1
|
Massenet J, Weiss-Gayet M, Bandukwala H, Bouchereau W, Gobert S, Magnan M, Hubas A, Nusbaum P, Desguerre I, Gitiaux C, Dilworth FJ, Chazaud B. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy. iScience 2024; 27:111350. [PMID: 39650736 PMCID: PMC11625291 DOI: 10.1016/j.isci.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles. Proliferation, differentiation, and fusion were unaltered in DMD-MuSCs, but with time, they lost their myogenic identity twice as fast as healthy MuSCs. The rapid drift toward a fibroblast-like cell identity was observed at the clonal level, and resulted from altered expression of epigenetic enzymes. Re-expression of CBX3, SMC3, H2AFV, and H3F3B prevented the MuSC identity drift. Among epigenetic changes, a closing of chromatin at the transcription factor MEF2B locus caused downregulation of its expression and loss of the myogenic fate. Re-expression of MEF2B in DMD-MuSCs restored their myogenic fate. MEF2B is key in the maintenance of myogenic identity in human MuSCs, which is altered in DMD.
Collapse
Affiliation(s)
- Jimmy Massenet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Hina Bandukwala
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Wilhelm Bouchereau
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Stéphanie Gobert
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Mélanie Magnan
- Institut Cochin, Université Paris-Cité, Inserm U1016, CNRS UMR8104, Paris, France
| | - Arnaud Hubas
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Patrick Nusbaum
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Isabelle Desguerre
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Université Paris Cité, IHU Imagine, 75015 Paris, France
| | - Cyril Gitiaux
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Service d’explorations Fonctionnelles, Unité de Neurophysiologie Clinique, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - F. Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| |
Collapse
|
2
|
Bergamasco JGA, Scarpelli MC, Godwin JS, Mesquita PHC, Chaves TS, DA Silva DG, Bittencourt D, Dias NF, Medalha Junior RA, Carello Filho PC, Angleri V, Costa LAR, Michel JM, Vechin FC, Kavazis AN, Ugrinowitsch C, Roberts MD, Libardi CA. Acute and Chronic Changes in Muscle Androgen Receptor Markers Are Not Associated with Muscle Hypertrophy in Women and Men. Med Sci Sports Exerc 2024; 56:2146-2155. [PMID: 38934511 DOI: 10.1249/mss.0000000000003509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE Androgen receptor (AR) expression and signaling have been regarded as a mechanism for regulating muscle hypertrophy. However, little is known about the associations between acute and chronic changes in skeletal muscle total AR, cytoplasmic AR (cAR), nuclear AR (nAR), and AR DNA-binding (AR-DNA) induced by resistance training (RT) and hypertrophy outcomes in women and men. This study aimed to investigate the acute and chronic effects of RT on skeletal muscle total AR, cAR, and nAR contents and AR-DNA in women and men. In addition, we investigated whether these acute and chronic changes in these markers were associated with muscle hypertrophy in both sexes. METHODS Nineteen women and 19 men underwent 10 wk of RT. Muscle biopsies were performed at baseline, 24 h after the first RT session, and 96 h after the last session. AR, cAR, and nAR were analyzed using Western blotting, and AR-DNA using an ELISA-oligonucleotide assay. Fiber cross-sectional area (fCSA) was analyzed through immunohistochemistry and muscle cross-sectional area (mCSA) by ultrasound. RESULTS At baseline, men demonstrated greater nAR than women. Baseline cAR was significantly associated with type II fCSA hypertrophy in men. Acutely, both sexes decreased AR and cAR, whereas men demonstrated greater decreases in nAR. After 10 wk of RT, AR, and nAR remained unchanged, men demonstrated greater cAR compared with women, and both sexes decreased AR-DNA activity. Acute and chronic changes in AR markers did not correlate with muscle hypertrophy (type I/II fCSA and mCSA) in women or men. CONCLUSIONS Baseline cAR content may influence hypertrophy in men, whereas neither RT-induced acute nor chronic changes in AR, cAR, nAR, and AR-DNA are associated with muscle hypertrophy in women or men.
Collapse
Affiliation(s)
| | | | | | | | - Talisson S Chaves
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Deivid G DA Silva
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Diego Bittencourt
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Nathalia F Dias
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Ricardo A Medalha Junior
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Paulo C Carello Filho
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Vitor Angleri
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| | - Luiz A R Costa
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, BRAZIL
| | - J Max Michel
- School of Kinesiology, Auburn University, Auburn, AL
| | - Felipe C Vechin
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, BRAZIL
| | | | | | | | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, BRAZIL
| |
Collapse
|
3
|
Scarpelli MC, Bergamasco JGA, Godwin JS, Mesquita PHC, Chaves TS, Silva DG, Bittencourt D, Dias NF, Medalha Junior RA, Carello Filho PC, Angleri V, Costa LAR, Kavazis AN, Ugrinowitsch C, Roberts MD, Libardi CA. Resistance training-induced changes in muscle proteolysis and extracellular matrix remodeling biomarkers in the untrained and trained states. Eur J Appl Physiol 2024; 124:2749-2762. [PMID: 38653795 DOI: 10.1007/s00421-024-05484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.
Collapse
Affiliation(s)
- Maíra C Scarpelli
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - João G A Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Joshua S Godwin
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Paulo H C Mesquita
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Talisson S Chaves
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Deivid G Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Nathalia F Dias
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Ricardo A Medalha Junior
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Paulo C Carello Filho
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil
| | - Luiz A R Costa
- School of Physical Education and Sport, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Andreas N Kavazis
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo - USP, São Paulo, SP, Brazil
- Department of Health Sciences and Human Performance, University of Tampa, Tampa, FL, USA
| | - Michael D Roberts
- School of Kinesiology, Nutrabolt Applied and Molecular Sciences Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| | - Cleiton A Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, Rod. Washington Luiz, km 235 - SP 310, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Lu J, Zhao P, Ding X, Li H. N-acetylcysteine stimulates the proliferation and differentiation in heat-stressed skeletal muscle cells. J Therm Biol 2024; 124:103958. [PMID: 39182421 DOI: 10.1016/j.jtherbio.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
N-acetylcysteine (NAC) is known for its beneficial effects on health due to its antioxidant and antiapoptotic properties. This study explored the protective effects of NAC against oxidative stress in heat-stressed (HS) skeletal muscle cells and its role in promoting muscle development. NAC reduced the heat shock response by decreasing the expression of heat shock protein 70 (HSP70) in HS-induced muscle cells during proliferation and differentiation. NAC also mitigated HS-induced oxidative stress via increasing the antioxidant enzyme levels and reducing oxidant enzyme levels. Treatment with NAC at 2 mM increased cell viability from 43.68% ± 5.14%-66.69% ± 14.43% and decreased the apoptosis rate from 7.89% ± 0.53%-5.17% ± 0.11% in skeletal muscle cells. Additionally, NAC promoted the proliferation and differentiation of HS-induced skeletal muscle cells by upregulating the expression of PAX7, MYF5, MRF4 and MYHC. These findings suggest that NAC alleviates HS-induced oxidative damage in skeletal muscle cells and support muscle development.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhu Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Montenegro CF, Skiles C, Kuszmaul DJ, Gouw A, Minchev K, Chambers TL, Raue U, Trappe TA, Trappe S. Fast and slow myofiber nuclei, satellite cells, and size distribution with lifelong endurance exercise in men and women. Physiol Rep 2024; 12:e16052. [PMID: 38987200 PMCID: PMC11236482 DOI: 10.14814/phy2.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
We previously observed lifelong endurance exercise (LLE) influenced quadriceps whole-muscle and myofiber size in a fiber-type and sex-specific manner. The current follow-up exploratory investigation examined myofiber size regulators and myofiber size distribution in vastus lateralis biopsies from these same LLE men (n = 21, 74 ± 1 years) and women (n = 7, 72 ± 2 years) as well as old, healthy nonexercisers (OH; men: n = 10, 75 ± 1 years; women: n = 10, 75 ± 1 years) and young exercisers (YE; men: n = 10, 25 ± 1 years; women: n = 10, 25 ± 1 years). LLE exercised ~5 days/week, ~7 h/week for the previous 52 ± 1 years. Slow (myosin heavy chain (MHC) I) and fast (MHC IIa) myofiber nuclei/fiber, myonuclear domain, satellite cells/fiber, and satellite cell density were not influenced (p > 0.05) by LLE in men and women. The aging groups had ~50%-60% higher proportion of large (>7000 μm2) and small (<3000 μm2) myofibers (OH; men: 44%, women: 48%, LLE; men: 42%, women: 42%, YE; men: 27%, women: 29%). LLE men had triple the proportion of large slow fibers (LLE: 21%, YE: 7%, OH: 7%), while LLE women had more small slow fibers (LLE: 15%, YE: 8%, OH: 9%). LLE reduced by ~50% the proportion of small fast (MHC II containing) fibers in the aging men (OH: 14%, LLE: 7%) and women (OH: 35%, LLE: 18%). These data, coupled with previous findings, suggest that myonuclei and satellite cell content are uninfluenced by lifelong endurance exercise in men ~60-90 years, and this now also extends to septuagenarian lifelong endurance exercise women. Additionally, lifelong endurance exercise appears to influence the relative abundance of small and large myofibers (fast and slow) differently between men and women.
Collapse
Affiliation(s)
| | - Chad Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Dillon J Kuszmaul
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Aaron Gouw
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| |
Collapse
|
6
|
Andries A, Deschrevel J, Maes K, De Beukelaer N, Corvelyn M, Staut L, De Houwer H, Costamagna D, Nijs S, Metsemakers WJ, Nijs E, Hens G, De Wachter E, Prinsen S, Desloovere K, Van Campenhout A, Gayan-Ramirez G. Histological analysis of the medial gastrocnemius muscle in young healthy children. Front Physiol 2024; 15:1336283. [PMID: 38651045 PMCID: PMC11034367 DOI: 10.3389/fphys.2024.1336283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Histological data on muscle fiber size and proportion in (very) young typically developing (TD) children is not well documented and data on capillarization and satellite cell content are also lacking. Aims: This study investigated the microscopic properties of the medial gastrocnemius muscle in growing TD children, grouped according to age and gender to provide normal reference values in healthy children. Methods: Microbiopsies of the medial gastrocnemius (MG) muscle were collected in 46 TD boys and girls aged 2-10 years subdivided into 4 age groups (2-4, 4-6, 6-8 and 8-10 years). Sections were immunostained to assess fiber type cross-sectional area (fCSA) and proportion, the number of satellite cells (SC), capillary to fiber ratio (C/F), capillary density for type I and II fiber (CFD), capillary domain, capillary-to-fiber perimeter exchange index (CFPE) and heterogeneity index. fCSA was normalized to fibula length2 and the coefficient of variation (CV) was calculated to reflect fCSA intrasubject variability. Results: Absolute fCSA of all fibers increased with age (r = 0.72, p < 0.001) but more in boys (+112%, p < 0.05) than in girls (+48%, p > 0.05) Normalized fCSA, CV and fiber proportion did not differ between age groups and gender. C/F was strongly correlated with age in boys (r = 0.83, p < 0.001), and to a lesser extent in girls (r = 0.37, p = 0.115), while other capillary parameters as well as the number of SC remained stable with increasing age in boys and girls. Discussion: This study provides reference values of histological measures in MG according to age in normally growing boys and girls. These data may be used as a reference to determine disease impact and efficacy of therapeutic approach on the muscle.
Collapse
Affiliation(s)
- Anke Andries
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Jorieke Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Marlies Corvelyn
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Lauraine Staut
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Hannah De Houwer
- Pediatric Orthopedics, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
- Exercise Physiology Research Group, Department of Movement Sciences, KU-Leuven, Leuven, Belgium
| | - Stefaan Nijs
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Elga Nijs
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hens
- Department of Ear Nose Throat, University Hospitals Leuven, Leuven, Belgium
| | - Eva De Wachter
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Prinsen
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Deschrevel J, Maes K, Andries A, Beukelaer ND, Corvelyn M, Costamagna D, Campenhout AV, Wachter ED, Desloovere K, Agten A, Vandenabeele F, Nijs S, Gayan-Ramirez G. Fine-needle percutaneous muscle microbiopsy technique as a feasible tool to address histological analysis in young children with cerebral palsy and age-matched typically developing children. PLoS One 2023; 18:e0294395. [PMID: 37992082 PMCID: PMC10664906 DOI: 10.1371/journal.pone.0294395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Cerebral palsy (CP) is a heterogeneous group of motor disorders attributed to a non-progressive lesion in the developing brain. Knowledge on skeletal muscle properties is important to understand the impact of CP and treatment but data at the microscopic levels are limited and inconsistent. Currently, muscle biopsies are collected during surgery and are restricted to CP eligible for such treatment or they may refer to another muscle or older children in typically developing (TD) biopsies. A minimally invasive technique to collect (repeated) muscle biopsies in young CP and TD children is needed to provide insights into the early muscle microscopic alterations and their evolution in CP. This paper describes the protocol used to 1) collect microbiopsies of the medial gastrocnemius (MG) and semitendinosus (ST) in CP children and age-matched TD children, 2) handle the biopsies for histology, 3) stain the biopsies to address muscle structure (Hematoxylin & Eosin), fiber size and proportion (myosin heavy chain), counting of the satellite cells (Pax7) and capillaries (CD31). Technique feasibility and safety as well as staining feasibility and measure accuracy were evaluated. Two microbiopsies per muscle were collected in 56 CP (5.8±1.1 yr) and 32 TD (6±1.1 yr) children using ultrasound-guided percutaneous microbiopsy technique. The biopsy procedure was safe (absence of complications) and well tolerated (Score pain using Wong-Baker faces). Cross-sectionally orientated fibers were found in 86% (CP) and 92% (TD) of the biopsies with 60% (CP) and 85% (TD) containing more than 150 fibers. Fiber staining was successful in all MG biopsies but failed in 30% (CP) and 16% (TD) of the ST biopsies. Satellite cell staining was successful in 89% (CP) and 85% (TD) for MG and in 70% (CP) and 90% (TD) for ST biopsies, while capillary staining was successful in 88% (CP) and 100% (TD) of the MG and in 86% (CP) and 90% (TD) for the ST biopsies. Intraclass coefficient correlation showed reliable and reproducible measures of all outcomes. This study shows that the percutaneous microbiopsy technique is a safe and feasible tool to collect (repeated) muscle biopsies in young CP and TD children for histological analysis and it provides sufficient muscle tissue of good quality for reliable quantification.
Collapse
Affiliation(s)
- Jorieke Deschrevel
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Anke Andries
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Marlies Corvelyn
- Department of Development and Regeneration, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Eva De Wachter
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Anouk Agten
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Frank Vandenabeele
- Faculty of Rehabilitation Sciences, Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Stefaan Nijs
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Corvelyn M, Meirlevede J, Deschrevel J, Huyghe E, De Wachter E, Gayan-Ramirez G, Sampaolesi M, Van Campenhout A, Desloovere K, Costamagna D. Ex vivo adult stem cell characterization from multiple muscles in ambulatory children with cerebral palsy during early development of contractures. Differentiation 2023; 133:25-39. [PMID: 37451110 DOI: 10.1016/j.diff.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Cerebral palsy (CP) is one of the most common conditions leading to lifelong childhood physical disability. Literature reported previously altered muscle properties such as lower number of satellite cells (SCs), with altered fusion capacity. However, these observations highly vary among studies, possibly due to heterogeneity in patient population, lack of appropriate control data, methodology and different assessed muscle. In this study we aimed to strengthen previous observations and to understand the heterogeneity of CP muscle pathology. Myogenic differentiation of SCs from the Medial Gastrocnemius (MG) muscle of patients with CP (n = 16, 3-9 years old) showed higher fusion capacity compared to age-matched typically developing children (TD, n = 13). Furthermore, we uniquely assessed cells of two different lower limb muscles and showed a decreased myogenic potency in cells from the Semitendinosus (ST) compared to the MG (TD: n = 3, CP: n = 6). Longitudinal assessments, one year after the first botulinum toxin treatment, showed slightly reduced SC representations and lower fusion capacity (n = 4). Finally, we proved the robustness of our data, by assessing in parallel the myogenic capacity of two samples from the same TD muscle. In conclusion, these data confirmed previous findings of increased SC fusion capacity from MG muscle of young patients with CP compared to age-matched TD. Further elaboration is reported on potential factors contributing to heterogeneity, such as assessed muscle, CP progression and reliability of primary outcome parameters.
Collapse
Affiliation(s)
- M Corvelyn
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - J Meirlevede
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - J Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Dept. of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - E Huyghe
- Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium
| | - E De Wachter
- Dept. of Orthopaedic Surgery, University Hospitals Leuven, Belgium
| | - G Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Dept. of Chronic Diseases and Metabolism, KU Leuven, Belgium
| | - M Sampaolesi
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium
| | - A Van Campenhout
- Dept. of Orthopaedic Surgery, University Hospitals Leuven, Belgium; Dept. of Development and Regeneration, KU Leuven, Belgium
| | - K Desloovere
- Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium.
| | - D Costamagna
- Stem Cell and Developmental Biology, Dept. of Development and Regeneration, KU Leuven, Belgium; Research Group for Neurorehabilitation, Dept. of Rehabilitation Sciences, KU Leuven, Belgium.
| |
Collapse
|
9
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Lim C, McKendry J, Giacomin T, Mcleod JC, Ng SY, Currier BS, Coletta G, Phillips SM. Fortetropin supplementation prevents the rise in circulating myostatin but not disuse-induced muscle atrophy in young men with limb immobilization: A randomized controlled trial. PLoS One 2023; 18:e0286222. [PMID: 37220119 DOI: 10.1371/journal.pone.0286222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Supplementation with Fortetropin® (FOR), a naturally occurring component from fertilized egg yolks, reduces circulating myostatin concentration. We hypothesized that FOR would mitigate muscle atrophy during immobilization. We examined the effect of FOR supplementation on muscle size and strength during 2-wk of single-leg immobilization and recovery. Twenty-four healthy young men (22 ± 2 yrs; BMI = 24.3 ± 2.9 kg/m2) were randomly allocated to either a Fortetropin® supplement (FOR-SUPP, n = 12) group consuming 19.8 g/d of FOR or placebo (PLA-SUPP, n = 12) group consuming energy- and macronutrient-matched cheese powder for 6-wk. The 6-wk period consisted of 2-wk run-in, 2-wk single-leg immobilization, and 2-wk recovery phase returning to habitual physical activities. Ultrasonography, dual-energy X-ray absorptiometry, muscle biopsies and isometric peak torque assessments were performed prior to and following each phase (days 1, 14, 28, and 42) to measure vastus lateralis and muscle fiber cross-section area (CSA), leg lean mass (LM), and muscular strength. Blood samples were taken on days 1 and 42 for measurement of plasma myostatin concentration, which increased in PLA-SUPP (4221 ± 541 pg/mL to 6721 ± 864 pg/mL, P = 0.013) but not in FOR-SUPP (5487 ± 489 pg/mL to 5383 ± 781 pg/mL, P = 0.900). After the immobilization phase, vastus lateralis CSA, LM, and isometric peak torque were decreased by 7.9 ± 1.7% (P < 0.001), -1.6 ± 0.6% (P = 0.037), and -18.7 ± 2.7% (P < 0.001) respectively, with no difference between groups. The decreased peak torque was recovered after 2-wk of normal activity (vs. day 1, P = 0.129); however, CSA and LM were not recovered (vs. day 1, P < 0.001 and P = 0.003, respectively), with no differences between groups. Supplementation with FOR prevented the rise in circulating myostatin but not disuse-induced muscle atrophy in young men after 2-wk of single-leg immobilization.
Collapse
Affiliation(s)
- Changhyun Lim
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - James McKendry
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Taylor Giacomin
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Brad S Currier
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Giulia Coletta
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
12
|
Binet ER, McKenna CF, Salvador AF, Martinez IG, Alamilla RA, Collao N, Bodnariuc G, Khan NA, Paluska SA, Burd NA, De Lisio M. Sex-based comparisons of muscle cellular adaptations after 10 weeks of progressive resistance training in middle-aged adults. J Appl Physiol (1985) 2023; 134:116-129. [PMID: 36454678 DOI: 10.1152/japplphysiol.00274.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Resistance training combined with adequate protein intake supports skeletal muscle strength and hypertrophy. These adaptations are supported by the action of muscle stem cells (MuSCs), which are regulated, in part, by fibro-adipogenic progenitors (FAPs) and circulating factors delivered through capillaries. It is unclear if middle-aged males and females have similar adaptations to resistance training at the cellular level. To address this gap, 27 (13 males, 14 females) middle-aged (40-64 yr) adults participated in 10 wk of whole body resistance training with dietary counseling. Muscle biopsies were collected from the vastus lateralis pre- and posttraining. Type II fiber cross-sectional area increased similarly with training in both sexes (P = 0.014). MuSC content was not altered with training; however, training increased PDGFRα+/CD90+ FAP content (P < 0.0001) and reduced PDGFRα+/CD90- FAP content (P = 0.044), independent of sex. The number of CD31+ capillaries per fiber also increased similarly in both sexes (P < 0.05). These results suggest that muscle fiber hypertrophy, stem/progenitor cell, and capillary adaptations are similar between middle-aged males and females in response to whole body resistance training.NEW & NOTEWORTHY We demonstrate that resistance training-induced increases in fiber hypertrophy, FAP content, and capillarization are similar between middle-aged males and females.
Collapse
Affiliation(s)
- Emileigh R Binet
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Colleen F McKenna
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amadeo F Salvador
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Isabel G Martinez
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Rafael A Alamilla
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Giana Bodnariuc
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Metformin Attenuates Slow-to-Fast Fiber Shift and Proteolysis Markers Increase in Rat Soleus after 7 Days of Rat Hindlimb Unloading. Int J Mol Sci 2022; 24:ijms24010503. [PMID: 36613942 PMCID: PMC9820761 DOI: 10.3390/ijms24010503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis. Thirty-two male Wistar rats were randomly assigned to four groups: placebo control (C), control rats treated with metformin (C + M), 7 days of hindlimb suspension (HS) + placebo (7HS), and 7 days of HS + metformin administration (7HS + M). In the soleus of the 7HS rats, we detected a slow-to-fast fiber-type shift as well as a significant downregulation of MEF-2D and p300 in the nuclei. In the 7HS group, we also found decreases in p-ACC (AMPK target) protein level and in the expression of E3 ubiquitin ligases and p-CaMK II protein level vs. the C group. The 7-day metformin treatment for soleus muscle unloading (1) prevented slow-to-fast fiber-type shift; (2) counteracted changes in the p-ACC protein level; (3) hindered changes in the nuclear protein level of the slow myosin expression activators MEF-2D and p300, but did not affect NFATc1 signaling; and (4) attenuated the unloading-induced upregulation of MuRF-1, atrogin-1, ubiquitin and myostatin mRNA expression, but did not prevent soleus muscle atrophy. Thus, metformin treatment during muscle disuse could be useful to prevent the decrease in the percentage of slow-type fatigue-resistant muscle fibers.
Collapse
|
14
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
15
|
Moesgaard L, Jessen S, Mackey AL, Hostrup M. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area. J Appl Physiol (1985) 2022; 133:732-741. [PMID: 35952346 DOI: 10.1152/japplphysiol.00235.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 weeks of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28±7 years; mean±SD) and 12 females (27±7 years). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P<0.05), whereas hypertrophy of type II fibers was similar between sexes (P=0.158‒0.419). Expansion of the satellite cell pool (P=0.132‒0.667) and myonuclear addition (P=0.064‒0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r=0.68‒0.85, P<0.001). While myofiber hypertrophy was accompanied by an increase in myonuclear domain (P<0.05), fiber perimeter per myonucleus remained constant throughout the study (P=0.096‒0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in muscle hypertrophy, but does not fully explain greater hypertrophy of type I fibers in males than females.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
McKenzie AI, Mahmassani ZS, Petrocelli JJ, de Hart NMMP, Fix DK, Ferrara PJ, LaStayo PC, Marcus RL, Rondina MT, Summers SA, Johnson JM, Trinity JD, Funai K, Drummond MJ. Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H 2O 2 emission and production in healthy, older adults: A randomized controlled trial. Exp Gerontol 2022; 163:111804. [PMID: 35405248 PMCID: PMC9237837 DOI: 10.1016/j.exger.2022.111804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Metformin is the most commonly prescribed medication to treat diabetes. Emerging evidence suggests that metformin could have off target effects that might help promote healthy muscle aging, but these effects have not been thoroughly studied in glucose tolerant older individuals. The purpose of this study was to investigate the short-term effects of metformin consumption on skeletal muscle mitochondrial bioenergetics in healthy older adults. METHODS We obtained muscle biopsy samples from 16 healthy older adults previously naïve to metformin and treated with metformin (METF; 3F, 5M), or placebo (CON; 3F, 5M), for two weeks using a randomized and blinded study design. Samples were analyzed using high-resolution respirometry, immunofluorescence, and immunoblotting to assess muscle mitochondrial bioenergetics, satellite cell (SC) content, and associated protein markers. RESULTS We found that metformin treatment did not alter maximal mitochondrial respiration rates in muscle compared to CON. In contrast, mitochondrial H2O2 emission and production were elevated in muscle samples from METF versus CON (METF emission: 2.59 ± 0.72 SE Fold, P = 0.04; METF production: 2.29 ± 0.53 SE Fold, P = 0.02). Furthermore, the change in H2O2 emission was positively correlated with the change in type 1 myofiber SC content and this was biased in METF participants (Pooled: R2 = 0.5816, P = 0.0006; METF: R2 = 0.674, P = 0.0125). CONCLUSIONS These findings suggest that acute exposure to metformin does not impact mitochondrial respiration in aged, glucose-tolerant muscle, but rather, influences mitochondrial-free radical and SC dynamics. CLINICAL TRIAL REGISTRATION NCT03107884, clinicaltrials.gov.
Collapse
Affiliation(s)
- Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA
| | - Dennis K Fix
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Paul C LaStayo
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Robin L Marcus
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA
| | - Matthew T Rondina
- Department of Internal Medicine & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA
| | - Jordan M Johnson
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA
| | - Joel D Trinity
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA; Department of Internal Medicine & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Januel L, Merlet AN, He Z, Hourdé C, Bartolucci P, Gellen B, Galactéros F, Messonnier LA, Féasson L. Skeletal Muscle Satellite Cells in Sickle Cell Disease Patients and Their Responses to a Moderate-intensity Endurance Exercise Training Program. J Histochem Cytochem 2022; 70:415-426. [PMID: 35642249 DOI: 10.1369/00221554221103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that 8 weeks of moderate-intensity endurance training is safe and improves muscle function and characteristics of sickle cell disease (SCD) patients. Here, we investigated skeletal muscle satellite cells (SCs) in SCD patients and their responses to a training program. Fifteen patients followed the training program while 18 control patients maintained a normal lifestyle. Biopsies of the vastus lateralis muscle were performed before and after training. After training, the cross-sectional area and myonuclear content in type I fibers were slightly increased in the training patients compared to non-training patients. The SC pool was unchanged in type I fibers while it was slightly decreased in type II fibers in the training patients compared to non-training patients. No necrotic fibers were detected in patients before or after training. Therefore, the slight myonuclear accretion in type I fibers in trained SCD patients may highlight the contribution of SCs to training-induced slight type I fiber hypertrophy without expansion of the SC pool. The low training intensity and the short duration of training sessions could explain the low SC response to the training program. However, the lack of necrotic fibers suggests that the training program seemed to be safe for patients' muscle tissue.
Collapse
Affiliation(s)
- Léa Januel
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Priest en Jarez, France
| | - Angèle N Merlet
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France.,Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Hôpital Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Zhiguo He
- Biologie, Ingénierie et Imagerie de la Greffe de Cornée, Université de Lyon and Université Jean Monnet, Saint-Etienne, France
| | - Christophe Hourdé
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Chambéry, France
| | - Pablo Bartolucci
- Service de Médecine Interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France.,Service de Santé Publique, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Barnabas Gellen
- Service de Réhabilitation Cardiaque, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Frédéric Galactéros
- Service de Médecine Interne, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France.,Service de Santé Publique, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Laurent A Messonnier
- Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Chambéry, France
| | - Léonard Féasson
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France.,Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Hôpital Universitaire de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
18
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Gil S, Kirwan JP, Murai IH, Dantas WS, Merege-Filho CAA, Ghosh S, Shinjo SK, Pereira RMR, Teodoro WR, Felau SM, Benatti FB, de Sá-Pinto AL, Lima F, de Cleva R, Santo MA, Gualano B, Roschel H. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J Cachexia Sarcopenia Muscle 2021; 12:1440-1455. [PMID: 34666419 PMCID: PMC8718087 DOI: 10.1002/jcsm.12815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Muscle atrophy and strength loss are common adverse outcomes following bariatric surgery. This randomized, controlled trial investigated the effects of exercise training on bariatric surgery-induced loss of muscle mass and function. Additionally, we investigated the effects of the intervention on molecular and histological mediators of muscle remodelling. METHODS Eighty women with obesity were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 40, age = 42 ± 8 years) or RYGB plus exercise training group (RYGB + ET: n = 40, age = 38 ± 7 years). Clinical and laboratory parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6 month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). A healthy, lean, age-matched control group was recruited to provide reference values for selected variables. RESULTS Surgery resulted in a similar (P = 0.66) reduction in lower-limb muscle strength in RYGB and RYGB+ET (-26% vs. -31%), which was rescued to baseline values in RYGB + ET (P = 0.21 vs. baseline) but not in RYGB (P < 0.01 vs. baseline). Patients in RYGB+ET had greater absolute (214 vs. 120 kg, P < 0.01) and relative (2.4 vs. 1.4 kg/body mass, P < 0.01) muscle strength compared with RYGB alone at POST9. Exercise resulted in better performance in timed-up-and-go (6.3 vs. 7.1 s, P = 0.05) and timed-stand-test (18 vs. 14 repetitions, P < 0.01) compared with RYGB. Fat-free mass was lower (POST9-PRE) after RYBG than RYGB + ET (total: -7.9 vs. -4.9 kg, P < 0.01; lower-limb: -3.8 vs. -2.7 kg, P = 0.02). Surgery reduced Types I (~ - 21%; P = 0.99 between-group comparison) and II fibre cross-sectional areas (~ - 27%; P = 0.88 between-group comparison), which were rescued to baseline values in RYGB+ET (P > 0.05 vs. baseline) but not RYGB (P > 0.01 vs. baseline). RYGB + ET showed greater Type I (5187 vs. 3898 μm2 , P < 0.01) and Type II (5165 vs. 3565 μm2 , P < 0.01) fCSA than RYGB at POST9. RYGB + ET also resulted in increased capillarization (P < 0.01) and satellite cell content (P < 0.01) than RYGB at POST9. Gene-set normalized enrichment scores for the muscle transcriptome revealed that the ubiquitin-mediated proteolysis pathway was suppressed in RYGB + ET at POST9 vs. PRE (NES: -1.7; P < 0.01), but not in RYGB. Atrogin-1 gene expression was lower in RYGB + ET vs. RYGB at POST9 (0.18 vs. 0.71-fold change, P < 0.01). From both genotypic and phenotypic perspectives, the muscle of exercised patients resembled that of healthy lean individuals. CONCLUSIONS This study provides compelling evidence-from gene to function-that strongly supports the incorporation of exercise into the recovery algorithm for bariatric patients so as to counteract the post-surgical loss of muscle mass and function.
Collapse
Affiliation(s)
- Saulo Gil
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Igor H Murai
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Carlos Alberto Abujabra Merege-Filho
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Samuel K Shinjo
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy R Teodoro
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sheylla M Felau
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabiana B Benatti
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,School of Applied Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Aurélio Santo
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Assessment and Conditioning in Rheumatology, Universidade de São Paulo, São Paulo, SP, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced Glycation End-Products in Skeletal Muscle Aging. Bioengineering (Basel) 2021; 8:bioengineering8110168. [PMID: 34821734 PMCID: PMC8614898 DOI: 10.3390/bioengineering8110168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Advanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve’s role in this aging process. Specific directions for future research are also discussed, with the understudied role of AGEs in skeletal muscle aging highlighted. Despite more than a half century of research, the role that intramuscular collagen aggregation and cross-linking plays in sarcopenia is well accepted yet not well integrated with current knowledge of AGE’s effects on muscle physiology. Furthermore, the possible impact that motor nerve aging has on intramuscular cross-linking and muscular AGE levels is posited.
Collapse
Affiliation(s)
- Lucas C. Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Gerontology, College of Health Professions, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Correspondence:
| |
Collapse
|
22
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
23
|
Lim C, Dunford EC, Valentino SE, Oikawa SY, McGlory C, Baker SK, Macdonald MJ, Phillips SM. Both Traditional and Stair Climbing-based HIIT Cardiac Rehabilitation Induce Beneficial Muscle Adaptations. Med Sci Sports Exerc 2021; 53:1114-1124. [PMID: 33394901 DOI: 10.1249/mss.0000000000002573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE There is a lack of knowledge as to how different exercise-based cardiac rehabilitation programming affects skeletal muscle adaptations in coronary artery disease (CAD) patients. We first characterized the skeletal muscle from adults with CAD compared with a group of age- and sex-matched healthy adults. We then determined the effects of a traditional moderate-intensity continuous exercise program (TRAD) or a stair climbing-based high-intensity interval training program (STAIR) on skeletal muscle metabolism in CAD. METHODS Sixteen adults (n = 16, 61 ± 7 yr), who had undergone recent treatment for CAD, were randomized to perform (3 d·wk-1) either TRAD (n = 7, 30 min at 60%-80% of peak heart rate) or STAIR (n = 9, 3 × 6 flights) for 12 wk. Muscle biopsies were collected at baseline in both CAD and healthy controls (n = 9), and at 4 and 12 wk after exercise training in CAD patients undertaking TRAD or STAIR. RESULTS We found that CAD had a lower capillary-to-fiber ratio (C/Fi, 35% ± 25%, P = 0.06) and capillary-to-fiber perimeter exchange (CFPE) index (23% ± 29%, P = 0.034) in Type II fibers compared with healthy controls. However, 12 wk of cardiac rehabilitation with either TRAD or STAIR increased C/Fi (Type II, 23% ± 14%, P < 0.001) and CFPE (Type I, 10% ± 23%, P < 0.01; Type II, 18% ± 22%, P = 0.002). CONCLUSION Cardiac rehabilitation via TRAD or STAIR exercise training improved the compromised skeletal muscle microvascular phenotype observed in CAD patients.
Collapse
Affiliation(s)
- Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | - Emily C Dunford
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | | | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, CANADA
| | - Steve K Baker
- Department of Neurology, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, CANADA
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, CANADA
| |
Collapse
|
24
|
Horwath O, Envall H, Röja J, Emanuelsson EB, Sanz G, Ekblom B, Apró W, Moberg M. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol (1985) 2021; 131:158-173. [PMID: 34013752 DOI: 10.1152/japplphysiol.00053.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle characteristics such as fiber type composition, fiber size, and myonuclear content are widely studied in clinical and sports-related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle are currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n = 7) and SDS-PAGE (n = 25). None of the analyzed parameters, fiber type % (FT%), type I and II fiber cross-sectional area (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content, or myonuclear domain, varied in a systematic manner longitudinally along the muscle or between the two legs. The average within-subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13% and 18% but was only 5% for fiber-specific myonuclear content, which reduced the variability for myonuclear domain size to 11%-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1% and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type- and fiber size-related aspects, given the notable sample-to-sample variability.NEW & NOTEWORTHY This study provides a comprehensive analysis of the variability of key human skeletal muscle fiber characteristics in multiple sites along and between the m. vastus lateralis of healthy and active individuals. We found a notable but nonsystematic variability in fiber type and size, whereas myonuclear content was distinctively less variable, and the prevalence of type IIX fibers was random and very low. These data are important to consider when designing and interpreting studies including m. vastus lateralis biopsies.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Helena Envall
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Julia Röja
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Gnomics, Murcia, Spain
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
26
|
Jan V, Miš K, Nikolic N, Dolinar K, Petrič M, Bone A, Thoresen GH, Rustan AC, Marš T, Chibalin AV, Pirkmajer S. Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. PLoS One 2021; 16:e0247377. [PMID: 33635930 PMCID: PMC7909653 DOI: 10.1371/journal.pone.0247377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and β) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7–10 days. A short-term co-culture (10–11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAβ2, NKAβ3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.
Collapse
Affiliation(s)
- Vid Jan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Natasa Nikolic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Petrič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Bone
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V. Chibalin
- National Research Tomsk State University, Tomsk, Russia
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
27
|
Tan CM, Najib NAM, Suhaimi NF, Halid NA, Cho VV, Abdullah SI, Ismail MZ, Khor SC, Jaafar F, Makpol S. Modulation of Ki67 and myogenic regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic program of senescent human myoblasts. Arch Med Sci 2021; 17:752-763. [PMID: 34025846 PMCID: PMC8130490 DOI: 10.5114/aoms.2019.85449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/08/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Replicative senescence results in dysregulation of cell proliferation and differentiation, which plays a role in the regenerative defects observed during age-related muscle atrophy. Vitamin E is a well-known antioxidant, which potentially ameliorates a wide range of age-related manifestations. The aim of this study was to determine the effects of tocotrienol-rich fraction (TRF) in modulating the expression of proliferation- and differentiation-associated proteins in senescent human myoblasts during the differentiation phase. MATERIAL AND METHODS Human skeletal muscle myoblasts were cultured until senescence. Young and senescent cells were treated with TRF for 24 h before and after differentiation induction, followed by evaluation of cellular morphology and efficiency of differentiation. Expression of cell proliferation marker Ki67 protein and myogenic regulatory factors MyoD and myogenin were determined. RESULTS Our findings showed that treatment with TRF significantly improved the morphology of senescent myoblasts. Promotion of differentiation was observed in young and senescent myoblasts with TRF treatment as shown by the increased fusion index and larger size of myotubes. Increased Ki67 and myogenin expression with TRF treatment was also observed in senescent myoblasts, suggesting amelioration of the myogenic program by TRF during replicative senescence. CONCLUSIONS TRF modulates the expression of regulatory factors related to proliferation and differentiation in senescent human myoblasts and could be beneficial for ameliorating the regenerative defects during aging.
Collapse
Affiliation(s)
- Chun Min Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadwa Aqeela Mohd Najib
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Farahin Suhaimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Alia Halid
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vi Vien Cho
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Saiful Idham Abdullah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Zulhilmi Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shy Cian Khor
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Papanikolaou K, Veskoukis AS, Draganidis D, Baloyiannis I, Deli CK, Poulios A, Jamurtas AZ, Fatouros IG. Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition. Free Radic Biol Med 2020; 161:125-138. [PMID: 33039652 DOI: 10.1016/j.freeradbiomed.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis Baloyiannis
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece.
| |
Collapse
|
29
|
Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, Garcia AM, Smith K, Gallagher IJ, Szewczyk NJ, Cleasby ME, Atherton PJ. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 2020; 42:101059. [PMID: 32771696 PMCID: PMC7475200 DOI: 10.1016/j.molmet.2020.101059] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. METHODS Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. RESULTS Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. CONCLUSION VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Collapse
Affiliation(s)
- Joseph J Bass
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Asif Nakhuda
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Colleen S Deane
- Department of Sport and Health Sciences, University of Exeter, EX1 2LU, UK
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Bethan E Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, 2010, Australia; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Ditte Andersen
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Amadeo Muñoz Garcia
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK; Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, the Netherlands
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Iain J Gallagher
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, FK9 4LA, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Mark E Cleasby
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK.
| |
Collapse
|
30
|
Horwath O, Moberg M, Larsen FJ, Philp A, Apró W, Ekblom B. Influence of sex and fiber type on the satellite cell pool in human skeletal muscle. Scand J Med Sci Sports 2020; 31:303-312. [DOI: 10.1111/sms.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Filip J. Larsen
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Andrew Philp
- Diabetes and Metabolism Division Garvan Institute of Medical Research Darlinghurst, Sydney NSW Australia
- St Vincent’s Medical School UNSW Medicine UNSW Sydney Sydney Australia
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
- Department of Clinical Science, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| |
Collapse
|
31
|
Role of PAX-7 as a tissue marker in mangled extremity: a pilot study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 29:1131-1140. [DOI: 10.1007/s00590-019-02410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
|
32
|
Derivation and Characterization of Immortalized Human Muscle Satellite Cell Clones from Muscular Dystrophy Patients and Healthy Individuals. Cells 2020; 9:cells9081780. [PMID: 32722643 PMCID: PMC7465805 DOI: 10.3390/cells9081780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) patients, absence of dystrophin causes muscle wasting by impacting both the myofiber integrity and the properties of muscle stem cells (MuSCs). Investigation of DMD encompasses the use of MuSCs issued from human skeletal muscle. However, DMD-derived MuSC usage is restricted by the limited number of divisions that human MuSCs can undertake in vitro before losing their myogenic characteristics and by the scarcity of human material available from DMD muscle. To overcome these limitations, immortalization of MuSCs appears as a strategy. Here, we used CDK4/hTERT expression in primary MuSCs and we derived MuSC clones from a series of clinically and genetically characterized patients, including eight DMD patients with various mutations, four congenital muscular dystrophies and three age-matched control muscles. Immortalized cultures were sorted into single cells and expanded as clones into homogeneous populations. Myogenic characteristics and differentiation potential were tested for each clone. Finally, we screened various promoters to identify the preferred gene regulatory unit that should be used to ensure stable expression in the human MuSC clones. The 38 clonal immortalized myogenic cell clones provide a large collection of controls and DMD clones with various genetic defects and are available to the academic community.
Collapse
|
33
|
Mañas-García L, Guitart M, Duran X, Barreiro E. Satellite Cells and Markers of Muscle Regeneration during Unloading and Reloading: Effects of Treatment with Resveratrol and Curcumin. Nutrients 2020; 12:nu12061870. [PMID: 32585875 PMCID: PMC7353305 DOI: 10.3390/nu12061870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that treatment with pharmacological agents known to increase sirtuin-1 activity (resveratrol and curcumin) may enhance muscle regeneration. In limb muscles of mice (C57BL/6J, 10 weeks) exposed to reloading for seven days following a seven-day period of hindlimb immobilization with/without curcumin or resveratrol treatment, progenitor muscle cell numbers (FACS), satellite cell subtypes (histology), early and late muscle regeneration markers, phenotype and morphometry, sirtuin-1 activity and content, and muscle function were assessed. Treatment with either resveratrol or curcumin in immobilized muscles elicited a significant improvement in numbers of progenitor, activated, quiescent, and total counts of muscle satellite cells, compared to non-treated animals. Treatment with either resveratrol or curcumin in reloaded muscles compared to non-treated mice induced a significant improvement in the CSA of both hybrid (curcumin) and fast-twitch fibers (resveratrol), sirtuin-1 activity (curcumin), sirtuin-1 content (resveratrol), and counts of progenitor muscle cells (resveratrol). Treatment with the pharmacological agents resveratrol and curcumin enhanced the numbers of satellite cells (muscle progenitor, quiescent, activated, and total satellite cells) in the unloaded limb muscles but not in the reloaded muscles. These findings have potential clinical implications as treatment with these phenolic compounds would predominantly be indicated during disuse muscle atrophy to enhance the muscle regeneration process.
Collapse
Affiliation(s)
- Laura Mañas-García
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (L.M.-G.); (M.G.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
34
|
Agha O, Mueller‐Immergluck A, Liu M, Zhang H, Theologis AA, Clark A, Kim HT, Liu X, Feeley BT, Bailey JF. Intervertebral disc herniation effects on multifidus muscle composition and resident stem cell populations. JOR Spine 2020; 3:e1091. [PMID: 32613166 PMCID: PMC7323461 DOI: 10.1002/jsp2.1091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Paraspinal muscles are crucial for vertebral stabilization and movement. These muscles are prone to develop fatty infiltration (FI), fibrosis, and atrophy in many spine conditions. Fibro-adipogenic progenitors (FAPs), a resident muscle stem cell population, are the main contributors of muscle fibrosis and FI. FAPs are involved in a complex interplay with satellite cells (SCs), the primary myogenic progenitor cells within muscle. Little is known about the stem cell composition of the multifidus. The aim of this study is to examine FAPs and SCs in the multifidus in disc herniation patients. Multifidus muscle samples were collected from 10 patients undergoing decompressive spine surgery for lumbar disc herniation. Hamstring muscle was collected from four patients undergoing hamstring autograft ACL reconstruction as an appendicular control. Multifidus tissue was analyzed for FI and fibrosis using Oil-Red-O and Masson's trichrome staining. FAPs and SCs were visualized using immunostaining and quantified with fluorescence-activated cell sorting (FACS) sorting. Gene expression of these cells from the multifidus were analyzed with reverse transcription-polymerase chain reaction and compared to those from hamstring muscle. FI and fibrosis accounted for 14.2%± 7.4% and 14.8%±4.2% of multifidus muscle, respectively. The multifidus contained more FAPs (11.7%±1.9% vs 1.4%±0.2%; P<.001) and more SCs (3.4%±1.6% vs 0.08%±0.02%; P=.002) than the hamstring. FAPs had greater α Smooth Muscle Actin (αSMA) and adipogenic gene expression than FAPs from the hamstring. SCs from the multifidus displayed upregulated expression of stem, proliferation, and differentiation genes. CONCLUSION The multifidus in patients with disc herniation contains large percentages of FAPs and SCs with different gene expression profiles compared to those in the hamstring. These results may help explain the tendency for the multifidus to atrophy and form FI and fibrosis as well as elucidate potential approaches for mitigating these degenerative changes by leveraging these muscle stem cell populations.
Collapse
Affiliation(s)
- Obiajulu Agha
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Andreas Mueller‐Immergluck
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Mengyao Liu
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - He Zhang
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
- Department of Exercise PhysiologyBeijing Sport UniversityBeijingChina
| | - Alekos A. Theologis
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Aaron Clark
- Department of NeurosurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Hubert T. Kim
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Xuhui Liu
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Brian T. Feeley
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Orthopaedic SurgerySan Francisco Veterans Affair Health Care SystemSan FranciscoCaliforniaUSA
| | - Jeannie F. Bailey
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
35
|
Zingiber Officinale Roscoe Prevents Cellular Senescence of Myoblasts in Culture and Promotes Muscle Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1787342. [PMID: 32419792 PMCID: PMC7210549 DOI: 10.1155/2020/1787342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
Background Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration. Methods Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size. Results Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index. Conclusions Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.
Collapse
|
36
|
The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp Gerontol 2020; 133:110860. [DOI: 10.1016/j.exger.2020.110860] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/05/2023]
|
37
|
Horwath O, Apró W, Moberg M, Godhe M, Helge T, Ekblom M, Hirschberg AL, Ekblom B. Fiber type-specific hypertrophy and increased capillarization in skeletal muscle following testosterone administration in young women. J Appl Physiol (1985) 2020; 128:1240-1250. [PMID: 32191598 DOI: 10.1152/japplphysiol.00893.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It is well established that testosterone administration induces muscle fiber hypertrophy and myonuclear addition in men; however, it remains to be determined whether similar morphological adaptations can be achieved in women. The aim of the present study was therefore to investigate whether exogenously administered testosterone alters muscle fiber morphology in skeletal muscle of young healthy, physically active women. Thirty-five young (20-35 yr), recreationally trained women were randomly assigned to either 10-wk testosterone administration (10 mg daily) or placebo. Before and after the intervention, hormone concentrations and body composition were assessed, and muscle biopsies were obtained from the vastus lateralis. Fiber type composition, fiber size, satellite cell and myonuclei content, as well as muscle capillarization were assessed in a fiber type-specific manner by immunohistochemistry. After the intervention, testosterone administration elevated serum testosterone concentration (5.1-fold increase, P = 0.001) and induced significant accretion of total lean mass (+1.9%, P = 0.002) and leg lean mass (+2.4%, P = 0.001). On the muscle fiber level, testosterone increased mixed-fiber cross-sectional area (+8.2%, P = 0.001), an effect primarily driven by increases in type II fiber size (9.2%, P = 0.006). Whereas myonuclei content remained unchanged, a numerical increase (+30.8%) was found for satellite cells associated with type II fibers in the Testosterone group. In parallel with fiber hypertrophy, testosterone significantly increased capillary contacts (+7.5%, P = 0.015) and capillary-to-fiber ratio (+9.2%, P = 0.001) in type II muscle fibers. The present study provides novel insight into fiber type-specific adaptations present already after 10 wk of only moderately elevated testosterone levels in women.NEW & NOTEWORTHY We have recently demonstrated performance-enhancing effects of moderately elevated testosterone concentrations in young women. Here we present novel evidence that testosterone alters muscle morphology in these women, resulting in type II fiber hypertrophy and improved capillarization. Our findings suggest that low doses of testosterone potently impact skeletal muscle after only 10 wk. These data provide unique insights into muscle adaptation and support the performance-enhancing role of testosterone in women on the muscle fiber level.
Collapse
Affiliation(s)
- Oscar Horwath
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Manne Godhe
- Department of Sport Performance and Training, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Torbjörn Helge
- Department of Sport Performance and Training, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria Ekblom
- Biomechanics and Motor Control Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Division of Obstetrics and Gynaecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
38
|
Raz Y, Akker EB, Roest T, Riaz M, Rest O, Suchiman HED, Lakenberg N, Stassen SA, Putten M, Feskens EJM, Reinders MJT, Goeman J, Beekman M, Raz V, Slagboom PE. A data‐driven methodology reveals novel myofiber clusters in older human muscles. FASEB J 2020; 34:5525-5537. [DOI: 10.1096/fj.201902350r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yotam Raz
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Erik B. Akker
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Tijmen Roest
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Muhammad Riaz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Ondine Rest
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - H. Eka D. Suchiman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Nico Lakenberg
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Stefanie A. Stassen
- Section of Gerontology and Geriatrics Leiden University Medical Center Leiden the Netherlands
| | - Maaike Putten
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Jelle Goeman
- Department of Medical Statistics Leiden University Medical Center Leiden the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Vered Raz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | | |
Collapse
|
39
|
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165740. [PMID: 32087280 DOI: 10.1016/j.bbadis.2020.165740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy. AIM Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Collapse
|
40
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
41
|
Strandberg E, Ponsot E, Piehl-Aulin K, Falk G, Kadi F. Resistance Training Alone or Combined With N-3 PUFA-Rich Diet in Older Women: Effects on Muscle Fiber Hypertrophy. J Gerontol A Biol Sci Med Sci 2019; 74:489-494. [PMID: 30052800 DOI: 10.1093/gerona/gly130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
We aimed to examine cellular and molecular changes in skeletal muscle of recreationally active older women in response to 24 weeks of combined resistance training and N-3 PUFA-rich healthy diet. Sixty-three women (65-70 years) were randomized into resistance training and healthy diet rich in N-3PUFAs (RT-HD), resistance training only (RT) and controls (CON). Fiber type-specific morphological characteristics and gene expression of inflammatory biomarkers and regulators of muscle mass were analyzed in m. vastus lateralis biopsies obtained before the intervention and 4 days after the last training session. Gene expression of the proinflammatory cytokine IL-1β was downregulated (p < .05) and that of the regulator of cellular growth mTOR (p < 0.05) was upregulated in skeletal muscle of RT-HD only. There was also a significant hypertrophy of fast type IIA muscle fibers in RT-HD only (+23%, p < .05). In conclusion, resistance training combined to an N-3 PUFA-rich healthy diet but not alone triggers local anti-inflammatory and growth responses, favoring skeletal muscle hypertrophy in already recreationally active older women.
Collapse
Affiliation(s)
| | - Elodie Ponsot
- School of Health Sciences, Örebro University, Sweden
| | | | - Gunnar Falk
- School of Health Sciences, Örebro University, Sweden
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Sweden
| |
Collapse
|
42
|
McKay BR, Nederveen JP, Fortino SA, Snijders T, Joanisse S, Kumbhare DA, Parise G. Brain-derived neurotrophic factor is associated with human muscle satellite cell differentiation in response to muscle-damaging exercise. Appl Physiol Nutr Metab 2019; 45:581-590. [PMID: 31661631 DOI: 10.1139/apnm-2019-0501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle satellite cell (SC) regulation is a complex process involving many key signalling molecules. Recently, the neurotrophin brain-derived neurotropic factor (BDNF) has implicated in SC regulation in animals. To date, little is known regarding the role of BDNF in human SC function in vivo. Twenty-nine males (age, 21 ± 0.5 years) participated in the study. Muscle biopsies from the thigh were obtained prior to a bout of 300 maximal eccentric contractions (Pre), and at 6 h, 24 h, 72 h, and 96 h postexercise. BDNF was not detected in any quiescent (Pax7+/MyoD-) SCs across the time-course. BDNF colocalized to 39% ± 5% of proliferating (Pax7+/MyoD+) cells at Pre, which increased to 84% ± 3% by 96 h (P < 0.05). BDNF was only detected in 13% ± 5% of differentiating (Pax7-/MyoD+) cells at Pre, which increased to 67% ± 4% by 96 h (P < 0.05). The number of myogenin+ cells increased 95% from Pre (1.6 ± 0.2 cells/100 myofibres (MF)) at 24 h (3.1 ± 0.3 cells/100 MF) and remained elevated until 96 h (cells/100 MF), P < 0.05. The proportion of BDNF+/myogenin+ cells was 26% ± 0.3% at Pre, peaking at 24 h (49% ± 3%, P < 0.05) and remained elevated at 96 h (P < 0.05). These data are the first to demonstrate an association between SC proliferation and differentiation and BDNF expression in humans in vivo, with BDNF colocalization to SCs increasing during the later stages of proliferation and early differentiation. Novelty BDNF is associated with SC response to muscle injury. BDNF was not detected in nonactivated (quiescent) SCs. BDNF is associated with late proliferation and early differentiation of SCs in vivo in humans.
Collapse
Affiliation(s)
- Bryon R McKay
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Joshua P Nederveen
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Stephen A Fortino
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tim Snijders
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada.,Department of Human Biology, Maastricht University, 6211 LK Maastricht, Netherlands
| | - Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Dinesh A Kumbhare
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
43
|
Nederveen JP, Fortino SA, Baker JM, Snijders T, Joanisse S, McGlory C, McKay BR, Kumbhare D, Parise G. Consistent expression pattern of myogenic regulatory factors in whole muscle and isolated human muscle satellite cells after eccentric contractions in humans. J Appl Physiol (1985) 2019; 127:1419-1426. [PMID: 31513447 DOI: 10.1152/japplphysiol.01123.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skeletal muscle satellite cells (SC) play an important role in muscle repair following injury. The regulation of SC activity is governed by myogenic regulatory factors (MRF), including MyoD, Myf5, myogenin, and MRF4. The mRNA expression of these MRF in humans following muscle damage has been predominately measured in whole muscle homogenates. Whether the temporal expression of MRF in a whole muscle homogenate reflects SC-specific expression of MRF remains largely unknown. Sixteen young men (23.1 ± 1.0 yr) performed 300 unilateral eccentric contractions (180°/s) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis were taken before (Pre) and 48 h postexercise. Fluorescence-activated cell sorting analysis was utilized to purify NCAM+ muscle SC from the whole muscle homogenate. Forty-eight hours post-eccentric exercise, MyoD, Myf5, and myogenin mRNA expression were increased in the whole muscle homogenate (~1.4-, ~4.0-, ~1.7-fold, respectively, P < 0.05) and in isolated SC (~19.3-, ~17.5-, ~58.9-fold, respectively, P < 0.05). MRF4 mRNA expression was not increased 48 h postexercise in the whole muscle homogenate (P > 0.05) or in isolated SC (P > 0.05). In conclusion, our results suggest that the directional changes in mRNA expression of the MRF in a whole muscle homogenate in response to acute eccentric exercise reflects that observed in isolated muscle SC.NEW & NOTEWORTHY The myogenic program is controlled via transcription factors referred to as myogenic regulatory factors (MRF). Previous studies have derived MRF expression from whole muscle homogenates, but little work has examined whether the mRNA expression of these transcripts reflects the pattern of expression in the actual population of satellite cells (SC). We report that MRF expression from an enriched SC population reflects the directional pattern of expression from skeletal muscle biopsy samples following eccentric contractions.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Stephen A Fortino
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Jeff M Baker
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands.,Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Sophie Joanisse
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Chris McGlory
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Bryon R McKay
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| | - Dinesh Kumbhare
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
44
|
Ribeiro AF, Souza LS, Almeida CF, Ishiba R, Fernandes SA, Guerrieri DA, Santos ALF, Onofre-Oliveira PCG, Vainzof M. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep 2019; 9:11842. [PMID: 31413358 PMCID: PMC6694188 DOI: 10.1038/s41598-019-48156-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
Satellite cells (SCs) are the main muscle stem cells responsible for its regenerative capacity. In muscular dystrophies, however, a failure of the regenerative process results in muscle degeneration and weakness. To analyze the effect of different degrees of muscle degeneration in SCs behavior, we studied adult muscle of the dystrophic strains: DMDmdx, Largemyd, DMDmdx/Largemyd, with variable histopathological alterations. Similar results were observed in the dystrophic models, which maintained normal levels of PAX7 expression, retained the Pax7-positive SCs pool, and their proliferation capacity. Moreover, elevated expression of MYOG, an important myogenic factor, was also observed. The ability to form new fibers was verified by the presence of dMyHC positive regenerating fibers. However, those fibers had incomplete maturation characteristics, such as small and homogenous fiber caliber, which could contribute to their dysfunction. We concluded that dystrophic muscles, independently of their degeneration degree, retain their SCs pool with proliferating and regenerative capacities. Nonetheless, the maturation of these new fibers is incomplete and do not prevent muscle degeneration. Taken together, these results suggest that the improvement of late muscle regeneration should better contribute to therapeutic approaches.
Collapse
Affiliation(s)
- Antonio F Ribeiro
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Lucas S Souza
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Camila F Almeida
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Renata Ishiba
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Stephanie A Fernandes
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Danielle A Guerrieri
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - André L F Santos
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paula C G Onofre-Oliveira
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Mariz Vainzof
- Human Genome and Stem-cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
45
|
LIM CHANGHYUN, KIM HYOJEONG, MORTON ROBERTW, HARRIS ROGER, PHILLIPS STUARTM, JEONG TAESEOK, KIM CHANGKEUN. Resistance Exercise–induced Changes in Muscle Phenotype Are Load Dependent. Med Sci Sports Exerc 2019; 51:2578-2585. [DOI: 10.1249/mss.0000000000002088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakobsgaard JE, Herskind J, Gravholt A, Møller AB, Musci RV, de Paoli FV, Hamilton KL, Miller BF, Vissing K. Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males. Front Physiol 2019; 10:649. [PMID: 31191347 PMCID: PMC6548815 DOI: 10.3389/fphys.2019.00649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D2O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE (p < 0.05) and 13-23% in HLRE (p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE (p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.
Collapse
Affiliation(s)
- Peter Sieljacks
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jakob Wang
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Thomas Groennebaek
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Emil Rindom
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Jon Herskind
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anders Gravholt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Andreas B. Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | | | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kristian Vissing
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Schilling BK, Schusterman MA, Kim DY, Repko AJ, Klett KC, Christ GJ, Marra KG. Adipose-derived stem cells delay muscle atrophy after peripheral nerve injury in the rodent model. Muscle Nerve 2019; 59:603-610. [PMID: 30681163 DOI: 10.1002/mus.26432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Injuries to peripheral nerves cause distal muscle atrophy. The effects of adipose-derived stem cell (ASC) injections into a muscle after injury were examined. METHODS A 1.5 cm defect in the rat sciatic nerve was created, resulting in gastrocnemius muscle atrophy. The nerve defect was repaired with autograft; DiR-labeled ASCs were injected into the gastrocnemius immediately postoperatively. Quantitation of gross musculature and muscle fiber area, cell survival, fibrosis, lipid deposition, inflammation, and reconstructive responses were investigated. RESULTS ASCs were identified in the muscle at 6 weeks, where injections showed increased muscle mass percentage retained, larger average fiber area, and less overall lipid content accumulated throughout the musculature. Muscles having received ASCs showed increased presence of interlukin-10 and Ki67, and decreased inducible nitric oxide synthase (iNOS). DISCUSSION This investigation is suggestive that an ASC injection into denervated muscle post-operatively is able to delay the onset of atrophy. Muscle Nerve 59:603-603, 2019.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Asher Schusterman
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deok-Yeol Kim
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Repko
- Department of Biology, School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katarina C Klett
- Department of Chemical Engineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - George J Christ
- Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Haun CT, Mobley CB, Vann CG, Romero MA, Roberson PA, Mumford PW, Kephart WC, Healy JC, Patel RK, Osburn SC, Beck DT, Arnold RD, Nie B, Lockwood CM, Roberts MD. Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training. Sci Rep 2018; 8:11151. [PMID: 30042516 PMCID: PMC6057888 DOI: 10.1038/s41598-018-29591-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited also evidence suggests that whey protein supplementation may increase androgenic signaling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17β-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/β protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen's d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen's d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.
Collapse
Affiliation(s)
- Cody T Haun
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - C Brooks Mobley
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Christopher G Vann
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Matthew A Romero
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Paul A Roberson
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Petey W Mumford
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Wesley C Kephart
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - James C Healy
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, USA
| | - Romil K Patel
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Shelby C Osburn
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Darren T Beck
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, USA
| | - Robert D Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University Pharmaceutical Research Building, Auburn, AL, USA
| | - Ben Nie
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University Pharmaceutical Research Building, Auburn, AL, USA
| | | | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, USA. .,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, USA.
| |
Collapse
|
49
|
Reidy PT, Fry CS, Dickinson JM, Drummond MJ, Rasmussen BB. Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise. Physiol Rep 2018; 5:5/11/e13269. [PMID: 28596299 PMCID: PMC5471431 DOI: 10.14814/phy2.13269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type‐specific Pax7+SC, Ki67+Pax7+SC and MyoD+SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post‐RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+SC and MyoD+ cells (P < 0.05). Ki67+SC also exhibited a significant group difference Post (P < 0.010). Pax7+SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.
Collapse
Affiliation(s)
- Paul T Reidy
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Jared M Dickinson
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Micah J Drummond
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas .,Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
50
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|