1
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
2
|
Gellhaus B, Böker KO, Schilling AF, Saul D. Therapeutic Consequences of Targeting the IGF-1/PI3K/AKT/FOXO3 Axis in Sarcopenia: A Narrative Review. Cells 2023; 12:2787. [PMID: 38132107 PMCID: PMC10741475 DOI: 10.3390/cells12242787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The high prevalence of sarcopenia in an aging population has an underestimated impact on quality of life by increasing the risk of falls and subsequent hospitalization. Unfortunately, the application of the major established key therapeutic-physical activity-is challenging in the immobile and injured sarcopenic patient. Consequently, novel therapeutic directions are needed. The transcription factor Forkhead-Box-Protein O3 (FOXO3) may be an option, as it and its targets have been observed to be more highly expressed in sarcopenic muscle. In such catabolic situations, Foxo3 induces the expression of two muscle specific ubiquitin ligases (Atrogin-1 and Murf-1) via the PI3K/AKT pathway. In this review, we particularly evaluate the potential of Foxo3-targeted gene therapy. Foxo3 knockdown has been shown to lead to increased muscle cross sectional area, through both the AKT-dependent and -independent pathways and the reduced impact on the two major downstream targets Atrogin-1 and Murf-1. Moreover, a Foxo3 reduction suppresses apoptosis, activates satellite cells, and initiates their differentiation into muscle cells. While this indicates a critical role in muscle regeneration, this mechanism might exhaust the stem cell pool, limiting its clinical applicability. As systemic Foxo3 knockdown has also been associated with risks of inflammation and cancer progression, a muscle-specific approach would be necessary. In this review, we summarize the current knowledge on Foxo3 and conceptualize a specific and targeted therapy that may circumvent the drawbacks of systemic Foxo3 knockdown. This approach presumably would limit the side effects and enable an activity-independent positive impact on skeletal muscle.
Collapse
Affiliation(s)
- Benjamin Gellhaus
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August University of Goettingen, 37075 Goettingen, Germany; (B.G.); (K.O.B.); (A.F.S.)
| | - Kai O. Böker
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August University of Goettingen, 37075 Goettingen, Germany; (B.G.); (K.O.B.); (A.F.S.)
| | - Arndt F. Schilling
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August University of Goettingen, 37075 Goettingen, Germany; (B.G.); (K.O.B.); (A.F.S.)
| | - Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August University of Goettingen, 37075 Goettingen, Germany; (B.G.); (K.O.B.); (A.F.S.)
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72072 Tuebingen, Germany
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
5
|
Transcriptome sequencing reveals improved ammonia nitrogen tolerance in Zebra II strain of the Manila clam Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101016. [PMID: 35985189 DOI: 10.1016/j.cbd.2022.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
In this research, we identified genes associated with ammonia nitrogen (TAN) stress response and resistance in juveniles of the Zebra II strain and a wild population of the Manila clam Ruditapes philippinarum. Both groups were subjected to a 96 h acute toxicity test using TAN concentrations of 17.617 ± 0.634 and 16.670 ± 0.7 mg/l, respectively. We then collected samples, conducted transcriptome sequencing and screened the sequences for differentially expressed genes (DEGs) related to TAN stress response. We identified 2908 and 2861 DEGs in the Zebra II and wild clam groups, respectively, and the two groups had 626 DEGs in common. The verified DEGs had less of a detoxification effect in the wild population than that in the Zebra II group. Gene Ontology database analysis showed that Zebra II juveniles were mainly enriched in protein phosphorylation, purine nucleoside binding, and kinase activity, whereas the wild population juveniles were primarily enriched in oxidases activity, organic acid metabolic processes, and extracellular regions. Kyoto Encyclopedia of Genes and Genomes pathway analysis mainly highlighted aminoacyl tRNA biosynthesis in Zebra II juveniles and sphingolipid metabolism, FOXO signaling, biosynthesis of aminoacyl tRNA, and other pathways in the wild population. These results show that the toxic effect of TAN on the Manila clam is related to a variety of pathways, which are mainly related to immune response, inflammatory response, metabolic pathways, and nerve conduction. This study provides basic data and theoretical reference for revealing the molecular regulation mechanism of the improved TAN tolerance of Zebra II strain as compared with the wild population of Ruditapes philippinarum.
Collapse
|
6
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
7
|
McKay LK, White JP. The AMPK/p27 Kip1 Pathway as a Novel Target to Promote Autophagy and Resilience in Aged Cells. Cells 2021; 10:cells10061430. [PMID: 34201101 PMCID: PMC8229180 DOI: 10.3390/cells10061430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Once believed to solely function as a cyclin-dependent kinase inhibitor, p27Kip1 is now emerging as a critical mediator of autophagy, cytoskeletal dynamics, cell migration and apoptosis. During periods of metabolic stress, the subcellular location of p27Kip1 largely dictates its function. Cytoplasmic p27Kip1 has been found to be promote cellular resilience through autophagy and anti-apoptotic mechanisms. Nuclear p27Kip1, however, inhibits cell cycle progression and makes the cell susceptible to quiescence, apoptosis, and/or senescence. Cellular location of p27Kip1 is regulated, in part, by phosphorylation by various kinases, including Akt and AMPK. Aging promotes nuclear localization of p27Kip1 and a predisposition to senescence or apoptosis. Here, we will review the role of p27Kip1 in healthy and aging cells with a particular emphasis on the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
- Lauren K. McKay
- Adams School of Dentistry, UNC Chapel Hill, Chapel Hill, NC 27599, USA;
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
| | - James P. White
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, 300 N. Duke Street, Durham, NC 27701, USA
- Correspondence:
| |
Collapse
|
8
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Network Pharmacology-Based Investigation into the Mechanisms of Quyushengxin Formula for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7870424. [PMID: 31976001 PMCID: PMC6949735 DOI: 10.1155/2019/7870424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Objective Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease whose treatment strategies remain unsatisfactory. This study aims to investigate the mechanisms of Quyushengxin formula acting on UC based on network pharmacology. Methods Ingredients of the main herbs in Quyushengxin formula were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Absorption, distribution, metabolism, and excretion properties of all ingredients were evaluated for screening out candidate bioactive compounds in Quyushengxin formula. Weighted ensemble similarity algorithm was applied for predicting direct targets of bioactive ingredients. Functional enrichment analyses were performed for the targets. In addition, compound-target network, target-disease network, and target-pathway network were established via Cytoscape 3.6.0 software. Results A total of 41 bioactive compounds in Quyushengxin formula were selected out from the TCMSP database. These bioactive compounds were predicted to target 94 potential proteins by weighted ensemble similarity algorithm. Functional analysis suggested these targets were closely related with inflammatory- and immune-related biological progresses. Furthermore, the results of compound-target network, target-disease network, and target-pathway network indicated that the therapeutic effects of Quyushengxin on UC may be achieved through the synergistic and additive effects. Conclusion Quyushengxin may act on immune and inflammation-related targets to suppress UC progression in a synergistic and additive manner.
Collapse
|
10
|
Gao L, Yuan Z, Zhou T, Yang Y, Gao D, Dunham R, Liu Z. FOXO genes in channel catfish and their response after bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:38-44. [PMID: 30905685 DOI: 10.1016/j.dci.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
FOXO proteins are a subgroup of the forkhead family of transcription factors that play crucial roles in lifespan regulation. In addition, FOXO proteins are also involved in immune responses. After a systematic study of FOXO genes in channel catfish, Ictalurus punctatus, seven FOXO genes were identified and characterized, including FOXO1a, FOXO1b, FOXO3a, FOXO3b, FOXO4, FOXO6a and FOXO6b. Through phylogenetic and syntenic analyses, it was found that FOXO1, FOXO3 and FOXO6 were duplicated in the catfish genome, as in the zebrafish genome. Analysis of the relative rates of nonsynonymous (dN) and synonymous (dS) substitutions revealed that the FOXO genes were globally strongly constrained by negative selection. Differential expression patterns were observed in the majority of FOXO genes after Edwardsiella ictaluri and Flavobacterium columnare infections. After E. ictaluri infection, four FOXO genes with orthologs in mammal species were significantly upregulated, where FOXO6b was the most dramatically upregulated. However, after F. columnare infection, the expression levels of almost all FOXO genes were not significantly affected. These results suggested that either a pathogenesis-specific pattern or tissue-specific pattern existed in catfish after these two bacterial infections. Taken together, these findings indicated that FOXO genes may play important roles in immune responses to bacterial infections in catfish.
Collapse
Affiliation(s)
- Lei Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
11
|
Lu Z, Lu C, Li C, Jiao Y, Li Y, Zhang G. Dracorhodin perchlorate induces apoptosis and G2/M cell cycle arrest in human esophageal squamous cell carcinoma through inhibition of the JAK2/STAT3 and AKT/FOXO3a pathways. Mol Med Rep 2019; 20:2091-2100. [PMID: 31322237 PMCID: PMC6691268 DOI: 10.3892/mmr.2019.10474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dracorhodin perchlorate (DP), a synthetic analogue of the anthocyanin red pigment dracorhodin, has been shown to exert various pharmacological effects, including anticancer activity. However, its effects on human esophageal squamous cell carcinoma (ESCC) cells have not been previously investigated, and the molecular mechanisms underlying its anticancer activity remain unclear. In the present study, it was demonstrated that DP significantly reduced the viability of ESCC cells compared with that noted in normal human liver LO2 cells. Treatment with DP induced G2/M phase cell cycle arrest through upregulation of p21 and p27, and downregulation of cyclin B1 and Cdc2. Furthermore, DP treatment induced caspase-dependent apoptosis, which could be reversed by exposure to Z-VAD-FMK, a caspase inhibitor. Western blotting demonstrated that DP induced apoptosis through extrinsic and intrinsic pathways by upregulating death receptor 4 (DR4), DR5, cleaved caspase-3/-7/-9 and cleaved poly (ADP-ribose) polymerase (PARP), and by decreasing total PARP, total caspase-3/7, Bcl-2 and caspase-9/-10. Moreover, DP treatment decreased the phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), AKT, and forkhead box O3a (FOXO3a) in ESCC cells, indicating that the activity of the JAK2/STAT3 and AKT/FOXO3a signaling pathways was inhibited. Therefore, DP is a promising therapeutic agent for ESCC.
Collapse
Affiliation(s)
- Zhengyang Lu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chenyang Lu
- Department of Respiratory Medicine, Third Hospital of Xi'an, Xi'an, Shaanxi 710082, P.R. China
| | - Cheng Li
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
12
|
Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen Y, Xu L, Wang J. FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer 2019; 10:909-917. [PMID: 30838797 PMCID: PMC6449277 DOI: 10.1111/1759-7714.13027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background FLOT1 is a scaffolding protein of lipid rafts that is believed to be involved in numerous cellular processes. However, few studies have explored the function of FLOT1 in the development of lung adenocarcinoma (LUAD) and the underlying mechanisms of FLOT1 activity. Methods FLOT1 knockdown and overexpression models were constructed via lentivirus. Cell growth, invasion, migration, and apoptosis were detected to evaluate the role of FLOT1 in LUAD development. Epithelial–mesenchymal transition (EMT) and cell cycle regulatory markers were then examined. Finally, the influence of FLOT1 on the Erk/Akt signaling pathway was investigated. Results FLOT1 promoted cell growth, invasion, and migration and inhibited cell apoptosis. In addition, FLOT1 induced EMT and modulated the cell cycle by activating the Erk/Akt signaling pathway. Conclusion The findings indicate a significant role of FLOT1 in LUAD development. Targeting FLOT1 may be a potential therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Yuan Mao
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| |
Collapse
|
13
|
White JP, Billin AN, Campbell ME, Russell AJ, Huffman KM, Kraus WE. The AMPK/p27 Kip1 Axis Regulates Autophagy/Apoptosis Decisions in Aged Skeletal Muscle Stem Cells. Stem Cell Reports 2018; 11:425-439. [PMID: 30033086 PMCID: PMC6093087 DOI: 10.1016/j.stemcr.2018.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle stem cell (MuSC) function declines with age and contributes to impaired muscle regeneration in older individuals. Acting through AMPK/p27Kip1, we have identified a pathway regulating the balance between autophagy, apoptosis, and senescence in aged MuSCs. While p27Kip1 is implicated in MuSC aging, its precise role and molecular mechanism have not been elucidated. Age-related MuSC dysfunction was associated with reduced autophagy, increased apoptosis, and hypophosphorylation of AMPK and its downstream target p27Kip1. AMPK activation or ectopic expression of a phosphomimetic p27Kip1 mutant was sufficient to suppress in vitro apoptosis, increase proliferation, and improve in vivo transplantation efficiency of aged MuSCs. Moreover, activation of the AMPK/p27Kip1 pathway reduced markers of cell senescence in aged cells, which was, in part, dependent on p27Kip1 phosphorylation. Thus, the AMPK/p27Kip1 pathway likely regulates the autophagy/apoptosis balance in aged MuSCs and may be a potential target for improving muscle regeneration in older individuals.
Collapse
Affiliation(s)
- James P White
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Andrew N Billin
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Milton E Campbell
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Alan J Russell
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Division of Rheumatology, Duke University School of Medicine, Durham, NC 27701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Division of Cardiology, Duke University School of Medicine, Durham, NC 27701, USA
| |
Collapse
|
14
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P, Wang J. Critical role of FOXO3a in carcinogenesis. Mol Cancer 2018; 17:104. [PMID: 30045773 PMCID: PMC6060507 DOI: 10.1186/s12943-018-0856-3] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational modifications (PTMs) and protein–protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential, and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings and overview of the current understanding of the influence of FOXO3a in cancer development and progression.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Ding
- Department of comprehensive internal medicine, Affiliated Hospital, Qingdao University, Qingdao, 266003, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yifei Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
15
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|
16
|
Holland NA, Francisco JT, Johnson SC, Morgan JS, Dennis TJ, Gadireddy NR, Tulis DA. Cyclic Nucleotide-Directed Protein Kinases in Cardiovascular Inflammation and Growth. J Cardiovasc Dev Dis 2018; 5:E6. [PMID: 29367584 PMCID: PMC5872354 DOI: 10.3390/jcdd5010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD), including myocardial infarction (MI) and peripheral or coronary artery disease (PAD, CAD), remains the number one killer of individuals in the United States and worldwide, accounting for nearly 18 million (>30%) global deaths annually. Despite considerable basic science and clinical investigation aimed at identifying key etiologic components of and potential therapeutic targets for CVD, the number of individuals afflicted with these dreaded diseases continues to rise. Of the many biochemical, molecular, and cellular elements and processes characterized to date that have potential to control foundational facets of CVD, the multifaceted cyclic nucleotide pathways continue to be of primary basic science and clinical interest. Cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) and their plethora of downstream protein kinase effectors serve ubiquitous roles not only in cardiovascular homeostasis but also in the pathogenesis of CVD. Already a major target for clinical pharmacotherapy for CVD as well as other pathologies, novel and potentially clinically appealing actions of cyclic nucleotides and their downstream targets are still being discovered. With this in mind, this review article focuses on our current state of knowledge of the cyclic nucleotide-driven serine (Ser)/threonine (Thr) protein kinases in CVD with particular emphasis on cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG). Attention is given to the regulatory interactions of these kinases with inflammatory components including interleukin 6 signals, with G protein-coupled receptor and growth factor signals, and with growth and synthetic transcriptional platforms underlying CVD pathogenesis. This article concludes with a brief discussion of potential future directions and highlights the importance for continued basic science and clinical study of cyclic nucleotide-directed protein kinases as emerging and crucial controllers of cardiac and vascular disease pathologies.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Sean C Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Troy J Dennis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Nishitha R Gadireddy
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
17
|
He J, Qi H, Chen F, Cao C. MicroRNA-25 contributes to cisplatin resistance in gastric cancer cells by inhibiting forkhead box O3a. Oncol Lett 2017; 14:6097-6102. [PMID: 29113252 DOI: 10.3892/ol.2017.6982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is a common type of malignancy worldwide, and chemotherapeutic resistance accounts for the majority of the failures in clinical treatment. MicroRNAs (miRs) are a class of small non-coding RNAs, which serve essential roles in GC. The present study aimed to investigate the potential role of miR-25 in the cisplatin sensitivity of GC cells. The expression level of miR-25 was significantly upregulated in the cisplatin-resistant GC cell line SGC-7901/DDP compared with the SGC-7901 parental cell line. Overexpression of miR-25 significantly enhanced cell cycle progression and decreased the sensitivity of SGC-7901 cells to cisplatin, whereas inhibition of miR-25 in the SGC-7901/DDP cisplatin-resistant cells resulted in cell cycle arrest at the G0/G1 phase and significantly increased drug sensitivity. Furthermore, the tumor suppressor forkhead box O3a (FOXO3a) was identified as a direct target gene of miR-25 by luciferase assay and western blot analysis, and was shown to mediate the drug-resistance phenotype of GC cells. These findings suggest that upregulation of miR-25 is important for GC cells to establish a cisplatin-resistant phenotype via a FOXO3a-dependent mechanism. Therefore, targeting miR-25 may be a promising therapeutic approach to treat patients with cisplatin-resistant GC.
Collapse
Affiliation(s)
- Jingbo He
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Huixiong Qi
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fang Chen
- Department of Gerontology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Chuanhua Cao
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
18
|
Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang S, Liu G, Qiu X, Zhang Q, Guo H, Chen H. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget 2017; 8:72835-72846. [PMID: 29069829 PMCID: PMC5641172 DOI: 10.18632/oncotarget.20427] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs have been broadly implicated in cancer, but their exact function and mechanism in carcinogenesis remain poorly understood. Aberrant miR-486-5p expression is frequently found in human cancers. Here we showed a significant overexpression of miR-486-5p in prostate cancer compared with that in normal tissue and cells, and we proposed that altered expression of miR-486-5p in the prostate contributed to prostate cancer. Firstly, miR-486-5p inhibition expression reduced prostate cancercell proliferation, migration, and colonization in vitro and prostate tumor development in vivo. Moreover, we integrated RNA sequencing and target genes prediction, and systemically identified miR-486-5p candidate target genes. We conducted an experiment verifying that miR-486-5p drives tumorigenesis by directly targeting multiple negative regulators, which were involved in PTEN/PI3K/Akt, FOXO, and TGF-b/Smad2 signaling. Finally, we demonstrated that hypoxia-inducible factor-1a and TCF-12 are located at the miR-486-5p promoter, which stimulates the transcription of miR-486-5p itself. Collectively, our findings unveil miR-486-5p as a powerful prostate cancer driver that coordinates the activation of multiple oncogenic pathways and demonstrates some stimulators, which mediate the miR-486-5p signaling pathway and may be targeted for therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Suhan Guo
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Su
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Shiwei Zhang
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Guangxiang Liu
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Xuefeng Qiu
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Qing Zhang
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,School of Medicine, Nanjing University, Nanjing 210093, China
| | - Huimei Chen
- Department of Urology, Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Institute of Urology, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210002, China
| |
Collapse
|
19
|
Min M, Yang J, Yang YS, Liu Y, Liu LM, Xu Y. Expression of Transcription Factor FOXO3a is Decreased in Patients with Ulcerative Colitis. Chin Med J (Engl) 2016; 128:2759-63. [PMID: 26481742 PMCID: PMC4736898 DOI: 10.4103/0366-6999.167314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Ulcerative colitis (UC) is associated with differential expression of genes involved in inflammation and tissue remodeling, including FOXO3a, which encodes a transcription factor known to promote inflammation in several tissues. However, FOXO3a expression in tissues affected by UC has not been examined. This study investigated the effects of FOXO3a on UC pathogenesis. Methods: FOXO3a expression, in 23 patients with UC and in HT29 cells treated with tumor necrosis factor-α (TNF-α) for various durations, was detected by quantitative real-time polymerase chain reaction and Western blotting analysis. Enzyme-linked immunosorbent assay was used to quantify interleukin (IL)-8 expression in FOXO3a-silenced HT29 cells treated with TNF-α for various durations. Results: The messenger RNA and protein expression of FOXO3a were significantly lower in UC tissues than those in normal subjects (P < 0.01). TNF-α treatment for 0, 0.5, 1, 6, and 24 h induced FOXO3 degradation in HT29 cells. FOXO3a silencing increased IL-8 levels in HT29 cells treated with TNF-α for 6 h (P < 0.05). Conclusion: FOXO3a may play an important role in the intestinal inflammation of patients with UC.
Collapse
Affiliation(s)
| | | | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Diseases, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | | | | | | |
Collapse
|
20
|
Xu K, Pei H, Zhang Z, Dong S, Fu RJ, Wang WM, Wang H. FoxO3a mediates glioma cell invasion by regulating MMP9 expression. Oncol Rep 2016; 36:3044-3050. [DOI: 10.3892/or.2016.5087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/08/2016] [Indexed: 11/05/2022] Open
|
21
|
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer 2015; 15:958. [PMID: 26675309 PMCID: PMC4682224 DOI: 10.1186/s12885-015-1965-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells. METHODS The anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin. RESULTS Flavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c. CONCLUSION Taken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan.
| | - Kuan-Rong Lee
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Lei Wan
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
22
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
23
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
24
|
Genin EC, Caron N, Vandenbosch R, Nguyen L, Malgrange B. Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells 2015; 32:1398-407. [PMID: 24510844 DOI: 10.1002/stem.1673] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/23/2022]
Abstract
New cells are continuously generated from immature proliferating cells in the adult brain in two neurogenic niches known as the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the lateral ventricles. However, the molecular mechanisms regulating their proliferation, differentiation, migration and functional integration of newborn neurons in pre-existing neural network remain largely unknown. Forkhead box (Fox) proteins belong to a large family of transcription factors implicated in a wide variety of biological processes. Recently, there has been accumulating evidence that several members of this family of proteins play important roles in adult neurogenesis. Here, we describe recent advances in our understanding of regulation provided by Fox factors in adult neurogenesis, and evaluate the potential role of Fox proteins as targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
25
|
Nho RS, Hergert P. FoxO3a and disease progression. World J Biol Chem 2014; 5:346-354. [PMID: 25225602 PMCID: PMC4160528 DOI: 10.4331/wjbc.v5.i3.346] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023] Open
Abstract
The Forkhead box O (FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3a in disease progression and also explore FoxO3a’s regulatory mechanisms. We will also discuss FoxO3a as a potential target for the treatment of several types of disease.
Collapse
|
26
|
Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014; 71:1657-71. [PMID: 24232446 PMCID: PMC11113648 DOI: 10.1007/s00018-013-1513-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Forkhead box class O family member proteins (FoxOs) are highly conserved transcription factors with important roles in cellular homeostasis. The four FoxO members in humans, FoxO1, FoxO3, FoxO4, and FoxO6, are all expressed in skeletal muscle, but the first three members are the most studied in muscle. In this review, we detail the multiple modes of FoxO regulation and discuss the central role of these proteins in the control of skeletal muscle plasticity. FoxO1 and FoxO3 are key factors of muscle energy homeostasis through the control of glycolytic and lipolytic flux, and mitochondrial metabolism. They are also key regulators of protein breakdown, as they modulate the activity of several actors in the ubiquitin–proteasome and autophagy–lysosomal proteolytic pathways, including mitochondrial autophagy, also called mitophagy. FoxO proteins have also been implicated in the regulation of the cell cycle, apoptosis, and muscle regeneration. Depending of their activation level, FoxO proteins can exhibit ambivalent functions. For example, a basal level of FoxO factors is necessary for cellular homeostasis and these proteins are required for adaptation to exercise. However, exacerbated activation may occur in the course of several diseases, resulting in metabolic disorders and atrophy. A better understanding of the precise functions of these transcriptions factors should thus lead to the development of new therapeutic approaches to prevent or limit the muscle wasting that prevails in numerous pathological states, such as immobilization, denervated conditions, neuromuscular disease, aging, AIDS, cancer, and diabetes.
Collapse
Affiliation(s)
- Anthony M. J. Sanchez
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Robin B. Candau
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
27
|
Johnson AM, Kartha CC. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators. Growth Factors 2014; 32:53-62. [PMID: 24580070 DOI: 10.3109/08977194.2014.889694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.
Collapse
Affiliation(s)
- Ann Mary Johnson
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology , Trivandrum, Kerala , India
| | | |
Collapse
|
28
|
Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One 2014; 9:e92363. [PMID: 24647690 PMCID: PMC3960233 DOI: 10.1371/journal.pone.0092363] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle satellite cell function is largely dictated by the surrounding environment following injury. Immune cell infiltration dominates the extracellular space in the injured area, resulting in increased cytokine concentrations. While increased pro-inflammatory cytokine expression has been previously established in the first 3 days following injury, less is known about the time course of cytokine expression and the specific mechanisms of cytokine induced myoblast function. Therefore, the expression of IL-1β and IL-6 at several time points following injury, and their effects on myoblast proliferation, were examined. In order to do this, skeletal muscle was injured using barium chloride in mice and tissue was collected 1, 5, 10, and 28 days following injury. Mechanisms of cytokine induced proliferation were determined in cell culture using both primary and C2C12 myoblasts. It was found that there is a ∼20-fold increase in IL-1β (p≤0.05) and IL-6 (p = 0.06) expression 5 days following injury. IL-1β increased proliferation of both primary and C2C12 cells ∼25%. IL-1β stimulation also resulted in increased NF-κB activity, likely contributing to the increased proliferation. These data demonstrate for the first time that IL-1β alone can increase the mitogenic activity of primary skeletal muscle satellite cells and offer insight into the mechanisms dictating satellite cell function following injury.
Collapse
Affiliation(s)
- Jeffrey S. Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States of America
| | - Sarah Niccoli
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Nicole Hawdon
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Jessica L. Sarvas
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam J. Chicco
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Simon J. Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dumitrascu GR, Bucur O. Critical physiological and pathological functions of Forkhead Box O tumor suppressors. Discoveries (Craiova) 2013; 1:e5. [PMID: 32309538 PMCID: PMC6941590 DOI: 10.15190/d.2013.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Forkhead box, subclass O (FOXO) proteins are critical transcription factors, ubiquitously expressed in the human body. These proteins are characterized by a remarkable functional diversity, being involved in cell cycle arrest, apoptosis, oxidative detoxification, DNA damage repair, stem cell maintenance, cell differentiation, cell metabolism, angiogenesis, cardiac development, aging and others. In addition, FOXO have critical implications in both normal and cancer stem cell biology. New strategies to modulate FOXO expression and activity may now be developed since the discovery of novel FOXO regulators and non-coding RNAs (such as microRNAs) targeting FOXO transcription factors. This review focuses on physiological and pathological functions of FOXO proteins and on their action as fine regulators of cell fate and context-dependent cell decisions. A better understanding of the structure and critical functions of FOXO transcription factors and tumor suppressors may contribute to the development of novel therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Georgiana R Dumitrascu
- "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
30
|
Jadhav KS, Dungan CM, Williamson DL. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev 2013; 134:548-59. [PMID: 24269881 DOI: 10.1016/j.mad.2013.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/26/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED High lipid and ceramide concentrations are hallmarks of obese and/or insulin resistant skeletal muscle, yet little is known about its role on cell cycle and senescence. The purpose of this study was to examine the role of ceramide on muscle senescence, and whether metformin limited this response. METHODS Low passage, proliferating C2C12 myoblasts were treated with a control, 50μM C2-ceramide (8h), and/or 2mM metformin, then examined for insulin sensitivity, cell senescence, cell proliferation, cell cycle, protein expression of cell cycle regulators. RESULTS Ceramide treatment caused a dephosphorylation (p<0.05) of Akt and 4E-BP1, regardless of the presence of insulin. The ceramide treated myoblasts displayed higher β-galactosidase staining (p<0.05), reduced BrDu incorporation and total number of cells (p<0.05), and an increased proportion of cells in G2-phase (p<0.05) versus control cultures. Ceramide treatment also upregulated (p<0.05) p53 and p21 protein expression, that was reversed by either pifithrin-α or shRNA for p53. Metformin limited (p<0.05) ceramide's effects on insulin signaling, senescence, and cell cycle regulation. CONCLUSIONS High ceramide concentrations reduced myoblast proliferation that was associated with aberrant cell cycle regulation and a senescent phenotype, which could provide an understanding of skeletal muscle cell adaptation during conditions of high intramuscular lipid deposition and/or obesity.
Collapse
Affiliation(s)
- Kavita S Jadhav
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
31
|
FOXO3a loss is a frequent early event in high-grade pelvic serous carcinogenesis. Oncogene 2013; 33:4424-32. [PMID: 24077281 PMCID: PMC3969866 DOI: 10.1038/onc.2013.394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 02/07/2023]
Abstract
Serous ovarian carcinoma is the most lethal gynecological malignancy in Western countries. The molecular events that underlie the development of the disease have been elusive for many years. The recent identification of the fallopian tube secretory epithelial cells (FTSECs) as the cell-of-origin for most cases of this disease has led to studies aimed at elucidating new candidate therapeutic pathways through profiling of normal FTSECs and serous carcinomas. Here, we describe the results of transcriptional profiles that identify the loss of the tumor suppressive transcription factor FOXO3a in a vast majority of high grade serous ovarian carcinomas (HGSOCs). We show that FOXO3a loss is a hallmark of the earliest stages of serous carcinogenesis and occurs both at the DNA, RNA and protein levels. We describe several mechanisms responsible for FOXO3a inactivity, including chromosomal deletion (chromosome 6q21), upregulation of miRNA-182 and destabilization by activated PI3K and MEK. The identification of pathways involved in the pathogenesis of ovarian cancer can advance the management of this disease from being dependant on surgery and cytotoxic chemotherapy alone to the era of targeted therapy. Our data strongly suggest FOXO3a as a possible target for clinical intervention.
Collapse
|
32
|
Abstract
Aging is a complex trait and is influenced by multiple factors that are both intrinsic and extrinsic to the organism (Kirkwood et al. 2000; Knight 2000). Efforts to understanding the mechanisms that extend or shorten lifespan have been made since the early twentieth century. Aging is characteristically associated with a progressive decline in the overall fitness of the organism. Several studies have provided valuable information about the molecular events that accompany this process and include accumulation of nuclear and mitochondrial mutations, shortened and dysfunctional telomeres, oxidative damage of protein/DNA, senescence and apoptosis (Muller 2009). Clinical studies and work on model organisms have shown that there is an increased susceptibility to conditions such as neurological disorders, diabetes, cardiovascular diseases, degenerative syndromes and even cancers, with age (Arvanitakis et al. 2006; Lee and Kim 2006; Rodriguez and Fraga 2010).
Collapse
Affiliation(s)
- Asmitha Lazarus
- B-306, Department of Biological Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | | | | |
Collapse
|
33
|
Cui M, Huang Y, Tian C, Zhao Y, Zheng J. FOXO3a inhibits TNF-α- and IL-1β-induced astrocyte proliferation:Implication for reactive astrogliosis. Glia 2011; 59:641-54. [PMID: 21294163 DOI: 10.1002/glia.21134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/06/2010] [Indexed: 11/05/2022]
Abstract
Reactive astrogliosis is one of the pathological hallmarks of neurodegenerative diseases. Inflammatory cytokines, such as TNF-α and IL-1β, have been shown to mediate the reactive astrogliosis in neurodegenerative diseases; however, the molecular mechanism remains unclear. In this study, we investigated the role of transcription factor FOXO3a on astrocyte proliferation, one primary aspect of severe reactive astrogliosis. Our results confirmed that TNF-α and IL-1β increased astrocyte proliferation, as determined by Ki67 and BrdU immunostaining. Furthermore, we found that cytokine-mediated astrocyte proliferation was accompanied by an increase of the phosphorylation and reduced nuclear expression of FOXO3a. Intracranial injection of TNF-α and IL-1β induced astrocyte proliferation and hypertrophy, which was associated with reduced nuclear expression of Foxo3a in astrocytes. To determine the function of FOXO3a in astrocyte proliferation, wild type FOXO3a was overexpressed with adenovirus, which subsequently upregulated p27Kip1 and Gadd45α, and significantly inhibited cytokine-induced astrocyte proliferation. In contrast, overexpression of dominant negative FOXO3a decreased p27Kip1, upregulated cyclin D1 and promoted astrocyte proliferation. Along the same line, astrocytes isolated from Foxo3a-null mice have higher proliferative potential. In response to intracranial injection of cytokines, Foxo3a-null mice manifested severe astrogliosis in vivo. In conclusion, FOXO3a is important in restraining astrocyte proliferation during proinflammatory cytokine stimulation and loss of function of FOXO3a may be responsible for the proliferation of astrocytes in the severe form of reactive astrogliosis. Understanding the key regulatory role of FOXO3a in reactive astrogliosis may provide a novel therapeutic target during neuroinflammation.
Collapse
Affiliation(s)
- Min Cui
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
34
|
Wilk A, Urbanska K, Yang S, Wang JY, Amini S, Del Valle L, Peruzzi F, Meggs L, Reiss K. Insulin-like growth factor-I-forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-α-mediated neuronal damage: implications for human immunodeficiency virus encephalitis. J Neurosci Res 2010; 89:183-98. [PMID: 21162126 DOI: 10.1002/jnr.22542] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
In HIV patients, antiretroviral medications trigger metabolic abnormalities, including insulin resistance. In addition, the inflammatory cytokine tumor necrosis factor-α (TNFα), which is elevated in human immunodeficiency virus encephalitis (HIVE), also induces insulin resistance and inflicts neuronal damage in vitro. In differentiated PC12 cells and rat cortical neurons, high glucose (HG; 25 mM) triggers reactive oxygen species (ROS) accumulation, contributing to the retraction of neuronal processes, with only a minimal involvement of neuronal apoptosis. In the presence of TNFα, HG-treated neurons undergo massive apoptosis. Because mammalian homolog of the Forkhead family of transcription factors, Forkhead box O transcription factor 3a (FOXO3a), controls ROS metabolism, we asked whether FOXO3a could affect the fate of differentiated neurons in the paradigm of HIVE. We observed FOXO3a nuclear translocation in HG-treated neuronal cultures, accompanied by partial loss of mitochondrial potential and gradual retraction of neuronal processes. Addition of TNFα to HG-treated neurons increased expression of the FOXO-dependent proapoptotic gene Bim, which resulted in extensive apoptotic death. Insulin-like growth factor-I (IGF-I) significantly lowered intracellular ROS, which was accompanied by IGF-I-mediated FOXO3a nuclear export and decrease in its transcriptional activity. The clinical relevance of these findings is supported by detection of nuclear FOXO3a in TUNEL-positive cortical neurons from HIVE, especially in brain areas characterized by elevated TNFα.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, Louisianna 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hammers DW, Matheny RW, Sell C, Adamo ML, Walters TJ, Estep JS, Farrar RP. Impairment of IGF-I expression and anabolic signaling following ischemia/reperfusion in skeletal muscle of old mice. Exp Gerontol 2010; 46:265-72. [PMID: 21094246 DOI: 10.1016/j.exger.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/17/2010] [Accepted: 11/02/2010] [Indexed: 12/26/2022]
Abstract
With the advancement of age, skeletal muscle undergoes a progressive decline in mass, function, and regenerative capacity. Previously, our laboratory has reported an age-reduction in recovery and local induction of IGF-I gene expression with age following tourniquet (TK)-induced skeletal muscle ischemia/reperfusion (I/R). In this study, young (6 mo) and old (24-28 mo) mice were subjected to 2h of TK-induced ischemia of the hindlimb followed by 1, 3, 5, or 7 days of reperfusion. Real time-PCR analysis revealed clear age-related reductions and temporal alterations in the expression of IGF-I and individual IGF-I Ea and Eb splice variants. ELISA verified a reduction of IGF-I peptide with age following 7 day recovery from TK. Western blotting showed that the phosphorylation of Akt, mTOR, and FoxO3, all indicators of anabolic activity, were reduced in the muscles of old mice. These data indicate that an age-related impairment of IGF-I expression and intracellular signaling does exist following injury, and potentially has a role in the impaired recovery of skeletal muscle with age.
Collapse
Affiliation(s)
- David W Hammers
- Department of Kinesiology, The University of Texas, 1 University Station D3700, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Schuff M, Siegel D, Bardine N, Oswald F, Donow C, Knöchel W. FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis. Dev Biol 2009; 337:259-73. [PMID: 19895805 DOI: 10.1016/j.ydbio.2009.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/31/2022]
Abstract
Forkhead box (Fox) transcription factors of subclass O are involved in cell survival, proliferation, apoptosis, cell metabolism and prevention of oxidative stress. FoxO genes are highly conserved throughout evolution and their functions were analyzed in several vertebrate and invertebrate organisms. We here report on the identification of FoxO4 and FoxO6 genes in Xenopus laevis and analyze their expression patterns in comparison with the previously described FoxO1 and FoxO3 genes. We demonstrate significant differences in their temporal and spatial expression during embryogenesis and in their relative expression within adult tissues. Overexpression of FoxO1, FoxO4 or FoxO6 results in severe gastrulation defects, while overexpression of FoxO3 reveals this defect only in a constitutively active form containing mutations of Akt-1 target sites. Injections of FoxO antisense morpholino oligonucleotides (MO) did not influence gastrulation, but, later onwards, the embryos showed a delay of development, severe body axis reduction and, finally, a high rate of lethality. Injection of FoxO4MO leads to specific defects in eye formation, neural crest migration and heart development, the latter being accompanied by loss of myocardin expression. Our observations suggest that FoxO genes in X. laevis are dispensable until blastopore closure but are required for tissue differentiation and organogenesis.
Collapse
Affiliation(s)
- Maximilian Schuff
- Institute of Biochemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G. Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 2009; 4:e6808. [PMID: 19730740 PMCID: PMC2733298 DOI: 10.1371/journal.pone.0006808] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/31/2009] [Indexed: 12/26/2022] Open
Abstract
Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation.
Collapse
Affiliation(s)
- Neira Sáinz
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
- Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Zhang T, Yang D, Fan Y, Xie P, Li H. Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways. Apoptosis 2009; 14:1245-54. [DOI: 10.1007/s10495-009-0391-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Wu Y, Peng H, Cui M, Whitney NP, Huang Y, Zheng JC. CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. J Neurochem 2009; 109:1157-67. [PMID: 19302476 DOI: 10.1111/j.1471-4159.2009.06043.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CXCL12, a ligand for the chemokine receptor CXCR4, is well known in mediating neural progenitor cell (NPC) migration during neural development. However, the effects of CXCL12 on human NPC proliferation and its associated signaling pathways remain unclear. The transcription factor, FOXO3a, a downstream target of Akt-1, is critical for cell cycle control and may also play an important role in regulating NPC proliferation. In this study, we found that CXCL12 promotes human NPC proliferation as determined by the proliferation marker Ki67 and BrdU incorporation. This CXCL12-mediated NPC proliferation was associated with an increase in Akt-1 and FOXO3a phosphorylation in a time- and dose-dependent manner. The CXCR4 antagonist (T140) or inhibitors for G proteins (Pertussis toxin) and phosphoinositide 3-kinase (PI3K) (LY294002) abolished CXCL12-mediated NPC proliferation and phosphorylation of Akt-1 and FOXO3a. The roles of Akt-1 and FOXO3a in CXCL12-mediated NPC proliferation were further investigated by using adenoviral over-expression in NPCs. Over-expression of dominant-negative Akt-1 or wild-type FOXO3a in NPC abrogated CXCL12-mediated proliferation. These data suggest that CXCL12-mediated NPC proliferation is reliant upon the phosphorylation of Akt-1 and FOXO3a and gives insight to an essential role of CXCL12 in neurogenesis. Understanding this mechanism may facilitate the development of novel therapeutic targets for NPC proliferation during neurogenesis.
Collapse
Affiliation(s)
- Yumei Wu
- Department of Pharmacology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
40
|
Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M, Richard I, Danièle N. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009; 276:669-84. [PMID: 19143834 DOI: 10.1111/j.1742-4658.2008.06814.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In an attempt to identify potential therapeutic targets for the correction of muscle wasting, the gene expression of several pivotal proteins involved in protein metabolism was investigated in experimental atrophy induced by transient or definitive denervation, as well as in four animal models of muscular dystrophies (deficient for calpain 3, dysferlin, alpha-sarcoglycan and dystrophin, respectively). The results showed that: (a) the components of the ubiquitin-proteasome pathway are upregulated during the very early phases of atrophy but do not greatly increase in the muscular dystrophy models; (b) forkhead box protein O1 mRNA expression is augmented in the muscles of a limb girdle muscular dystrophy 2A murine model; and (c) the expression of cardiac ankyrin repeat protein (CARP), a regulator of transcription factors, appears to be persistently upregulated in every condition, suggesting that CARP could be a hub protein participating in common pathological molecular pathway(s). Interestingly, the mRNA level of a cell cycle inhibitor known to be upregulated by CARP in other tissues, p21(WAF1/CIP1), is consistently increased whenever CARP is upregulated. CARP overexpression in muscle fibres fails to affect their calibre, indicating that CARP per se cannot initiate atrophy. However, a switch towards fast-twitch fibres is observed, suggesting that CARP plays a role in skeletal muscle plasticity. The observation that p21(WAF1/CIP1) is upregulated, put in perspective with the effects of CARP on the fibre type, fits well with the idea that the mechanisms at stake might be required to oppose muscle remodelling in skeletal muscle.
Collapse
|
41
|
Lees SJ, Childs TE, Booth FW. Age-dependent FOXO regulation of p27Kip1 expression via a conserved binding motif in rat muscle precursor cells. Am J Physiol Cell Physiol 2008; 295:C1238-46. [PMID: 18787071 DOI: 10.1152/ajpcell.00349.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previously, we have demonstrated that forkhead box O3a (FOXO3a) overexpression increased p27(Kip1) promoter activity and protein expression, whereas it decreased proliferation in muscle precursor cells (MPCs). The objectives of the present study were to 1) locate and identify FOXO regulatory elements in the rat p27(Kip1) promoter using deletion analysis of a promoter/reporter construct and 2) determine if age-related differences exist in FOXO-induced p27(Kip1) expression. The full-length (-4.0/+0.4 kb) rat p27(Kip1) promoter construct revealed that both FOXO1 and FOXO3a induced an increase in transcriptional activity. Interestingly, MPCs isolated from old animals exhibited an increased FOXO3a-induced p27(Kip1) promoter activity compared with MPCs isolated from young animals. Deletion of a 253-bp portion of the 5'-untranslated region (UTR) resulted in a significant decrease in FOXO-induced p27(Kip1) promoter expression. Site-specific mutation of a daf-16 family protein-binding element (DBE) within this 253-bp portion of the 5'-UTR also demonstrated a decrease in FOXO-induced p27(Kip1) promoter expression. These data suggest that a putative FOXO regulatory element located in the 5'-UTR of the rat p27(Kip1) gene plays a role in the age-dependent differences in FOXO3a-dependent p27(Kip1) promoter expression. These findings have implications for developing treatment strategies aimed at increasing the proliferation of MPCs and regenerative capacity of aged skeletal muscle.
Collapse
Affiliation(s)
- Simon J Lees
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.
| | | | | |
Collapse
|