICI) and threshold-tracking (T-SICI) are important methods to investigate intracortical inhibitory circuits, and T-SICI has been proposed to aid the diagnosis of amyotrophic lateral sclerosis. Beverages containing caffeine are widely consumed, and caffeine has been reported to affect cortical excitability. The aim of this study was to determine whether these SICI tests are affected by caffeine. METHODS Twenty-four healthy subjects (13 females, 11 males, aged from 19 to 31, mean: 26.2 ± 2.4 years) were studied in a single fixed-dose randomized double-blind placebo-controlled cross-over trial of 200 mg caffeine or placebo ingested as chewing gum. A-SICI and T-SICI, using parallel tracking (T-SICIp), were performed before and after chewing gum. RESULTS There was no significant change in SICI parameters after placebo in A-SICI (p > .10) or T-SICIp (p > .30), and no significant effect of caffeine was found on A-SICI (p > .10) or T-SICIp (p > .50) for any of the interstimulus intervals. DISCUSSION There is no need for caffeine abstention before measurements of SICI by either the T-SICI or A-SICI measurements.
Collapse
Affiliation(s)
- Kristine Strunge
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gintaute Samusyte
- Department of Neurology, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Hehl M, Van Malderen S, Geraerts M, Meesen RLJ, Rothwell JC, Swinnen SP, Cuypers K. Probing intrahemispheric interactions with a novel dual-site TMS setup. Clin Neurophysiol 2024; 158:180-195. [PMID: 38232610 DOI: 10.1016/j.clinph.2023.12.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Using dual-site transcranial magnetic stimulation (dsTMS), the effective connectivity between the primary motor cortex (M1) and adjacent brain areas such as the dorsal premotor cortex (PMd) can be investigated. However, stimulating two brain regions in close proximity (e.g., ±2.3 cm for intrahemispheric PMd-M1) is subject to considerable spatial restrictions that potentially can be overcome by combining two standard figure-of-eight coils in a novel dsTMS setup. METHODS After a technical evaluation of its induced electric fields, the dsTMS setup was tested in vivo (n = 23) by applying a short-interval intracortical inhibition (SICI) protocol. Additionally, the intrahemispheric PMd-M1 interaction was probed. E-field modelling was performed using SimNIBS. RESULTS The technical evaluation yielded no major alterations of the induced electric fields due to coil overlap. In vivo, the setup reliably elicited SICI. Investigating intrahemispheric PMd-M1 interactions was feasible (inter-stimulus interval 6 ms), resulting in modulation of M1 output. CONCLUSIONS The presented dsTMS setup provides a novel way to stimulate two adjacent brain regions with fewer technical and spatial limitations than previous attempts. SIGNIFICANCE This dsTMS setup enables more accurate and repeatable targeting of brain regions in close proximity and can facilitate innovation in the field of effective connectivity.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Shanti Van Malderen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Marc Geraerts
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Raf L J Meesen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001 Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
13
|
Moreno-Roco J, del Valle L, Jiménez D, Acosta I, Castillo JL, Dharmadasa T, Kiernan MC, Matamala JM. Diagnostic utility of transcranial magnetic stimulation for neurodegenerative disease: a critical review. Dement Neuropsychol 2024; 17:e20230048. [PMID: 38189033 PMCID: PMC10768644 DOI: 10.1590/1980-5764-dn-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 01/09/2024] Open
Abstract
Neurodegenerative diseases pose significant challenges due to their impact on brain structure, function, and cognition. As life expectancy rises, the prevalence of these disorders is rapidly increasing, resulting in substantial personal, familial, and societal burdens. Efforts have been made to optimize the diagnostic and therapeutic processes, primarily focusing on clinical, cognitive, and imaging characterization. However, the emergence of non-invasive brain stimulation techniques, specifically transcranial magnetic stimulation (TMS), offers unique functional insights and diagnostic potential. TMS allows direct evaluation of brain function, providing valuable information inaccessible through other methods. This review aims to summarize the current and potential diagnostic utility of TMS in investigating neurodegenerative diseases, highlighting its relevance to the field of cognitive neuroscience. The findings presented herein contribute to the growing body of research focused on improving our understanding and management of these debilitating conditions, particularly in regions with limited resources and a pressing need for innovative approaches.
Collapse
Affiliation(s)
- Javier Moreno-Roco
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Lucía del Valle
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Daniel Jiménez
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - Ignacio Acosta
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - José Luis Castillo
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Thanuja Dharmadasa
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- The Royal Melbourne Hospital, Department of Neurology, Parkville, Victoria, Australia
- University of Sydney, Brain and Mind Centre, Sydney, Australia
| | - Matthew C. Kiernan
- University of Sydney, Brain and Mind Centre, Sydney, Australia
- Royal Prince Alfred Hospital, Department of Neurology, Sydney, AustraliaArgento
| | - José Manuel Matamala
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Neurociencias, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Santiago, Chile
| |
Collapse
|
14
|
Benussi A, Cantoni V, Grassi M, Libri I, Cotelli MS, Tarantino B, Datta A, Thomas C, Huber N, Kärkkäinen S, Herukka SK, Haapasalo A, Filosto M, Padovani A, Borroni B. Cortico-spinal tDCS in amyotrophic lateral sclerosis: A randomized, double-blind, sham-controlled trial followed by an open-label phase. Brain Stimul 2023; 16:1666-1676. [PMID: 37977335 DOI: 10.1016/j.brs.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive disease for which no curative treatment is currently available. OBJECTIVE This study aimed to investigate whether cortico-spinal transcranial direct current stimulation (tDCS) could mitigate symptoms in ALS patients via a randomized, double-blind, sham-controlled trial, followed by an open-label phase. METHODS Thirty-one participants were randomized into two groups for the initial controlled phase. At baseline (T0), Group 1 received placebo stimulation (sham tDCS), while Group 2 received cortico-spinal stimulation (real tDCS) for five days/week for two weeks (T1), with an 8-week (T2) follow-up (randomized, double-blind, sham-controlled phase). At the 24-week follow-up (T3), all participants (Groups 1 and 2) received a second treatment of anodal bilateral motor cortex and cathodal spinal stimulation (real tDCS) for five days/week for two weeks (T4). Follow-up evaluations were performed at 32-weeks (T5) and 48-weeks (T6) (open-label phase). At each time point, clinical assessment, blood sampling, and intracortical connectivity measures using transcranial magnetic stimulation (TMS) were evaluated. Additionally, we evaluated survival rates. RESULTS Compared to sham stimulation, cortico-spinal tDCS significantly improved global strength, caregiver burden, and quality of life scores, which correlated with the restoration of intracortical connectivity measures. Serum neurofilament light levels decreased among patients who underwent real tDCS but not in those receiving sham tDCS. The number of completed 2-week tDCS treatments significantly influenced patient survival. CONCLUSIONS Cortico-spinal tDCS may represent a promising therapeutic and rehabilitative approach for patients with ALS. Further larger-scale studies are necessary to evaluate whether tDCS could potentially impact patient survival. CLINICAL TRIAL REGISTRATION NCT04293484.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Barbara Tarantino
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Abhishek Datta
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Chris Thomas
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sari Kärkkäinen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Massimiliano Filosto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; NeMo-Brescia Clinical Center for Neuromuscular Diseases, Gussago, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
15
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
17
|
Menon P, Pavey N, Aberra AS, van den Bos MAJ, Wang R, Kiernan MC, Peterchev AV, Vucic S. Dependence of cortical neuronal strength-duration properties on TMS pulse shape. Clin Neurophysiol 2023; 150:106-118. [PMID: 37060842 PMCID: PMC10280814 DOI: 10.1016/j.clinph.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVE The aim of present study was to explore the effects of different combinations of transcranial magnetic stimulation (TMS) pulse width and pulse shape on cortical strength-duration time constant (SDTC) and rheobase measurements. METHODS Resting motor thresholds (RMT) at pulse widths (PW) of 30, 45, 60, 90 and 120 µs and M-ratios of 0.2, 0.1 and 0.025 were determined using figure-of-eight coil with initial posterior-to-anterior induced current. The M-ratio indicates the relative phases of the induced current with lower values signifying a more unidirectional stimulus. Strength-duration time constant (SDTC) and rheobase were estimated for each M-ratio and various PW combinations. Simulations of biophysically realistic cortical neuron models assessed underlying neuronal populations and physiological mechanisms mediating pulse shape effects on strength-duration properties. RESULTS The M-ratio exerted significant effect on SDTC (F(2,44) = 4.386, P = 0.021), which was longer for M-ratio of 0.2 (243.4 ± 61.2 µs) compared to 0.025 (186.7 ± 52.5 µs, P = 0.034). Rheobase was significantly smaller when assessed with M-ratio 0.2 compared to 0.025 (P = 0.026). SDTC and rheobase values were most consistent with pulse width sets of 30/45/60/90/120 µs, 30/60/90/120 µs, and 30/60/120 µs. Simulation studies indicated that isolated pyramidal neurons in layers 2/3, 5, and large basket-cells in layer 4 exhibited SDTCs comparable to experimental results. Further, simulation studies indicated that reducing transient Na+ channel conductance increased SDTC with larger increases for higher M-ratios. CONCLUSIONS Cortical strength-duration curve properties vary with pulse shape, and the modulating effect of the hyperpolarising pulse phase on cortical axonal transient Na+ conductances could account for these changes, although a shift in the recruited neuronal populations may contribute as well. SIGNIFICANCE The dependence of the cortical strength-duration curve properties on the TMS pulse shape and pulse width selection underscores the need for consistent measurement methods across studies and the potential to extract information about pathophysiological processes.
Collapse
Affiliation(s)
- Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Aman S Aberra
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - Ruochen Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, Australia.
| |
Collapse
|
18
|
Pavey N, Menon P, van den Bos MAJ, Kiernan MC, Vucic S. Cortical inhibition and facilitation are mediated by distinct physiological processes. Neurosci Lett 2023; 803:137191. [PMID: 36924929 DOI: 10.1016/j.neulet.2023.137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
A complex interaction of inhibitory and facilitatory interneuronal processes may underlie development of cortical excitability in the human motor cortex. To determine whether distinct interneuronal processes mediated cortical excitability, threshold tracking transcranial magnetic stimulation was utilised to assess cortical excitability, with figure-of-eight coil oriented in posterior-anterior (PA), anterior-posterior (AP) and latero-medial (LM) directions. Motor evoked potential (MEP) responses were recorded over the contralateral abductor pollicis brevis. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF) and intracortical facilitation were recorded. Significant effects of coil orientation were evident on SICI (F = 8.560, P = 0.002) and SICF (F = 7.132, P = 0.003). SICI was greater when recorded with PA (9.7 ± 10.9%, P = 0.029) and AP (13.1 ± 7.0%, P = 0.003) compared to LM (5.2 ± 7.3%) directed currents. SICF was significantly greater with PA (-14.7 ± 8.1%, P = 0.016) and LM (-14.7 ± 8.8%, P = 0.005) compared to AP (-9.1 ± 7.2%) coil orientations. SICI recorded with LM and PA coil orientations were correlated (R = 0.7, P = 0.002), as was SICF recorded with AP vs LM (R = 0.60, P = 0.019) and LM vs PA (R = 0.69, P = 0.002) coil orientations. RMT was significantly smaller with PA compared to AP (P < 0.001) and LM (P = 0.018) stimulation. Recruitment of distinct interneuronal processes with variable cortical orientation and thresholds underlies short interval intracortical inhibition and facilitation.
Collapse
Affiliation(s)
- Nathan Pavey
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, NSW, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, NSW, Australia
| | - Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, NSW, Australia
| | | | - Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Tankisi H, Pia H, Strunge K, Howells J, Cengiz B, Samusyte G, Koltzenburg M, Fuglsang-Frederiksen A, Bostock H. Three different short-interval intracortical inhibition methods in early diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:139-147. [PMID: 35899374 DOI: 10.1080/21678421.2022.2101926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Objectives: To compare the utility of conventional amplitude measurements of short-interval intracortical inhibition (A-SICI) with two threshold-tracking (T-SICI) methods, as aids to early diagnosis of amyotrophic lateral sclerosis (ALS). The new parallel threshold-tracking method (T-SICIp) was compared with the previously used serial tracking method (T-SICIs). Methods: 112 consecutive patients referred with the suspicion of ALS and 40 healthy controls were prospectively included. Based on clinical follow-up, patients were divided into 67 patients with motor neuron disease (MND) comprising progressive muscular atrophy (PMA) as well as ALS, and 45 patient controls. SICI was recorded from first dorsal interosseus muscle using the three different protocols. Results: MND patients had significantly reduced T-SICIp, T-SICIs and A-SICI, compared with healthy controls and patient controls, while healthy and patient controls were similar. Paradoxically, T-SICIp was least affected in MND patients with the most upper motor neuron (UMN) signs (Spearman ρ = 0.537, P < 0.0001) whereas there was no correlation for T-SICIs or A-SICI. T-SICIp also provided the best discrimination between patient controls and MND as determined by the receiver operating characteristic (ROC) curves. For patients with no UMN signs, area under ROC curve for 2-3ms inter-stimulus intervals was 0.931 for T-SICIp, 0.771 for T-SICIs and 0.786 for A-SICI. Conclusions: SICI is a sensitive measure for detection of cortical involvement in ALS patients. T-SICIp has higher sensitivity and specificity than T-SICIs and A-SICI, particularly in patients without any upper motor neuron signs.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hossein Pia
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Strunge
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, Ankara, Turkey
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom, and
| | - Anders Fuglsang-Frederiksen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
20
|
Neige C, Ciechelski V, Lebon F. The recruitment of indirect waves within primary motor cortex during motor imagery: A directional transcranial magnetic stimulation study. Eur J Neurosci 2022; 56:6187-6200. [PMID: 36215136 PMCID: PMC10092871 DOI: 10.1111/ejn.15843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
Motor imagery (MI) refers to the mental simulation of an action without overt movement. While numerous transcranial magnetic stimulation (TMS) studies provided evidence for a modulation of corticospinal excitability and intracortical inhibition during MI, the neural signature within the primary motor cortex is not clearly established. In the current study, we used directional TMS to probe the modulation of the excitability of early and late indirect waves (I-waves) generating pathways during MI. Corticospinal responses evoked by TMS with posterior-anterior (PA) and anterior-posterior (AP) current flow within the primary motor cortex evoke preferentially early and late I-waves, respectively. Seventeen participants were instructed to stay at rest or to imagine maximal isometric contractions of the right flexor carpi radialis. We demonstrated that the increase of corticospinal excitability during MI is greater with PA than AP orientation. By using paired-pulse stimulations, we confirmed that short-interval intracortical inhibition (SICI) increased during MI in comparison to rest with PA orientation, whereas we found that it decreased with AP orientation. Overall, these results indicate that the pathways recruited by PA and AP orientations that generate early and late I-waves are differentially modulated by MI.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France.,Centre Hospitalier Le Vinatier, Université Claude Bernard Lyon 1, INSERM, CNRS, CRNL U1028 UMR5292, PsyR2 Team, Bron, France
| | - Valentin Ciechelski
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
21
|
Theme 08 - Clinical Imaging and Electrophysiology. Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
22
|
van den Bos MAJ, Menon P, Vucic S. Cortical hyperexcitability and plasticity in Alzheimer's disease: developments in understanding and management. Expert Rev Neurother 2022; 22:981-993. [PMID: 36683586 DOI: 10.1080/14737175.2022.2170784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that provides important insights into Alzheimer's Disease (AD). A significant body of work utilizing TMS techniques has explored the pathophysiological relevance of cortical hyperexcitability and plasticity in AD and their modulation in novel therapies. AREAS COVERED This review examines the technique of TMS, the use of TMS to examine specific features of cortical excitability and the use of TMS techniques to modulate cortical function. A search was performed utilizing the PubMed database to identify key studies utilizing TMS to examine cortical hyperexcitability and plasticity in Alzheimer's dementia. We then translate this understanding to the study of Alzheimer's disease pathophysiology, examining the underlying neurophysiologic links contributing to these twin signatures, cortical hyperexcitability and abnormal plasticity, in the cortical dysfunction characterizing AD. Finally, we examine utilization of TMS excitability to guide targeted therapies and, through the use of repetitive TMS (rTMS), modulate cortical plasticity. EXPERT OPINION The examination of cortical hyperexcitability and plasticity with TMS has potential to optimize and expand the window of therapeutic interventions in AD, though remains at relatively early stage of development.
Collapse
Affiliation(s)
- Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
23
|
Ng K. Bringing nerve excitability out of the research laboratory into the clinic. Clin Neurophysiol Pract 2022; 7:317-318. [PMID: 36345534 PMCID: PMC9636407 DOI: 10.1016/j.cnp.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Karl Ng
- Department of Neurology and Clinical Neurophysiology, Royal North Shore Hospital and The University of Sydney, Reserve Rd, St Leonards, Sydney, NSW, Australia
| |
Collapse
|
24
|
Suzuki YI, Shibuya K, Misawa S, Suichi T, Tsuneyama A, Kojima Y, Nakamura K, Kano H, Prado M, Aotsuka Y, Otani R, Morooka M, Kuwabara S. Relationship between motor cortical and peripheral axonal hyperexcitability in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328550. [PMID: 35995552 DOI: 10.1136/jnnp-2021-328550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Previous studies have shown that patients with amyotrophic lateral sclerosis (ALS) have hyperexcitability in both the motor cortex and peripheral motor axons, but the relationship between central and peripheral excitability has not been fully disclosed. METHODS Threshold tracking transcranial magnetic stimulation (TMS) and motor nerve excitability testing were prospectively performed in 53 patients with ALS and 50 healthy subjects, and their relations to compound muscle action potential (CMAP) amplitude and revised ALS Functional Rating Scale were cross-sectionally analysed. RESULTS Compared with controls, patients with ALS showed both cortical and peripheral hyperexcitability; TMS showed reduced short-interval intracortical inhibition (interstimulus interval 1-7 ms) (p<0.001) and shortened silent period (p<0.05), and median nerve excitability testing revealed greater changes in depolarising threshold electrotonus (TEd) and greater superexcitability (p<0.0001, both), suggesting reduced axonal potassium currents. Significant correlations between cortical and peripheral excitability indices were not found. Greater changes in TEd (90-100 ms) (R=-0.33, p=0.03) and superexcitability (R=0.36, p=0.01) were associated with smaller amplitude of CMAP, whereas cortical excitability indices had no correlation with CMAP amplitude. More rapid motor functional decline was associated with only greater TEd (90-100 ms) (β=0.46, p=0.001). CONCLUSIONS Our results suggest that in ALS, cortical excitability is continuously high regardless of the extent of the peripheral burden, but peripheral hyperexcitability is associated with the extent of the peripheral burden and disease evolution speed. Alterations of ion channel function may play an important role in ALS pathophysiology.
Collapse
Affiliation(s)
- Yo-Ichi Suzuki
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Sonoko Misawa
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tomoki Suichi
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Atsuko Tsuneyama
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuta Kojima
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Keigo Nakamura
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hiroki Kano
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Mario Prado
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuya Aotsuka
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Ryo Otani
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Marie Morooka
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
25
|
Stability and test-retest reliability of neuronavigated TMS measures of corticospinal and intracortical excitability. Brain Res 2022; 1794:148057. [PMID: 35987284 DOI: 10.1016/j.brainres.2022.148057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022]
Abstract
The present study aimed at investigating the long-term stability and test-retest reliability of neuronavigated transcranial magnetic stimulation (nTMS) measures of cortical excitability, inhibition, and facilitation in the primary motor cortex. To fulfill these aims, thirty-one healthy adults underwent four nTMS sessions, over an average one-month period. Stability and test-retest reliability statistics were computed and analyzed to produce smallest real difference statistics, which indicate the absolute variation in a measurement that is likely to be the result of error (randomness). Excellent reliability was found for resting motor thresholds, which reflect baseline neuronal excitability. Good reliability statistics were found for input/output curve measurements, which reflect the excitability of a highly plastic neuronal population. Using the slope of mean amplitudes throughout the input/output curve or the stimulator intensity required to elicit motor evoked potentials of 1 mV presented good to excellent measurement reliability for global cortical excitability indexing, compared to mean MEP at a given intensity. Overall, this methodological study provides useful and novel information on transcranial magnetic stimulation interventions by providing smallest real difference statistics that inform on potential response thresholds across time, contributing to the validation of these measurements as clinical monitoring tools across time.
Collapse
|
26
|
De Oliveira HM, Silsby M, Jaiser SR, Lai HM, Pavey N, Kiernan MC, Williams TL, Vucic S, Baker MR. Electrodiagnostic findings in facial onset sensory motor neuronopathy (FOSMN). Clin Neurophysiol 2022; 140:228-238. [PMID: 35599162 DOI: 10.1016/j.clinph.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023]
|
27
|
Tankisi H, Cengiz B, Samusyte G, Howells J, Koltzenburg M, Bostock H. Short interval intracortical inhibition: Variability of amplitude and threshold-tracking measurements with 6 or 10 stimuli per point. Neurophysiol Clin 2022; 52:170-173. [PMID: 35000804 DOI: 10.1016/j.neucli.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
Reduced short-interval intracortical inhibition (SICI) in motor neuron disease has been demonstrated by amplitude changes (A-SICI) and threshold-tracking (T-SICI) using 10 stimuli per inter-stimulus interval (ISI). To test whether fewer stimuli would suffice, A-SICI and T-SICI were recorded twice from 30 healthy subjects using 6 and 10 stimuli per ISI. Using fewer stimuli increased mean A-SICI variances by 23.8% but the 7.3% increase in T-SICI variance was not significant. We conclude that our new parallel threshold-tracking SICI protocol, with 6 stimuli per ISI, can reduce time and stimulus numbers by 40% without appreciable loss of accuracy.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500 Ankara, Turkey
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin Koltzenburg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG London, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
28
|
Test-Retest Reliability of Short-Interval Intracortical Inhibition Assessed by Threshold-Tracking and Automated Conventional Techniques. eNeuro 2021; 8:ENEURO.0103-21.2021. [PMID: 34561238 PMCID: PMC8528507 DOI: 10.1523/eneuro.0103-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Two novel short-interval intracortical inhibition (SICI) protocols, assessing SICI across a range of interstimulus intervals (ISIs) using either parallel threshold-tracking transcranial magnetic stimulation (TT-TMS) or automated conventional TMS (cTMS), were recently introduced. However, the test-retest reliability of these protocols has not been investigated, which is important if they are to be introduced in the clinic. SICI was recorded in 18 healthy subjects using TT-TMS (T-SICI) and cTMS (A-SICI). All subjects were examined at four identical sessions, i.e., morning and afternoon sessions on 2 d, 5-7 d apart. Both SICI protocols were performed twice at each session by the same observer. In one of the sessions, another observer performed additional examinations. Neither intraobserver nor interobserver measures of SICI differed significantly between examinations, except for T-SICI at ISI 3 ms (p = 0.00035) and A-SICI at ISI 2.5 ms (p = 0.0103). Intraday reliability was poor-to-good for A-SICI and moderate-to-good for T-SICI. Interday and interobserver reliabilities of T-SICI and A-SICI were moderate-to-good. Although between-subject variation constituted most of the total variation, SICI repeatability in an individual subject was poor. The two SICI protocols showed no considerable systematic bias across sessions and had a comparable test-retest reliability profile. Findings from the present study suggest that both SICI protocols may be reliably and reproducibly employed in research studies, but should be used with caution for individual decision-making in clinical settings. Studies exploring reliability in patient cohorts are warranted to investigate the clinical utility of these two SICI protocols.
Collapse
|
29
|
Suzuki YI, Ma Y, Shibuya K, Misawa S, Suichi T, Tsuneyama A, Nakamura K, Matamala JM, Dharmadasa T, Vucic S, Fan D, Kiernan MC, Kuwabara S. Effect of racial background on motor cortical function as measured by threshold tracking transcranial magnetic stimulation. J Neurophysiol 2021; 126:840-844. [PMID: 34406906 DOI: 10.1152/jn.00083.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
A previous study using traditional paired-pulse TMS methods (amplitude-tracking) has reported differences in resting motor threshold (RMT) and short-interval intracortical inhibition (SICI) between healthy subjects of Caucasian and Han Chinese backgrounds, probably due to differences in the skull shape. The amplitude-tracking method delivers stimuli with constant intensity and causes substantial variabilities in motor-evoked potential amplitudes. To overcome this variability, threshold tracking transcranial magnetic stimulation (TT-TMS) has been developed. The present study aimed to investigate whether racial differences in motor cortical function exist, using TT-TMS. A total of 83 healthy volunteers (30 Caucasians, 25 Han Chinese, and 28 Japanese) were included in the present series. In TT-TMS and nerve conduction studies, electrodes were placed on the dominant limb, with measures recorded from the abductor pollicis brevis muscle. Stimulations were delivered with a circular coil, directly above the primary motor cortex. There were no significant differences at all the SICI intervals between races. Similarly, there were no significant differences in other measures of excitability including mean RMT, intracortical facilitation, and cortical silent period. Contrary to traditional amplitude-tracking TMS, motor cortical excitability and thereby motor cortical function is minimally influenced by racial differences when measured by TT-TMS. Recent studies have disclosed that SICI measured by TT-TMS differentiates amyotrophic lateral sclerosis (ALS) from ALS mimic disorders, with high sensitivity and specificity, in Caucasians. This study suggested that TT-TMS can be applied for the ALS diagnosis in Asian patients, as well as Caucasians.NEW & NOTEWORTHY Threshold tracking transcranial magnetic stimulation (TT-TMS) was applied for Caucasians, Han Chinese, and Japanese. No significant differences were found in TMS excitability indexes among races. Recent studies have disclosed that TT-TMS indexes differentiate amyotrophic lateral sclerosis (ALS) from ALS mimic disorders, with high sensitivity and specificity, in Caucasians. This study suggested that TT-TMS can be applied for the ALS diagnosis in Asian patients, as well as Caucasians.
Collapse
Affiliation(s)
- Yo-Ichi Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yan Ma
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sonoko Misawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoki Suichi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsuko Tsuneyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keigo Nakamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - José Manuel Matamala
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
30
|
Alaydin HC, Cengiz B. Body ownership, sensorimotor integration and motor cortical excitability: A TMS study about rubber hand illusion. Neuropsychologia 2021; 161:107992. [PMID: 34391807 DOI: 10.1016/j.neuropsychologia.2021.107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The Rubber Hand Illusion (RHI) manipulates body ownership experimentally and helps investigate the related neurophysiological processes. This study aimed to evaluate motor cortex excitability that hypothesized changed due to illusion. METHOD Twenty-one healthy (twelve male, nine female), right-handed volunteers aged between 25 and 50 years were recruited to the study. Short-Latency Afferent Inhibition (SAI) was evaluated by transcranial magnetic stimulation (TMS) given with a figure-of-eight-shaped coil from the left motor cortex, 21 ms after peripheral electrical stimulation. Short-Interval Intracortical Inhibition (SICI) and Intracortical Facilitation (ICF) were investigated using a paired-pulse TMS at interstimulus intervals (ISI) of 1, 2.5, 3 ms and 15, 20, 25 ms, respectively. We used custom-made illusion setups for TMS paradigms. SAI, SICI and ICF was evaluated before, during and 15 min after the RHI. RESULTS Results of the study revealed significantly high SAI during illusion compared to pre-illusion, but no difference was found between post-illusion 15th minutes and control measurements. Significantly reduced SICI at 2.5 and 3 ms ISI obtained during illusion, while RHI did not affect SICI at 1 ms ISI and ICF. SIGNIFICANCE Body ownership illusion modulates the motor cortex excitability, possibly through altered sensory processing and sensorimotor integration.
Collapse
Affiliation(s)
- Halil Can Alaydin
- - Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; - Department of Neurology, Clinical Neurophysiology Division, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Bülent Cengiz
- - Department of Neurology, Gazi University Faculty of Medicine, Ankara, Turkey; - Department of Neurology, Clinical Neurophysiology Division, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
The Upper Motor Neuron-Improved Knowledge from ALS and Related Clinical Disorders. Brain Sci 2021; 11:brainsci11080958. [PMID: 34439577 PMCID: PMC8392624 DOI: 10.3390/brainsci11080958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Upper motor neuron (UMN) is a term traditionally used for the corticospinal or pyramidal tract neuron synapsing with the lower motor neuron (LMN) in the anterior horns of the spinal cord. The upper motor neuron controls resting muscle tone and helps initiate voluntary movement of the musculoskeletal system by pathways which are not completely understood. Dysfunction of the upper motor neuron causes the classical clinical signs of spasticity, weakness, brisk tendon reflexes and extensor plantar response, which are associated with clinically well-recognised, inherited and acquired disorders of the nervous system. Understanding the pathophysiology of motor system dysfunction in neurological disease has helped promote a greater understanding of the motor system and its complex cortical connections. This review will focus on the pathophysiology underlying progressive dysfunction of the UMN in amyotrophic lateral sclerosis and three other related adult-onset, progressive neurological disorders with prominent UMN signs, namely, primary lateral sclerosis, hereditary spastic paraplegia and primary progressive multiple sclerosis, to help promote better understanding of the human motor system and, by extension, related cortical systems.
Collapse
|
32
|
Geevasinga N, Van den Bos M, Menon P, Vucic S. Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11070906. [PMID: 34356140 PMCID: PMC8304017 DOI: 10.3390/brainsci11070906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease.
Collapse
|
33
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
34
|
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett 2021; 759:136039. [PMID: 34118310 DOI: 10.1016/j.neulet.2021.136039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Revised: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia.
| | - Nathan Pavey
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Mouna Haidar
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
35
|
Higashihara M, Pavey N, van den Bos M, Menon P, Kiernan MC, Vucic S. Association of Cortical Hyperexcitability and Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Neurology 2021; 96:e2090-e2097. [PMID: 33827958 DOI: 10.1212/wnl.0000000000011798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether cortical hyperexcitability was more prominent in cognitively impaired patients with amyotrophic lateral sclerosis (ALS). METHODS Threshold tracking transcranial magnetic stimulation (TMS) was used to assess cortical excitability and cognitive function was determined by the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Cognitive impairment was defined by ECAS < 105. Patients with ALS, defined by the Awaji criteria, were prospectively recruited. Patients unable to undergo TMS, or in whom TMS indices were compromised by coexistent medical conditions, were excluded. Cortical hyperexcitability was defined by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation (SICF), index of excitability (IE), and motor evoked potential (MEP) amplitude. Student t test determined differences between groups and multivariable regression modeling was used to assess association among cognitive, clinical, and TMS measures. TMS results were compared with those of 42 controls. RESULTS Cognitive impairment was evident in 36% of the 40 patients with ALS (23 male, mean age 62.1 years). Cortical hyperexcitability was more prominent in cognitively impaired patients as indicated by an increase in SICF (ECAS≥105 -15.3 ± 1.7%, ECAS<105 -20.6 ± 1.2%; p < 0.01), IE (ECAS ≥105 80.9 ± 7.8, ECAS <105 95.0 ± 4.5; p < 0.01), and MEP amplitude (ECAS≥105 28.7 ± 3.3%, ECAS<105 43.1 ± 5.9%; p < 0.05). SICF was independently associated with the ECAS score (β = 2.410; p < 0.05). Reduced SICI was evident in ALS, being more prominent in patients with reduced executive score (ECASexecutive score>33 6.2 ± 1.3%, ECASexecutive score<33 1.5 ± 2.1%; p < 0.01). CONCLUSION Cortical hyperexcitability was more prominent in cognitively impaired patients with ALS than in controls. Given that ECAS is a valid predictor of TDP-43 pathology, the increase in cortical hyperexcitability may be associated with TDP-43 accumulation.
Collapse
Affiliation(s)
- Mana Higashihara
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Nathan Pavey
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Mehdi van den Bos
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Parvathi Menon
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew C Kiernan
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Steve Vucic
- From the Westmead Clinical School (M.H., N.P., M.v.d.B., P.M., S.V.) and Brain and Mind Centre (M.C.K.), University of Sydney, Australia; Department of Neurology (M.H.), Tokyo Metropolitan Geriatric Hospital, Japan; and Department of Neurology (M.C.K.), Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
36
|
Perkins EM, Burr K, Banerjee P, Mehta AR, Dando O, Selvaraj BT, Suminaite D, Nanda J, Henstridge CM, Gillingwater TH, Hardingham GE, Wyllie DJA, Chandran S, Livesey MR. Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction. Mol Neurodegener 2021; 16:13. [PMID: 33663561 PMCID: PMC7931347 DOI: 10.1186/s13024-021-00433-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. METHODS To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. RESULTS We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. CONCLUSION These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.
Collapse
Affiliation(s)
- Emma M. Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Poulomi Banerjee
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Arpan R. Mehta
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Bhuvaneish T. Selvaraj
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Jyoti Nanda
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Christopher M. Henstridge
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - David J. A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Matthew R. Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ UK
| |
Collapse
|
37
|
Eisen A. The Dying Forward Hypothesis of ALS: Tracing Its History. Brain Sci 2021; 11:brainsci11030300. [PMID: 33673524 PMCID: PMC7997258 DOI: 10.3390/brainsci11030300] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
The site of origin of amyotrophic lateral sclerosis (ALS), although unsettled, is increasingly recognized as being cortico-fugal, which is a dying-forward process primarily starting in the corticomotoneuronal system. A variety of iterations of this concept date back to over 150 years. Recently, the hallmark TAR DNA-binding protein 43 (TDP-43) pathology, seen in >95% of patients with ALS, has been shown to be largely restricted to corticofugal projecting neurons (“dying forward”). Possibly, soluble but toxic cytoplasmic TDP-43 could enter the axoplasm of Betz cells, subsequently causing dysregulation of nuclear protein in the lower brainstem and spinal cord anterior horn cells. As the disease progresses, cortical involvement in ALS becomes widespread, including or starting with frontotemporal dementia, implying a broader view of ALS as a brain disease. The onset at the motor and premotor cortices should be considered a nidus at the edge of multiple cortical networks which eventually become disrupted, causing failure of a widespread cortical connectome.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
38
|
Ørskov S, Bostock H, Howells J, Pugdahl K, Fuglsang-Frederiksen A, Nielsen CSZ, Cengiz B, Samusyte G, Koltzenburg M, Tankisi H. Comparison of figure-of-8 and circular coils for threshold tracking transcranial magnetic stimulation measurements. Neurophysiol Clin 2021; 51:153-160. [PMID: 33468370 DOI: 10.1016/j.neucli.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The transcranial magnetic stimulation (TMS) technique of threshold-tracking short-interval intracortical inhibition (T-SICI) has been proposed as a diagnostic tool for amyotrophic lateral sclerosis (ALS). Most of these studies have used a circular coil, whereas a figure-of-8 coil is usually recommended for paired-pulse TMS measurements. The aim of this study was to compare figure-of-8 and circular coils for T-SICI in the upper limb, with special attention to reproducibility, and the pain or discomfort experienced by the subjects. METHODS Twenty healthy subjects (aged: 45.5 ± 6.7, mean ± SD, 9 females, 11 males) underwent two examinations with each coil, in morning and afternoon sessions on the same day, with T-SICI measured at interstimulus intervals (ISIs) from 1-7 ms. After each examination the subjects rated degree of pain/discomfort from 0 to 10 using a numerical rating scale (NRS). RESULTS Mean T-SICI was higher for the figure-of-8 than for the circular coil at ISI of 2 ms (p < 0.05) but did not differ at other ISIs. Intra-subject variability did not differ between coils, but mean inhibition from 1-3.5 ms was less variable between subjects with the figure-of-8 coil (SD 7.2% vs. 11.2% RMT, p < 0.05), and no such recordings were without inhibition (vs. 6 with the circular coil). The subjects experienced less pain/discomfort with the figure-of-8 coil (mean NRS: 1.9 ± 1.28 vs 2.8 ± 1.60, p < 0.005). DISCUSSION The figure-of-8 coil may have better applicability in patients, due to the lower incidence of lack of inhibition in healthy subjects, and the lower experience of pain or discomfort.
Collapse
Affiliation(s)
- Søren Ørskov
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hugh Bostock
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, United Kingdom
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Kirsten Pugdahl
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, United Kingdom; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
39
|
van den Bos MAJ, Higashihara M, Geevasinga N, Menon P, Kiernan MC, Vucic S. Pathophysiological associations of transcallosal dysfunction in ALS. Eur J Neurol 2020; 28:1172-1180. [PMID: 33220162 DOI: 10.1111/ene.14653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/28/2022]
Abstract
AIM Involvement of the corpus callosum has been identified as a feature of amyotrophic lateral sclerosis (ALS), particularly through neuropathological studies. The aim of the present study was to determine whether alteration in transcallosal function contributed to the development of ALS, disease progression and thereby functional disability. METHODS Transcallosal function and motor cortex excitability were assessed in 17 ALS patients with results compared to healthy controls. Transcallosal inhibition (interstimulus intervals (ISI) of 8-40 ms), short interval intracortical facilitation (SICF) and inhibition (SICI) were assessed in both cerebral hemispheres. Patients were staged utilising clinical and neurophysiological staging assessments. RESULTS In ALS, there was prominent reduction of transcallosal inhibition (TI) when recorded from the primary and secondary motor cortices compared to controls (F = 23.255, p < 0.001). This reduction of TI was accompanied by features indicative of cortical hyperexcitability, including reduction of SICI and increase in SICF. There was a significant correlation between the reduction in TI and the rate of disease progression (R = -0.825, p < 0.001) and reduction in muscle strength (R = 0.54, p = 0.031). CONCLUSION The present study has established that dysfunction of transcallosal circuits was an important pathophysiological mechanism in ALS, correlating with greater disability and a faster rate of disease progression. Therapies aimed at restoring the function of transcallosal circuits may be considered for therapeutic approaches in ALS.
Collapse
Affiliation(s)
| | - Mana Higashihara
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Department of Neurology, Brain and Mind Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Tankisi H, Cengiz B, Howells J, Samusyte G, Koltzenburg M, Bostock H. Short-interval intracortical inhibition as a function of inter-stimulus interval: Three methods compared. Brain Stimul 2020; 14:22-32. [PMID: 33166726 DOI: 10.1016/j.brs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Short-interval intracortical inhibition (SICI), as measured by threshold-tracking as a function of inter-stimulus interval (ISI), has been proposed as a useful biomarker for amyotrophic lateral sclerosis (ALS), but its relationship to conventional amplitude measurements has not been established. METHODS Serial tracking of SICI at increasing ISIs from 1 to 7 ms (T-SICIs) was compared in 50 healthy control subjects with the same ISIs tracked in parallel (T-SICIp), and with conventional amplitude measurements (A-SICI). For T-SICIp and A-SICI, pairs of conditioning and test stimuli with different ISIs were pseudo-randomised and interspersed with test-alone stimuli given at regular intervals. Thresholds were estimated by regression of log peak-to-peak amplitude on stimulus. RESULTS T-SICIp and A-SICI were closely related: a ten-fold reduction in amplitude corresponding to an approximately 18% increase in threshold. Threshold increases were greater for T-SICIs than for T-SICIp at 3.5-5 ms (P < 0.001). This divergence depended on the initial settings and whether ISIs were progressively increased or decreased, and was attributed to the limitations of the serial tracking protocol. SICI variability between subjects was greatest for T-SICIs estimates and least for A-SICI, and only A-SICI estimates revealed a significant decline in inhibition with age. CONCLUSIONS The serial tracking protocol did not accurately show the dependence of inhibition on ISI. Randomising ISIs gives corresponding SICI measures, whether tracking thresholds or measuring amplitude measurements. SICI variability suggested that A-SICI measurements may be the most sensitive to loss of inhibition.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500, Ankara, Turkey
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gintaute Samusyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG, London, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom.
| |
Collapse
|
41
|
Vucic S. Split-hand sign: clinical feature of spinal bulbar muscular atrophy? J Neurol Neurosurg Psychiatry 2020; 91:1143-1144. [PMID: 33004430 DOI: 10.1136/jnnp-2020-324969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
42
|
Dharmadasa T, Howells J, Matamala JM, Simon NG, Burke D, Vucic S, Kiernan MC. Cortical inexcitability defines an adverse clinical profile in amyotrophic lateral sclerosis. Eur J Neurol 2020; 28:90-97. [PMID: 32902860 PMCID: PMC7820947 DOI: 10.1111/ene.14515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2019] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Background and purpose In amyotrophic lateral sclerosis, studies using threshold‐tracking transcranial magnetic stimulation (TMS) have identified corticomotoneuronal dysfunction as a key pathogenic mechanism. Some patients, however, display no motor response at maximal TMS intensities, termed here an ‘inexcitable’ motor cortex. The extent to which this cortical difference impacts clinical outcomes remains unclear. The aim of this study was to determine the clinical profile of patients with inexcitability to TMS. Methods Motor cortex excitability was evaluated using TMS. Patients in whom a motor evoked potential could not be recorded in one or more limbs at maximal TMS intensities were classified as four‐limb or partially inexcitable. Demographic information, clinical variables and survival data were analysed. Results From 133 patients, 40 were identified with inexcitability. Patients with four‐limb inexcitability were younger (P = 0.03) and had lower‐limb disease onset (64%), greater functional disability (P < 0.001) and faster disease progression (P = 0.02), particularly if inexcitability developed within 1 year of symptoms (P < 0.01). Patients with partial inexcitability had higher resting motor thresholds compared to the excitable cohort (P < 0.01), but averaged short‐interval intracortical inhibition was similar (P = 0.5). Mean survival was reduced if inexcitability involved all limbs within 12 months of symptom onset (P = 0.04). Conclusion Amyotrophic lateral sclerosis patients with inexcitability of all four limbs to TMS have a distinct clinical profile of younger age and lower‐limb onset. Importantly, these patients display a more malignant disease trajectory, with faster progression, greater functional disability and reduced survival when occurring in early disease. This measure may provide an important prognostic marker in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - J Howells
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - J M Matamala
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - N G Simon
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - D Burke
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - S Vucic
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - M C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
43
|
McCambridge AB, Bradnam LV. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci 2020; 53:1300-1323. [PMID: 32991762 DOI: 10.1111/ejn.14987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method to assess neurophysiology of the primary motor cortex in humans. Dystonia is a poorly understood neurological movement disorder, often presenting in an idiopathic, isolated form across different parts of the body. The neurophysiological profile of isolated dystonia compared to healthy adults remains unclear. We conducted a systematic review with meta-analysis of neurophysiologic TMS measures in people with isolated dystonia to provide a synthesized understanding of cortical neurophysiology associated with isolated dystonia. We performed a systematic database search and data were extracted independently by the two authors. Separate meta-analyses were performed for TMS measures of: motor threshold, corticomotor excitability, short interval intracortical inhibition, cortical silent period, intracortical facilitation and afferent-induced inhibition. Standardized mean differences were calculated using a random effects model to determine overall effect sizes and confidence intervals. Heterogeneity was explored using dystonia type subgroup analysis. The search resulted in 78 studies meeting inclusion criteria, of these 57 studies reported data in participants with focal hand dystonia, cervical dystonia, blepharospasm or spasmodic dysphonia, and were included in at least one meta-analysis. The cortical silent period, short-interval intracortical inhibition and afferent-induced inhibition was found to be reduced in isolated dystonia compared to controls. Reduced GABAergic-mediated inhibition in the primary motor cortex in idiopathic isolated dystonia's suggest interventions targeted to aberrant cortical disinhibition could provide a novel treatment. Future meta-analyses require neurophysiology studies to use homogeneous cohorts of isolated dystonia participants, publish raw data values, and record electromyographic responses from dystonic musculature where possible.
Collapse
Affiliation(s)
- Alana B McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynley V Bradnam
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Calvert GHM, McMackin R, Carson RG. Probing interhemispheric dorsal premotor-primary motor cortex interactions with threshold hunting transcranial magnetic stimulation. Clin Neurophysiol 2020; 131:2551-2560. [PMID: 32927210 DOI: 10.1016/j.clinph.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterise the effect of altering transcranial magnetic stimulation parameters on the magnitude of interhemispheric inhibition (IHI) from dorsal premotor (PMd) to primary motor cortex (M1). METHOD We used a fully automated adaptive threshold hunting paradigm to quantify PMd-M1 IHI across a range of conditioning stimulus (CS) intensities (90%, 110%, 130% of resting motor threshold, rMT) and interstimulus intervals (ISIs) (8, 10, 40 ms). M1-M1 IHI was examined with CS intensities of 110%, 120%, and 130% rMT and ISIs of 10 and 40 ms. Two test coil orientations (inducing posterior-anterior or anterior-posterior current) were used. RESULTS PMd-M1 IHI was obtained consistently with posterior-anterior (but not anterior-posterior) test stimuli and increased with CS intensity. M1-M1 IHI was expressed across all conditions and increased with CS intensity when posterior-anterior but not anterior-posterior induced current was used. CONCLUSIONS The expression of PMd-M1 IHI is contingent on test coil orientation (requiring posterior-anterior induced current) and increases as a function of CS intensity. The expression of M1-M1 IHI is not dependent on test coil orientation. SIGNIFICANCE We defined a range of parameters that elicit reliable PMd-M1 IHI. This (threshold hunting) methodology may provide a means to quantify premotor-motor pathology and reveal novel quantitative biomarkers.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| | - Roisin McMackin
- Academic Unit of Neurology, 152-160 Pearse St., Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK.
| |
Collapse
|
45
|
|
46
|
Freely Chosen Cadence During Cycling Attenuates Intracortical Inhibition and Increases Intracortical Facilitation Compared to a Similar Fixed Cadence. Neuroscience 2020; 441:93-101. [PMID: 32590040 DOI: 10.1016/j.neuroscience.2020.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
In contrast to other rhythmic tasks such as running, the preferred movement rate in cycling does not minimize energy consumption. It is possible that neurophysiological mechanisms contribute to the choice of cadence, however this phenomenon is not well understood. Eleven participants cycled at a fixed workload of 125 W and different cadences including a freely chosen cadence (FCC, ∼72), and fixed cadences of 70, 80, 90 and 100 revolutions per minute (rpm) during which transcranial magnetic stimulation (TMS) was used to measure short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). There was a significant increase in SICI at 70 (P = 0.004), 80 (P = 0.008) and 100 rpm (P = 0.041) compared to FCC. ICF was significantly reduced at 70 rpm compared to FCC (P = 0.04). Inhibition-excitation ratio (SICI divided by ICF) declined (P = 0.014) with an increase in cadence. The results demonstrate that SICI is attenuated during FCC compared to fixed cadences. The outcomes suggest that the attenuation of intracortical inhibition and augmentation of ICF may be a contributing factor for FCC.
Collapse
|
47
|
Unravelling the Modulation of Intracortical Inhibition During Motor Imagery: An Adaptive Threshold-Hunting Study. Neuroscience 2020; 434:102-110. [DOI: 10.1016/j.neuroscience.2020.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
|
48
|
Higashihara M, Van den Bos MA, Menon P, Kiernan MC, Vucic S. Interneuronal networks mediate cortical inhibition and facilitation. Clin Neurophysiol 2020; 131:1000-1010. [DOI: 10.1016/j.clinph.2020.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
|
49
|
Menon P, Higashihara M, van den Bos M, Geevasinga N, Kiernan MC, Vucic S. Cortical hyperexcitability evolves with disease progression in ALS. Ann Clin Transl Neurol 2020; 7:733-741. [PMID: 32304186 PMCID: PMC7261748 DOI: 10.1002/acn3.51039] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Cortical hyperexcitability has been established as an early feature of amyotrophic lateral sclerosis (ALS). The evolution of cortical hyperexcitability with ALS progression remains to be fully elucidated. This study aims to investigate changes in cortical function in ALS with disease progression. Methods Cortical function assessed by threshold tracking transcranial magnetic stimulation (TMS) along with clinical phenotyping was prospectively undertaken on 444 patients presenting with suspected ALS (345 ALS; 99 neuromuscular mimics). Disease stage was defined as follows: (1) King’s clinical staging system and (2) proportion of disease duration statistically categorized into tertials. Results Cortical hyperexcitability was evident across all ALS stages, being more prominent in later stages of ALS as indicated by increased motor‐evoked potential amplitude (P < 0.05), as well as longer disease duration as reflected by reduced short‐interval intracortical inhibition (P < 0.05). Prolonged central motor conduction time was evident with disease progression. These changes were accompanied by reduction in neurophysiological index (P < 0.001) and compound muscle action potential amplitude (P < 0.01), progressive muscle weakness (P < 0.001), and decline in the ALS functional rating scale (P < 0.001). Interpretation This study established an increase in cortical hyperexcitability with increased disease duration in ALS, mediated by cortical disinhibition and direct increase in corticomotoneuronal excitability.
Collapse
Affiliation(s)
- Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Mana Higashihara
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
50
|
Dharmadasa T, Matamala JM, Howells J, Vucic S, Kiernan MC. Early focality and spread of cortical dysfunction in amyotrophic lateral sclerosis: A regional study across the motor cortices. Clin Neurophysiol 2020; 131:958-966. [DOI: 10.1016/j.clinph.2019.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
|