1
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
2
|
Musculoskeletal magnetic resonance imaging in the DE50-MD dog model of Duchenne muscular dystrophy. Neuromuscul Disord 2021; 31:736-751. [PMID: 34384671 PMCID: PMC8449064 DOI: 10.1016/j.nmd.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
Normalized muscle volumes distinguish between wild type and DE50-MD dogs. Global muscle T2 signal intensities discriminate between wild type and DE50-MD dogs. Musculoskeletal changes detected by MRI reflect those seen in human DMD patients. Musculoskeletal MRI in this model will be useful to assess treatment efficacy.
The DE50-MD canine model of Duchenne muscular dystrophy (DMD) has a dystrophin gene splice site mutation causing deletion of exon 50, an out-of-frame transcript and absence of dystrophin expression in striated muscles. We hypothesized that the musculoskeletal phenotype of DE50-MD dogs could be detected using Magnetic Resonance Imaging (MRI), that it would progress with age and that it would reflect those in other canine models and DMD patients. 15 DE50-MD and 10 age-matched littermate wild type (WT) male dogs underwent MRI every 3 months from 3 to 18 months of age. Normalized muscle volumes, global muscle T2 and ratio of post- to pre-gadolinium T1-weighted SI were evaluated in 7 pelvic limb and 4 lumbar muscles bilaterally. DE50-MD dogs, compared to WT, had smaller volumes in all muscles, except the cranial sartorius; global muscle T2 was significantly higher in DE50-MD dogs compared to WT. Muscle volumes plateaued and global muscle T2 decreased with age. Normalized muscle volumes and global muscle T2 revealed significant differences between groups longitudinally and should be useful to determine efficacy of therapeutics in this model with suitable power and low sample sizes. Musculoskeletal changes reflect those of DMD patients and other dog models.
Collapse
|
3
|
Nitahara-Kasahara Y, Kuraoka M, Oda Y, Hayashita-Kinoh H, Takeda S, Okada T. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res Ther 2021; 12:105. [PMID: 33541428 PMCID: PMC7860619 DOI: 10.1186/s13287-021-02168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are potentially therapeutic for muscle disease because they can accumulate at the sites of injury and act as immunosuppressants. MSCs are attractive candidates for cell-based strategies that target diseases with chronic inflammation, such as Duchenne muscular disease (DMD). We focused on the anti-inflammatory properties of IL-10 and hypothesized that IL-10 could increase the typically low survival of MSCs by exerting a paracrine effect after transplantation. METHODS We developed a continuous IL-10 expression system of MSCs using an adeno-associated virus (AAV) vector. To investigate the potential benefits of IL-10 expressing AAV vector-transduced MSCs (IL-10-MSCs), we examined the cell survival rates in the skeletal muscles after intramuscular injection into mice and dogs. Systemic treatment with IL-10-MSCs derived from dental pulp (DPSCs) was comprehensively analyzed using the canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients. RESULTS In vivo bioluminescence imaging analysis revealed higher retention of IL-10-MSCs injected into the hindlimb muscle of mice. In the muscles of dogs, myofiber-like tissue was formed after the stable engraftment of IL-10-MSCs. Repeated systemic administration of IL-10-DPSCs into the CXMDJ model resulted in long-term engraftment of cells and slightly increased the serum levels of IL-10. IL-10-hDPSCs showed significantly reduced expression of pro-inflammatory MCP-1 and upregulation of stromal-derived factor-1 (SDF-1). MRI and histopathology of the hDPSC-treated CXMDJ indicated the regulation of inflammation in the muscles, but not myogenic differentiation from treated cells. hDPSC-treated CXMDJ showed improved running capability and recovery in tetanic force with concomitant increase in physical activity. Serum creatine kinase levels, which increased immediately after exercise, were suppressed in IL-10-hDPSC-treated CXMDJ. CONCLUSIONS In case of local injection, IL-10-MSCs could maintain the long-term engraftment status and facilitate associated tissue repair. In case of repeated systemic administration, IL-10-MSCs facilitated the long-term retention of the cells in the skeletal muscle and also protected muscles from physical damage-induced injury, which improved muscle dysfunction in DMD. We can conclude that the local and systemic administration of IL-10-producing MSCs offers potential benefits for DMD therapy through the beneficial paracrine effects of IL-10 involving SDF-1.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yuki Oda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
4
|
Nitahara-Kasahara Y, Kuraoka M, Guillermo PH, Hayashita-Kinoh H, Maruoka Y, Nakamura-Takahasi A, Kimura K, Takeda S, Okada T. Dental pulp stem cells can improve muscle dysfunction in animal models of Duchenne muscular dystrophy. Stem Cell Res Ther 2021; 12:78. [PMID: 33494794 PMCID: PMC7831244 DOI: 10.1186/s13287-020-02099-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Posadas Herrera Guillermo
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Yasunobu Maruoka
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Koichi Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of General Medicine, The Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo-city, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-city, Tokyo, Japan.
| |
Collapse
|
5
|
Alic L, Griffin JF, Eresen A, Kornegay JN, Ji JX. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle Nerve 2021; 64:8-22. [PMID: 33269474 PMCID: PMC8247996 DOI: 10.1002/mus.27133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
There is a great demand for accurate non‐invasive measures to better define the natural history of disease progression or treatment outcome in Duchenne muscular dystrophy (DMD) and to facilitate the inclusion of a large range of participants in DMD clinical trials. This review aims to investigate which MRI sequences and analysis methods have been used and to identify future needs. Medline, Embase, Scopus, Web of Science, Inspec, and Compendex databases were searched up to 2 November 2019, using keywords “magnetic resonance imaging” and “Duchenne muscular dystrophy.” The review showed the trend of using T1w and T2w MRI images for semi‐qualitative inspection of structural alterations of DMD muscle using a diversity of grading scales, with increasing use of T2map, Dixon, and MR spectroscopy (MRS). High‐field (>3T) MRI dominated the studies with animal models. The quantitative MRI techniques have allowed a more precise estimation of local or generalized disease severity. Longitudinal studies assessing the effect of an intervention have also become more prominent, in both clinical and animal model subjects. Quality assessment of the included longitudinal studies was performed using the Newcastle‐Ottawa Quality Assessment Scale adapted to comprise bias in selection, comparability, exposure, and outcome. Additional large clinical trials are needed to consolidate research using MRI as a biomarker in DMD and to validate findings against established gold standards. This future work should use a multiparametric and quantitative MRI acquisition protocol, assess the repeatability of measurements, and correlate findings to histologic parameters.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection and Imaging group, Technical Medical Centre, University of Twente, The Netherlands
| | - John F Griffin
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
7
|
Eresen A, Birch SM, Alic L, Griffin JF, Kornegay JN, Ji JX. New Similarity Metric for Registration of MRI to Histology: Golden Retriever Muscular Dystrophy Imaging. IEEE Trans Biomed Eng 2019; 66:1222-1230. [DOI: 10.1109/tbme.2018.2870711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Kuraoka M, Nitahara-Kasahara Y, Tachimori H, Kato N, Shibasaki H, Shin A, Aoki Y, Kimura E, Takeda S. Accelerometric outcomes of motor function related to clinical evaluations and muscle involvement in dystrophic dogs. PLoS One 2018; 13:e0208415. [PMID: 30533017 PMCID: PMC6289438 DOI: 10.1371/journal.pone.0208415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by primary muscle degeneration. Patients with DMD reveal progressive muscle weakness leading to ambulatory dysfunction. Novel outcome measures are needed for more sensitive evaluation of therapeutic effects in clinical trials. Multiple parameters of acceleration and angular velocity are used as efficient indicators to quantify the motion of subjects, and these parameters have been recently applied for evaluation of motor function in DMD. In the present study, we evaluated gait in a dystrophic dog model, CXMDJ, by measuring three-axial acceleration and angular velocity over the course of months. Hybrid sensors were placed on the dorsal thoracic and lumbar regions of dogs to detect a wide range of acceleration (±8 G) and angular velocity (±1000 degrees per second). Multiple parameters showed lower values in dystrophic dogs compared to wild-type (WT) dogs, and declined over the course of months. Acceleration magnitude (AM) at the thoracic region in dystrophic dogs was prominently lower compared with WT dogs, even at the age of 2 months, the onset of muscle weakness, whereas AM at the lumbar region drastically declined throughout the disease course. The angular velocity index in the vertical direction in the lumbar region increased in dystrophic dogs, suggesting waddling at the girdle. These parameters also accordingly decreased with exacerbation of clinical manifestations and a decrease in spontaneous locomotor activity. The AM of dystrophic dogs was analyzed with magnetic resonance imaging to look for a correlation with crus muscle involvement. Results showed that acceleration and angular velocity are multifaceted kinematic indices that can be applied to assess outcomes in clinical trials for hereditary neuromuscular disorders including DMD.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Naohiro Kato
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
| | - Hiroyuki Shibasaki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihiko Shin
- School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - En Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
9
|
Thibaud JL, Matot B, Barthélémy I, Fromes Y, Blot S, Carlier PG. Anatomical and mesoscopic characterization of the dystrophic diaphragm: An in vivo nuclear magnetic resonance imaging study in the Golden retriever muscular dystrophy dog. Neuromuscul Disord 2017; 27:315-325. [PMID: 28258941 DOI: 10.1016/j.nmd.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 12/31/2016] [Accepted: 02/04/2017] [Indexed: 01/28/2023]
Abstract
Because respiratory failure remains a major issue in Duchenne Muscular Dystrophy patients, respiratory muscles are a key target of systemic therapies. In the Golden Retriever Muscular Dystrophy (GRMD) dogs, the disease shows strong clinical and histological similarities with the human pathology, making it a valuable model for preclinical therapeutic trials. We report here the first nuclear magnetic resonance (NMR) imaging anatomical study of the diaphragm in GRMD dogs and healthy controls. Both T1- and T2-weighted images of the diaphragm of seven healthy and thirteen GRMD dogs, from 3 to 36 months of age, were acquired on a 3 tesla NMR scanner. Abnormalities of texture and shape were revealed and consisted of increases in signal intensity on T2-weighted images and in signal heterogeneity on both T1- and T2-weighted images of the dystrophic diaphragm. These abnormalities were associated with a significant thickening of the muscle and we identified a clear 8-mm-threshold distinguishing clinically preserved GRMD dogs from those more severely affected. In this study, we demonstrated the feasibility of NMR imaging of the diaphragm and depicted several anatomical and mesoscopic anomalies in the dystrophic diaphragm. NMR imaging of the diaphragm shows a promise as an outcome measure in preclinical trials using GRMD dogs.
Collapse
Affiliation(s)
- J L Thibaud
- NMR Laboratory, Institute of Myology, Paris, France; Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - B Matot
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France
| | - I Barthélémy
- Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - Y Fromes
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France
| | - S Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France
| | - P G Carlier
- NMR Laboratory, Institute of Myology, Paris, France; CEA, DRF, I(2)BM, MIRCen, NMR Laboratory, Paris, France.
| |
Collapse
|
10
|
Sakaeda K, Shimizu M. Use of B-mode ultrasonography for measuring femoral muscle thickness in dogs. J Vet Med Sci 2016; 78:803-10. [PMID: 26832997 PMCID: PMC4905835 DOI: 10.1292/jvms.15-0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Assessment of muscle mass is important for evaluating muscle function and rehabilitation
outcomes. Ultrasound has recently been successfully used to estimate muscle mass in humans
by measuring muscle thickness. This study attempted to standardize procedures for
measuring femoral muscle thickness ultrasonographically, as well as quantify the
reliability and validity of ultrasound evaluations of muscle thickness compared to
measurements made by magnetic resonance imaging (MRI) in dogs. We evaluated the quadriceps
femoris (QF), biceps femoris (BF), semitendinosus (ST) and semimembranosus (SM) muscles of
10 clinically healthy Beagle dogs. Scans were taken in 5 different sections divided
equally between the greater trochanter and proximal patella. MRI was performed, followed
by T1-weighted and contrast-enhanced T1-weighted imaging. Muscle cross-sectional area
(CSA) was measured with MRI, and muscle thickness was measured with MRI and
ultrasonography. The thickness of the QF, BF and ST muscles as measured by ultrasound at
slices 1–3 (from the proximal end to the middle of the femur), 2–4 (middle of the femur)
and 2 (more proximal than the middle of the femur), respectively, was correlated with
muscle thickness and CSA as measured by MRI. These sites showed a flat interface between
muscle and transducer and were situated over belly muscle. No correlation between
measurement types was seen in SM muscle. We must confirm this assessment method for
various breeds, sizes, ages and muscle pathologies in dogs, thereby confirming that muscle
thickness as measured ultrasonographically can reflect muscle function.
Collapse
Affiliation(s)
- Kanako Sakaeda
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | |
Collapse
|
11
|
Lerski RA, de Certaines JD, Duda D, Klonowski W, Yang G, Coatrieux JL, Azzabou N, Eliat PA. Application of texture analysis to muscle MRI: 2 – technical recommendations. ACTA ACUST UNITED AC 2015. [DOI: 10.1140/epjnbp/s40366-015-0018-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Villalta SA, Rosenberg AS, Bluestone JA. The immune system in Duchenne muscular dystrophy: Friend or foe. Rare Dis 2015; 3:e1010966. [PMID: 26481612 PMCID: PMC4588155 DOI: 10.1080/21675511.2015.1010966] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the X-linked dystrophin gene, resulting in reduced or absent protein production, subsequently leading to the structural instability of the dystroglycan complex (DGC), muscle degeneration, and early death in males. Thus, current treatments have been targeting the genetic defect either by bypassing the mutation through exon skipping or replacing the defective gene through gene therapy and stem cell approaches. However, what has been an underappreciated mediator of muscle pathology and, ultimately, of muscle degeneration and fibrotic replacement, is the prominent inflammatory response. Of potentially critical importance, however, is the fact that the elements mediating the inflammatory response also play an essential role in tissue repair. In this opinion piece, we highlight the detrimental and supportive immune parameters that occur as a consequence of the genetic disorder and discuss how changes to immunity can potentially ameliorate the disease intensity and be employed in conjunction with efforts to correct the genetic disorder.
Collapse
Affiliation(s)
- S Armando Villalta
- Diabetes Center; University of California, San Francisco; San Francisco, CA USA
| | - Amy S Rosenberg
- US Food and Drug Administration; Division of Therapeutic Proteins; Silver Spring, MD USA
| | - Jeffrey A Bluestone
- Diabetes Center; University of California, San Francisco; San Francisco, CA USA
- Department of Medicine; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
13
|
Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance. Mol Ther 2015; 23:627-37. [PMID: 25586688 DOI: 10.1038/mt.2015.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe congenital disease due to mutations in the dystrophin gene. Supplementation of dystrophin using recombinant adenoassociated virus vector has promise as a treatment of DMD, although therapeutic benefit of the truncated dystrophin still remains to be elucidated. Besides, host immune responses against the vector as well as transgene products have been denoted in the clinical gene therapy studies. Here, we transduced dystrophic dogs fetuses to investigate the therapeutic effects of an AAV vector expressing microdystrophin under conditions of immune tolerance. rAAV-CMV-microdystrophin and a rAAV-CAG-luciferase were injected into the amniotic fluid surrounding fetuses. We also reinjected rAAV9-CMV-microdystrophin into the jugular vein of an infant dystrophic dog to induce systemic expression of microdystrophin. Gait and cardiac function significantly improved in the rAAV-microdystrophin-injected dystrophic dog, suggesting that an adequate treatment of rAAV-microdystrophin with immune modulation induces successful long-term transgene expression to analyze improved dystrophic phenotype.
Collapse
|
14
|
Beltran E, Shelton GD, Guo LT, Dennis R, Sanchez-Masian D, Robinson D, De Risio L. Dystrophin-deficient muscular dystrophy in a Norfolk terrier. J Small Anim Pract 2014; 56:351-4. [PMID: 25353637 DOI: 10.1111/jsap.12292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
A six-month-old male entire Norfolk terrier was presented with a 3-month history of poor development, reluctance to exercise and progressive and diffuse muscle atrophy. Serum creatine kinase concentration was markedly elevated. Magnetic resonance imaging of the epaxial muscles revealed asymmetrical streaky signal changes aligned within the muscle fibres (hyperintense on T2-weighted images and short-tau inversion recovery with moderate contrast enhancement on T1-weighted images). Electromyography revealed pseudomyotonic discharges and fibrillation potentials localised at the level of the supraspinatus, epaxial muscles and tibial cranialis muscles. Muscle biopsy results were consistent with dystrophin-deficient muscular dystrophy. The dog remained stable 7 months after diagnosis with coenzyme Q10 and l-carnitine; however after that time, there was a marked deterioration and the owners elected euthanasia. This case report describes the clinical presentation, magnetic resonance imaging, electrodiagnostic and histopathological findings with immunohistochemical analysis in a Norfolk terrier with confirmed dystrophin-deficient muscular dystrophy, which has not been previously described in this breed.
Collapse
Affiliation(s)
- E Beltran
- Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, CB87UU
| | | | | | | | | | | | | |
Collapse
|
15
|
Kornegay JN, Peterson JM, Bogan DJ, Kline W, Bogan JR, Dow JL, Fan Z, Wang J, Ahn M, Zhu H, Styner M, Guttridge DC. NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 2014; 4:18. [PMID: 25789154 PMCID: PMC4364341 DOI: 10.1186/2044-5040-4-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/25/2014] [Indexed: 01/19/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and afflicts skeletal and cardiac muscles. Previous studies showed that DMD is associated with constitutive activation of NF-κB, and in dystrophin-deficient mdx and utrophin/dystrophin (utrn-/-;mdx) double knock out (dko) mouse models, inhibition of NF-κB with the Nemo Binding Domain (NBD) peptide led to significant improvements in both diaphragm and cardiac muscle function. Methods A trial in golden retriever muscular dystrophy (GRMD) canine model of DMD was initiated with four primary outcomes: skeletal muscle function, MRI of pelvic limb muscles, histopathologic features of skeletal muscles, and safety. GRMD and wild type dogs at 2 months of age were treated for 4 months with NBD by intravenous infusions. Results were compared with those collected from untreated GRMD and wild type dogs through a separate, natural history study. Results Results showed that intravenous delivery of NBD in GRMD dogs led to a recovery of pelvic limb muscle force and improvement of histopathologic lesions. In addition, NBD-treated GRMD dogs had normalized postural changes and a trend towards lower tissue injury on magnetic resonance imaging. Despite this phenotypic improvement, NBD administration over time led to infusion reactions and an immune response in both treated GRMD and wild type dogs. Conclusions This GRMD trial was beneficial both in providing evidence that NBD is efficacious in a large animal DMD model and in identifying potential safety concerns that will be informative moving forward with human trials.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; The Gene Therapy Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, Mail Stop 4458, College Station, TX, USA
| | - Jennifer M Peterson
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Bogan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; The Gene Therapy Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William Kline
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Janet R Bogan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; The Gene Therapy Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer L Dow
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; The Gene Therapy Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zheng Fan
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiahui Wang
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mihye Ahn
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin Styner
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA ; The Ohio State University College of Medicine, 460W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Initial pulmonary respiration causes massive diaphragm damage and hyper-CKemia in Duchenne muscular dystrophy dog. Sci Rep 2014; 3:2183. [PMID: 23851606 PMCID: PMC3711052 DOI: 10.1038/srep02183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 12/05/2022] Open
Abstract
The molecular mechanism of muscle degeneration in a lethal muscle disorder Duchene muscular dystrophy (DMD) has not been fully elucidated. The dystrophic dog, a model of DMD, shows a high mortality rate with a marked increase in serum creatine kinase (CK) levels in the neonatal period. By measuring serum CK levels in cord and venous blood, we found initial pulmonary respiration resulted in massive diaphragm damage in the neonates and thereby lead to the high serum CK levels. Furthermore, molecular biological techniques revealed that osteopontin was prominently upregulated in the dystrophic diaphragm prior to the respiration, and that immediate-early genes (c-fos and egr-1) and inflammation/immune response genes (IL-6, IL-8, COX-2, and selectin E) were distinctly overexpressed after the damage by the respiration. Hence, we segregated dystrophic phases at the molecular level before and after mechanical damage. These molecules could be biomarkers of muscle damage and potential targets in pharmaceutical therapies.
Collapse
|
17
|
Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 2014; 24:393-401. [PMID: 24491484 DOI: 10.1016/j.nmd.2013.12.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by an increased muscle damage and progressive replacement of muscle by noncontractile tissue. Both of these pathological changes can lengthen the MRI transverse proton relaxation time (T2). The current study measured longitudinal changes in T2 and its distribution in the lower leg of 16 boys with DMD (5-13years, 15 ambulatory) and 15 healthy controls (5-13years). These muscles were chosen to allow extended longitudinal monitoring, due to their slow progression compared with proximal muscles in DMD. In the soleus muscle of boys with DMD, T2 and the percentage of pixels with an elevated T2 (⩾2SD above control mean T2) increased significantly over 1year and 2years, while the width of the T2 histogram increased over 2years. Changes in soleus T2 variables were significantly greater in 9-13years old compared with 5-8years old boys with DMD. Significant correlations between the change in all soleus T2 variables over 2years and the change in functional measures over 2years were found. MRI measurement of muscle T2 in boys with DMD is sensitive to disease progression and shows promise as a clinical outcome measure.
Collapse
|
18
|
Yang X, Lorenser D, McLaughlin RA, Kirk RW, Edmond M, Simpson MC, Grounds MD, Sampson DD. Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. BIOMEDICAL OPTICS EXPRESS 2013; 5:136-48. [PMID: 24466482 PMCID: PMC3891326 DOI: 10.1364/boe.5.000136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/30/2013] [Indexed: 05/16/2023]
Abstract
We have developed an extremely miniaturized optical coherence tomography (OCT) needle probe (outer diameter 310 µm) with high sensitivity (108 dB) to enable minimally invasive imaging of cellular structure deep within skeletal muscle. Three-dimensional volumetric images were acquired from ex vivo mouse tissue, examining both healthy and pathological dystrophic muscle. Individual myofibers were visualized as striations in the images. Degradation of cellular structure in necrotic regions was seen as a loss of these striations. Tendon and connective tissue were also visualized. The observed structures were validated against co-registered hematoxylin and eosin (H&E) histology sections. These images of internal cellular structure of skeletal muscle acquired with an OCT needle probe demonstrate the potential of this technique to visualize structure at the microscopic level deep in biological tissue in situ.
Collapse
Affiliation(s)
- Xiaojie Yang
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Dirk Lorenser
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Rodney W. Kirk
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Matthew Edmond
- Photon Factory, School of Chemical Sciences & Department of Physics, University of Auckland, Auckland, New Zealand
| | - M. Cather Simpson
- Photon Factory, School of Chemical Sciences & Department of Physics, University of Auckland, Auckland, New Zealand
| | - Miranda D. Grounds
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Australia
| |
Collapse
|
19
|
Yang X, Chin L, Klyen BR, Shavlakadze T, McLaughlin RA, Grounds MD, Sampson DD. Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography. J Appl Physiol (1985) 2013; 115:1393-401. [DOI: 10.1152/japplphysiol.00265.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Minimally invasive, high-resolution imaging of muscle necrosis has the potential to aid in the assessment of diseases such as Duchenne muscular dystrophy. Undamaged muscle tissue possesses high levels of optical birefringence due to its anisotropic ultrastructure, and this birefringence decreases when the tissue undergoes necrosis. In this study, we present a novel technique to image muscle necrosis using polarization-sensitive optical coherence tomography (PS-OCT). From PS-OCT scans, our technique is able to quantify the birefringence in muscle tissue, generating an image indicative of the tissue ultrastructure, with areas of abnormally low birefringence indicating necrosis. The technique is demonstrated on excised skeletal muscles from exercised dystrophic mdx mice and control C57BL/10ScSn mice with the resulting images validated against colocated histological sections. The technique additionally gives a measure of the proportion (volume fraction) of necrotic tissue within the three-dimensional imaging field of view. The percentage necrosis assessed by this technique is compared against the percentage necrosis obtained from manual assessment of histological sections, and the difference between the two methods is found to be comparable to the interobserver variability of the histological assessment. This is the first published demonstration of PS-OCT to provide automated assessment of muscle necrosis.
Collapse
Affiliation(s)
- Xiaojie Yang
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lixin Chin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Blake R. Klyen
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Tea Shavlakadze
- Skeletal Muscle Research Group, School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; and
| | - Robert A. McLaughlin
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Miranda D. Grounds
- Skeletal Muscle Research Group, School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; and
| | - David D. Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
20
|
Fan Z, Wang J, Ahn M, Shiloh-Malawsky Y, Chahin N, Elmore S, Bagnell CR, Wilber K, An H, Lin W, Zhu H, Styner M, Kornegay JN. Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord 2013; 24:178-91. [PMID: 24295811 DOI: 10.1016/j.nmd.2013.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The goal of this study was to assess whether magnetic resonance imaging (MRI) biomarkers can quantify disease progression in golden retriever muscular dystrophy (GRMD) via a natural history study. The proximal pelvic limbs of ten GRMD and eight normal dogs were scanned at 3, 6, and 9-12 months of age. Several MRI imaging and texture analysis biomarkers were quantified in seven muscles. Almost all MRI biomarkers readily distinguished GRMD from control dogs; however, only selected biomarkers tracked with longitudinal disease progression. The biomarkers that performed best were full-length muscle volume and a texture analysis biomarker, termed heterogeneity index. The biceps femoris, semitendinosus and cranial sartorius muscles showed differential progression in GRMD versus control dogs. MRI features in GRMD dogs showed dynamic progression that was most pronounced over the 3- to 6-month period. Volumetric biomarkers and water map values correlated with histopathological features of necrosis/regeneration at 6-months. In conclusion, selected MRI biomarkers (volume and heterogeneity index) in particular muscles (biceps femoris, semitendinosus, and cranial sartorius) adjusted for age effect allow distinction of differential longitudinal progression in GRMD dogs. These biomarkers may be used as surrogate outcome measures in preclinical GRMD trials.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, United States.
| | - Jiahui Wang
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Mihye Ahn
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Yael Shiloh-Malawsky
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Nizar Chahin
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC 27599, United States
| | - C Robert Bagnell
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kathy Wilber
- Department of Radiology, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hongyu An
- Department of Radiology, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Joe N Kornegay
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
21
|
Hollingsworth KG, Garrood P, Eagle M, Bushby K, Straub V. Magnetic resonance imaging in duchenne muscular dystrophy: Longitudinal assessment of natural history over 18 months. Muscle Nerve 2013; 48:586-8. [DOI: 10.1002/mus.23879] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Kieren G. Hollingsworth
- Newcastle Magnetic Resonance Centre; Institute of Cellular Medicine, Campus for Ageing and Vitality, Newcastle University; Newcastle upon Tyne NE4 5PL UK
| | - Penny Garrood
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Michelle Eagle
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Kate Bushby
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| | - Volker Straub
- Institute of Genetic Medicine; International Centre for Life Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
22
|
Arpan I, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Triplett WT, Deol JK, Sweeney HL, Walter GA, Vandenborne K. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2013; 26:320-8. [PMID: 23044995 PMCID: PMC3573223 DOI: 10.1002/nbm.2851] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/14/2012] [Accepted: 08/03/2012] [Indexed: 05/15/2023]
Abstract
Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P < 0.05) in dystrophic muscles than in controls. Further, T₂ measures showed positive correlations with timed functional tests (r = 0.23-0.79). The elevated T₂ measures with and without fat saturation at all ages of DMD examined (5-15 years) compared with unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema and fat infiltration. This study shows that T₂ mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD.
Collapse
Affiliation(s)
- Ishu Arpan
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Michael J Daniels
- Department of Statistics; University of Florida, Gainesville, Florida
| | - William T Triplett
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Jasjit K Deol
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - H Lee Sweeney
- Department of Physiology; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy. Int J Comput Assist Radiol Surg 2013; 8:763-74. [PMID: 23299128 DOI: 10.1007/s11548-012-0810-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semiautomated system to quantify MRI biomarkers of GRMD. METHODS Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using a semiautomated full muscle segmentation method. We then performed preprocessing, including intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted and T2-weighted fat-suppressed images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume, intensity statistics over MRI biomarker maps, and statistical image texture features. RESULTS The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation showed significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. CONCLUSION The experimental results demonstrated that this quantification tool could reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients.
Collapse
|
24
|
Comprehensive longitudinal characterization of canine muscular dystrophy by serial NMR imaging of GRMD dogs. Neuromuscul Disord 2012; 22 Suppl 2:S85-99. [DOI: 10.1016/j.nmd.2012.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/03/2012] [Indexed: 11/18/2022]
|
25
|
Abstract
Lipomatous myopathy is a degenerative muscle pathology characterized by the substitution of muscle cells with adipose tissue, sporadically reported in cattle, pigs, and rarely in sheep, horses and dogs. This study investigated the pathology of this myopathy in 40 muscle samples collected from regularly slaughtered Piedmontese cattle living in Piedmont region (Italy). None of the animals showed clinical signs of muscular disease. Muscle specimens were submitted to histological and enzymatic investigations. Gross pathology revealed a different grade of infiltration of adipose tissue, involving multiple or single muscles. The most affected regions were the ventral abdomen and the shoulders, especially the cutaneous muscles and the muscles of the thoracic group. Morphological staining revealed an infiltration of adipose tissue varying in distribution and severity, changes in muscle fibre size and increased number of fibres with centrally located nuclei, suggesting muscle degeneration-regeneration. Necrosis and non-suppurative inflammatory cells were also seen. Furthermore, proliferation of connective tissue and non-specific myopathic changes were present. Chemical and physical characteristics of the affected tissue were also evaluated. The authors discuss about the aetiopathogenesis and classification of this muscle disorder whose histological lesions were similar to those reported in human dystrophies.
Collapse
|
26
|
Poliachik SL, Friedman SD, Carter GT, Parnell SE, Shaw DW. Skeletal Muscle Edema in Muscular Dystrophy: Clinical and Diagnostic Implications. Phys Med Rehabil Clin N Am 2012; 23:107-22, xi. [DOI: 10.1016/j.pmr.2011.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Kornegay JN, Bogan JR, Bogan DJ, Childers MK, Li J, Nghiem P, Detwiler DA, Larsen CA, Grange RW, Bhavaraju-Sanka RK, Tou S, Keene BP, Howard JF, Wang J, Fan Z, Schatzberg SJ, Styner MA, Flanigan KM, Xiao X, Hoffman EP. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 2012; 23:85-108. [PMID: 22218699 DOI: 10.1007/s00335-011-9382-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/29/2011] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder in which the loss of dystrophin causes progressive degeneration of skeletal and cardiac muscle. Potential therapies that carry substantial risk, such as gene- and cell-based approaches, must first be tested in animal models, notably the mdx mouse and several dystrophin-deficient breeds of dogs, including golden retriever muscular dystrophy (GRMD). Affected dogs have a more severe phenotype, in keeping with that of DMD, so may better predict disease pathogenesis and treatment efficacy. Various phenotypic tests have been developed to characterize disease progression in the GRMD model. These biomarkers range from measures of strength and joint contractures to magnetic resonance imaging. Some of these tests are routinely used in clinical veterinary practice, while others require specialized equipment and expertise. By comparing serial measurements from treated and untreated groups, one can document improvement or delayed progression of disease. Potential treatments for DMD may be broadly categorized as molecular, cellular, or pharmacologic. The GRMD model has increasingly been used to assess efficacy of a range of these therapies. A number of these studies have provided largely general proof-of-concept for the treatment under study. Others have demonstrated efficacy using the biomarkers discussed. Importantly, just as symptoms in DMD vary among patients, GRMD dogs display remarkable phenotypic variation. Though confounding statistical analysis in preclinical trials, this variation offers insight regarding the role that modifier genes play in disease pathogenesis. By correlating functional and mRNA profiling results, gene targets for therapy development can be identified.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ito D, Kitagawa M, Jeffery N, Okada M, Yoshida M, Kobayashi M, Nakamura A, Watari T. Dystrophin-deficient muscular dystrophy in an Alaskan malamute. Vet Rec 2011; 169:127. [PMID: 21730032 DOI: 10.1136/vr.d2693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- D Ito
- School of Veterinary Medicine, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Klyen BR, Shavlakadze T, Radley-Crabb HG, Grounds MD, Sampson DD. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:076013. [PMID: 21806274 DOI: 10.1117/1.3598842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.
Collapse
Affiliation(s)
- Blake R Klyen
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
30
|
Janiczek RL, Gambarota G, Sinclair CDJ, Yousry TA, Thornton JS, Golay X, Newbould RD. Simultaneous T
2
and lipid quantitation using IDEAL-CPMG. Magn Reson Med 2011; 66:1293-302. [DOI: 10.1002/mrm.22916] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 12/25/2022]
|
31
|
Kornegay JN, Li J, Bogan JR, Bogan DJ, Chen C, Zheng H, Wang B, Qiao C, Howard JF, Xiao X. Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther 2010; 18:1501-8. [PMID: 20517298 DOI: 10.1038/mt.2010.94] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Duchenne (DMD) and golden retriever (GRMD) muscular dystrophy are caused by genetic mutations in the dystrophin gene and afflict striated muscles. We investigated systemic gene delivery in 4-day-old GRMD dogs given a single intravenous injection of an AAV9 vector (1.5 x 10(14) vector genomes/kg) carrying a human codon-optimized human mini-dystrophin gene under control of the cytomegalovirus (CMV) promoter. One of the three treated dogs was euthanized 9 days later due to pre-existing conditions. Scattered mini-dystrophin-positive myofibers were seen by immunofluorescent (IF) staining in numerous muscles. At the end of the 16-week study, the other two dogs showed generalized muscle expression of mini-dystrophin in ~15% to nearly 100% of myofibers. Western blot and vector DNA quantitative PCR results agreed with the IF data. Delayed growth and pelvic limb muscle atrophy and contractures were seen several weeks after vector delivery. T-2 weighted magnetic resonance imaging (MRI) at 8 weeks showed increased signal intensity compatible with inflammation in several pelvic limb muscles. This marked early inflammatory response raised concerns regarding methodology. Use of the ubiquitous CMV promoter, extra-high vector dose, and marked expression of a human protein in canine muscles may have contributed to the pathologic changes seen in the pelvic limbs.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|