1
|
Pradines M, Jabouille F, Fontenas E, Baba Aissa I, Gault-Colas C, Baude M, Guihard M, Gros K, Gracies JM. Does spastic myopathy determine active movement and ambulation speed in chronic spastic paresis?-A cross-sectional study on plantar flexors. PLoS One 2024; 19:e0310969. [PMID: 39446866 PMCID: PMC11500935 DOI: 10.1371/journal.pone.0310969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Functional correlates of spastic myopathy, the muscle disorder of spastic paresis, are unknown. OBJECTIVE To explore reciprocal relationships between clinical and structural parameters of plantar flexors with i) ambulation speed, ii) dorsiflexion and plantarflexion torques in chronic hemiparesis. METHODS Cross-sectional trial in chronic stroke-induced hemiparesis (>6 months). Plantar flexors were quantified through i) the Five Step Assessment: maximal extensibility (XV1), active range of dorsiflexion (XA); ii) ultrasonography: fascicle length (Lf) and thickness (Th) of medial gastrocnemius (GAS) and soleus (SOL), knee extended in an isokinetic ergometer, ankle at 80% XV1-GAS. Maximal isometric torques in plantar flexion (PF) and dorsiflexion (DF) and maximal barefoot 10-meter ambulation speed were collected. Relationships between structural, biomechanical, clinical and functional parameters were explored using non-parametric testing (Spearman). RESULTS Twenty-one subjects (age 58.0±8.4, mean±SD, time since lesion 7.8±5.7 years) were recruited, with the following characteristics: ambulation speed, 0.77±0.37m/sec; XV1-SOL 92.7±10.3°; XV1-GAS 91.3±9.6°; XA-SOL 86.9±10.0°; XA-GAS 7676±14.2°; LfGAS, 58.2±18.3mm; ThGAS, 17.1±3.6 mm; LfSOL, 36.0±9.6 mm; ThSOL, 13.8±3.3mm; PF peak-torque 46.5±34.1Nm, DF peak-torque, 20.1±19.1Nm. XA-SOL and XA-GAS strongly correlated with XV1-SOL and XV1-GAS respectively (ρ = 0.74, p = 4E-04; resp ρ = 0.60, p = 0.0052). Ambulation speed moderately correlated with LfGAS (ρ = 0.51, p = 0.054), ThGAS (ρ = 0.58, p = 0.02) and LfSOL (ρ = 0.63, p = 0.009). DF and PF peak-torques both correlated with LfGAS (ρ = 0.53, p = 0.04) a; resp. ρ = 0.71, p = 0.0015). CONCLUSION In chronic hemiparesis, active dorsiflexion is mostly determined by plantar flexor extensibility. Plantar flexor fascicle shortening is associated with reduced ambulation speed and ankle torques. Attempts to restore plantar flexor extensibility might be important objectives for gait rehabilitation in chronic hemiparesis.
Collapse
Affiliation(s)
- Maud Pradines
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - François Jabouille
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Enguerran Fontenas
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Idriss Baba Aissa
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Caroline Gault-Colas
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Marjolaine Baude
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Marina Guihard
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
| | - Karine Gros
- Chaire "Handicap, Emploi et Santé au Travail", Université Paris-Est Créteil, Créteil, France
| | - Jean-Michel Gracies
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), Créteil, France
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, Créteil, France
| |
Collapse
|
2
|
Chen T, Wu Y, Zhong M, Xu K. Short- medium- and long-term effects of botulinum toxin on upper limb spasticity in children with cerebral palsy: A meta-analysis of randomized controlled trials. Ann Phys Rehabil Med 2024; 67:101869. [PMID: 39181066 DOI: 10.1016/j.rehab.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Botulinum toxin (BTX) is an effective management method for spasticity in children with cerebral palsy (CP), but the short- medium- and long-term effects remain unclear. OBJECTIVE The primary objective was to quantify the effects of BTX injections on upper limb spasticity over time in children with CP. The secondary objective was to evaluate efficacy according to the International Classification of Functioning, Disability, and Health-Children & Youth version framework. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials that included control/comparison groups treated with a placebo or other treatments. We searched CINAHL, Embase, PubMed, Scopus, Web of Science, and PsycINFO from their inception to April 2024. The pooled mean difference (MD) or standard mean difference (SMD) with 95 % CI was calculated using a random effects model at the short-term (up to 3 months), medium-term (3 to 6 months), and long-term (over 6 months). RESULTS A total of 658 children with CP aged 1.8 to 19 years old in 12 eligible trials were involved. The primary outcome of the Melbourne Assessment percentile showed a significant increase in the medium- (MD = 2.63, 95 % CI 0.22 to 5.04, I² = 0 %) and long-term (MD = 4.72, 95 % CI 0.93 to 8.51, I² = 0 %) in favor of BTX. Pooled effects also showed that BTX significantly improved Modified Ashworth Scale scores in the short- (MD = -0.44, 95 % CI -0.88 to -0.01, I² = 88 %) and medium-term (MD = -0.20, 95 % CI -0.28 to -0.13, I² = 0 %), and individual goals and bimanual performance up to 6-months. No significantly higher risk of adverse events was observed with BTX. CONCLUSIONS AND IMPLICATIONS BTX injections sustainably improved the quality of affected upper limb function and temporarily improved individual goals and bimanual performance in children with CP. Our findings cautiously support a time interval of 3 to 6 months between BTX injections in the upper limbs of children with CP. TRIAL REGISTRATION This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (Registration ID: CRD42022323672).
Collapse
Affiliation(s)
- Tingting Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No. 318 Renmin Middle Road, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Yin Wu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No. 318 Renmin Middle Road, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No. 318 Renmin Middle Road, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Guangzhou, 510623, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No. 318 Renmin Middle Road, Guangzhou, 510120, China; Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
3
|
Devis M, Lecouvet F, Lejeune T, Stoquart G. Noninvasive analysis of overactive muscle structure and elasticity after botulinum toxin type A injection: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2024; 60:567-580. [PMID: 38958691 PMCID: PMC11391396 DOI: 10.23736/s1973-9087.24.08029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Injections of botulinum toxin type A (BoNT-A) are the first-line treatment for spastic muscle overactivity (MO). Some authors observed that BoNT-A injections lead to changes in muscle structure and muscle elasticity that are probably not completely reversible. This possible effect is critical, as it could lead to negative impacts on the effectiveness of BoNT-A interventions. Our study aimed to evaluate the current literature regarding changes in muscle elasticity and structure after BoNT-A injection, by diagnostic imaging, in neurological populations with MO. Our second objective was to pool all articles published on this topic in order to provide a quantitative synthesis of the data. EVIDENCE ACQUISITION A systematic search was conducted between October 2021 and April 2023 using different databases in accordance with PRISMA guidelines. Two independent reviewers screened articles for inclusion, extracted data, and evaluated methodological quality of the studies. A meta-analysis was performed to compare muscle elasticity and structure before and after BoNT-A injections. EVIDENCE SYNTHESIS A sample of 34 studies was selected for qualitative review and 19 studies for quantitative review. Meta-analysis of pre-post studies demonstrated significant improvement with a medium effect size (standardized mean difference=0.74; 95% CI 0.46-1.02; P<0.001) of muscle elasticity assessed by ultrasound elastography (USE) 4 weeks after BoNT-A injection. No statistically significant difference was found for muscle thickness, pennation angle, and muscle echo-intensity assessed by magnetic resonance imaging and/or ultrasonography at short-term. On the other hand, normalized muscle volume decreased with a small effect size (standardized mean difference = -0.17; 95% CI -0.25 - -0.09; P<0.001) 6 months after BoNT-A injection. CONCLUSIONS Muscle elasticity measured by USE improves with a temporary effect at short-term following BoNT-A injections. Synthesis of studies that assesses muscle structure is hindered by methodological differences between studies. However, based on a small amount of data, normalized muscle volume seems to decrease at long-term after BoNT-A injections in children with CP suggesting that the timing of re-injection should be considered with caution in this population. Further work should focus on the long-term effect of repeated injections on muscle structure and elasticity in neurological populations.
Collapse
Affiliation(s)
- Marine Devis
- Department of Health Sciences, Institute of Experimental and Clinical Research, Neuromusculoskeletal Lab (NMSK), Catholic University of Louvain, Brussels, Belgium -
| | - Frédéric Lecouvet
- Department of Health Sciences, Institute of Experimental and Clinical Research, IMAG lab, Catholic University of Louvain, Brussels, Belgium
- Department of Radiology, Saint-Luc University Clinic, Brussels, Belgium
| | - Thierry Lejeune
- Department of Health Sciences, Institute of Experimental and Clinical Research, Neuromusculoskeletal Lab (NMSK), Catholic University of Louvain, Brussels, Belgium
- Department of Physical Medicine and Rehabilitation, Saint-Luc University Clinic, Brussels, Belgium
| | - Gaëtan Stoquart
- Department of Health Sciences, Institute of Experimental and Clinical Research, Neuromusculoskeletal Lab (NMSK), Catholic University of Louvain, Brussels, Belgium
- Department of Physical Medicine and Rehabilitation, Saint-Luc University Clinic, Brussels, Belgium
| |
Collapse
|
4
|
Vampertzis T, Barmpagianni C, Bekiari C, Brellou GD, Zervos IA, Tsiridis E, Galanis N. The Role of Botulinum Neurotoxin A in the Conservative Treatment of Fractures: An Experimental Study on Rats. ScientificWorldJournal 2024; 2024:7446251. [PMID: 38854678 PMCID: PMC11161265 DOI: 10.1155/2024/7446251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
This paper explores the role of botulinum neurotoxin in aiding fracture recovery through temporary muscle paralysis. Specifically, it investigates the effects of botulinum neurotoxin-induced paralysis of the sternocleidomastoid muscle on clavicle fractures in rats. The research aims to assess safety, effectiveness, and the impact on fracture healing. Healthy male Albino Wistar rats were divided into four groups: clavicle fracture, botulinum neurotoxin injection, both, and control. Surgeries were conducted under anaesthesia, and postoperatively, animals were monitored for 28 days. Euthanasia and radiological assessment followed, examining fracture healing and muscle changes, while tissues were histopathologically evaluated. The modified Lane-Sandhu scoring system was used for the radiographic evaluation of clavicle fractures, and the results varied from complete healing to nonunion. Histopathological examination at 28 days postfracture showed fibrous tissue, mesenchymal cells, and primary callus formation in all groups. Despite varied callus compositions, botulinum neurotoxin administration did not affect clavicle healing, as evidenced by similar scores to the control group. Several studies have explored botulinum neurotoxin applications in fracture recovery. Research suggests its potential to enhance functional recovery in certain types of fractures. Theoretical benefits include managing muscle spasticity, aiding reduction techniques, and preventing nonunion. However, botulinum neurotoxin's transient effect and nonuniversal applications should be considered. The present study found that botulinum toxin had no clear superiority in healing compared to controls, while histological evaluation showed potential adverse effects on muscle tissue. Further research is essential to understand its risk-benefit balance and long-term effects.
Collapse
Affiliation(s)
- Themistoklis Vampertzis
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia D. Brellou
- Department of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A. Zervos
- Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Papageorgiou General Hospital and CORE Laboratory at CIRI-AUTH, AUTH Medical School, Thessaloniki, Greece
| | - Nikiforos Galanis
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Dewald HA, Yao J, Dewald JPA, Nader A, Kirsch RF. Peripheral nerve blocks of wrist and finger flexors can increase hand opening in chronic hemiparetic stroke. Front Neurol 2024; 15:1284780. [PMID: 38456150 PMCID: PMC10919218 DOI: 10.3389/fneur.2024.1284780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Hand opening is reduced by abnormal wrist and finger flexor activity in many individuals with stroke. This flexor activity also limits hand opening produced by functional electrical stimulation (FES) of finger and wrist extensor muscles. Recent advances in electrical nerve block technologies have the potential to mitigate this abnormal flexor behavior, but the actual impact of nerve block on hand opening in stroke has not yet been investigated. Methods In this study, we applied the local anesthetic ropivacaine to the median and ulnar nerve to induce a complete motor block in 9 individuals with stroke and observed the impact of this block on hand opening as measured by hand pentagonal area. Volitional hand opening and FES-driven hand opening were measured, both while the arm was fully supported on a haptic table (Unloaded) and while lifting against gravity (Loaded). Linear mixed effect regression (LMER) modeling was used to determine the effect of Block. Results The ropivacaine block allowed increased hand opening, both volitional and FES-driven, and for both unloaded and loaded conditions. Notably, only the FES-driven and Loaded condition's improvement in hand opening with the block was statistically significant. Hand opening in the FES and Loaded condition improved following nerve block by nearly 20%. Conclusion Our results suggest that many individuals with stroke would see improved hand-opening with wrist and finger flexor activity curtailed by nerve block, especially when FES is used to drive the typically paretic finger and wrist extensor muscles. Such a nerve block (potentially produced by aforementioned emerging electrical nerve block technologies) could thus significantly address prior observed shortcomings of FES interventions for individuals with stroke.
Collapse
Affiliation(s)
- Hendrik A. Dewald
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Antoun Nader
- Department of Anesthesiology, Northwestern University, Chicago, IL, United States
| | - Robert F. Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Cleveland FES Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
6
|
Deschrevel J, Andries A, Maes K, De Beukelaer N, Corvelyn M, Staut L, De Houwer H, Costamagna D, Desloovere K, Van Campenhout A, Gayan-Ramirez G. Short-Term Effects of Botulinum Toxin-A Injection on the Medial Gastrocnemius Histological Features in Ambulant Children with Cerebral Palsy: A Longitudinal Pilot Study. Toxins (Basel) 2024; 16:69. [PMID: 38393147 PMCID: PMC10891867 DOI: 10.3390/toxins16020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Botulinum toxin-A (BoNT-A) injection is known to exert beneficial effects on muscle tone, joint mobility and gait in children with cerebral palsy (CP). However, recent animal and human studies have raised the concern that BoNT-A might be harmful to muscle integrity. In CP-children, the impact of BoNT-A on muscle structure has been poorly studied, and inconsistent results have been reported. This study was aimed at determining the time course effect of a single BoNT-A administration on medial gastrocnemius (MG) morphology in CP-children. MG microbiopsies from 12 ambulant and BoNT-A-naïve CP-children (age, 3.4 (2.3) years, ranging from 2.5 to 7.8 years; seven boys and five girls; GMFCS I = 5, II = 4 and III = 3) were collected before and 3 and 6 months after BoNT-A treatment to analyze the fiber cross-sectional area (fCSA) and proportion; capillarization; and satellite cell (SC) content. Compared with the baseline, the fCSA decreased at 3 months (-14%, NS) and increased at 6 months (+13%, NS). Fiber size variability was significantly higher at 3 months (type I: +56%, p = 0.032; type IIa: +37%, p = 0.032) and 6 months (type I: +69%, p = 0.04; type IIa: +121%, p = 0.032) compared with the baseline. The higher type I proportion seen at 3 months was still present and more pronounced at 6 months (type I: +17%, p = 0.04; type IIx: -65%, p = 0.032). The capillary fiber density was reduced at 3 months (type I: -43%, NS; type II: -44%, p = 0.0320) but normalized at 6 months. There was a non-significant increase in SC/100 fibers at 3 months (+75%, NS) and 6 months (+40%, NS) compared with the baseline. These preliminary data suggest that BoNT-A induced alterations in the MG of children with CP, which were still present 6 months after BoNT-A injection but with signs of muscle recovery.
Collapse
Affiliation(s)
- Jorieke Deschrevel
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Anke Andries
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| | - Nathalie De Beukelaer
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Marlies Corvelyn
- Stem Cell and Developmental Biology, Department of Development and Regeneration, O&N4 Box 804, 3000 Leuven, Belgium;
| | - Lauraine Staut
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Hannah De Houwer
- Pediatric Orthopedics, Department of Development and Regeneration, Herestraat 49 Box 7003, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
| | - Domiziana Costamagna
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
- Stem Cell and Developmental Biology, Department of Development and Regeneration, O&N4 Box 804, 3000 Leuven, Belgium;
- Exercise Physiology Research Group, Department of Movement Sciences, Tervuursevest 101 Box 1500, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation Group, Department of Rehabilitation Sciences, Tervuursevest 101 Box 1501, 3000 Leuven, Belgium; (N.D.B.); (L.S.); (D.C.); (K.D.)
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, Herestraat 49 Box 7003, 3000 Leuven, Belgium; (H.D.H.); (A.V.C.)
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, O&N 1bis Box 706, Herestraat 49, 3000 Leuven, Belgium; (J.D.); (A.A.); (K.M.)
| |
Collapse
|
7
|
Praetorius JP, Walluks K, Svensson CM, Arnold D, Figge MT. IMFSegNet: Cost-effective and objective quantification of intramuscular fat in histological sections by deep learning. Comput Struct Biotechnol J 2023; 21:3696-3704. [PMID: 37560127 PMCID: PMC10407270 DOI: 10.1016/j.csbj.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
The assessment of muscle condition is of great importance in various research areas. In particular, evaluating the degree of intramuscular fat (IMF) in tissue sections is a challenging task, which today is still mostly performed qualitatively or quantitatively by a highly subjective and error-prone manual analysis. We here realize the mission to make automated IMF analysis possible that (i) minimizes subjectivity, (ii) provides accurate and quantitative results quickly, and (iii) is cost-effective using standard hematoxylin and eosin (H&E) stained tissue sections. To address all these needs in a deep learning approach, we utilized the convolutional encoder-decoder network SegNet to train the specialized network IMFSegNet allowing to accurately quantify the spatial distribution of IMF in histological sections. Our fully automated analysis was validated on 17 H&E-stained muscle sections from individual sheep and compared to various state-of-the-art approaches. Not only does IMFSegNet outperform all other approaches, but this neural network also provides fully automated and highly accurate results utilizing the most cost-effective procedures of sample preparation and imaging. Furthermore, we shed light on the opacity of black-box approaches such as neural networks by applying an explainable artificial intelligence technique to clarify that the success of IMFSegNet actually lies in identifying the hard-to-detect IMF structures. Embedded in our open-source visual programming language JIPipe that does not require programming skills, it can be expected that IMFSegNet advances muscle condition assessment in basic research across multiple areas as well as in research fields focusing on translational clinical applications.
Collapse
Affiliation(s)
- Jan-Philipp Praetorius
- Applied Systems Biology, Leibniz institute for natural Product Research and infection Biology – Hans Knöll institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kassandra Walluks
- Applied Systems Biology, Leibniz institute for natural Product Research and infection Biology – Hans Knöll institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz institute for natural Product Research and infection Biology – Hans Knöll institute (HKI), Jena, Germany
| | - Dirk Arnold
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz institute for natural Product Research and infection Biology – Hans Knöll institute (HKI), Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Sheu J, Cohen D, Sousa T, Pham KLD. Cerebral Palsy: Current Concepts and Practices in Musculoskeletal Care. Pediatr Rev 2022; 43:572-581. [PMID: 36180545 DOI: 10.1542/pir.2022-005657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral palsy is a neurologic disorder characterized by a spectrum of motor and cognitive deficits resulting from insults to the developing brain. The etiologies are numerous and likely multifactorial; an increasing portion of cases may be attributable to genetic causes, although the exact mechanisms responsible remain poorly understood. Major risk factors include intrauterine stroke and prematurity and neonatal infection, trauma, and hypoxia, which may occur in the prenatal, perinatal, or postnatal period. The Gross Motor Function Classification System (GMFCS) is a widely used tool to establish a child's level of function and to guide treatment; however, additional metrics are necessary to formulate long-term prognoses. Goals of care are to maximize function and independence, which directly correlate with overall quality of life, and family participation is key to establishing goals early in treatment. Nonpharmaceutical treatments include physical, occupational, and speech therapy, as well as bracing, equipment, and technology. There is a breadth of medical interventions for managing hypertonia, including medications, botulinum toxin injections, intrathecal baclofen pumps, and selective dorsal rhizotomy. Orthopedic interventions are indicated for symptomatic or progressive musculoskeletal sequelae. Treatments for dysplastic hips and/or hip instability range from soft tissue releases to bony procedures. Neuromuscular scoliosis is managed with posterior spinal fusion because bracing is ineffective against these rapidly progressive curves. The degree of care varies considerably depending on the child's baseline GMFCS level and functional capabilities, and early screening, diagnosis, and appropriate referrals are paramount to initiating early care and maximizing the child's quality of life.
Collapse
Affiliation(s)
- Jonathan Sheu
- Department of Orthopedic Surgery, McLaren Flint Regional Hospital, Flint, MI
| | - Dorian Cohen
- Department of Orthopedic Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Ted Sousa
- Department of Orthopedic Surgery, Shriners Hospital for Children, Spokane, WA
| | - Kelly L D Pham
- Department of Physical Medicine and Rehabilitation, Pediatric Rehabilitation Medicine, Reach Pediatric Rehab, Vienna, VA
| |
Collapse
|
9
|
Peeters N, Papageorgiou E, Hanssen B, De Beukelaer N, Staut L, Degelaen M, Van den Broeck C, Calders P, Feys H, Van Campenhout A, Desloovere K. The Short-Term Impact of Botulinum Neurotoxin-A on Muscle Morphology and Gait in Children with Spastic Cerebral Palsy. Toxins (Basel) 2022; 14:676. [PMID: 36287944 PMCID: PMC9607504 DOI: 10.3390/toxins14100676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 08/27/2023] Open
Abstract
Children with spastic cerebral palsy (SCP) are often treated with intramuscular Botulinum Neurotoxin type-A (BoNT-A). Recent studies demonstrated BoNT-A-induced muscle atrophy and variable effects on gait pathology. This group-matched controlled study in children with SCP compared changes in muscle morphology 8-10 weeks post-BoNT-A treatment (n = 25, median age 6.4 years, GMFCS level I/II/III (14/9/2)) to morphological changes of an untreated control group (n = 20, median age 7.6 years, GMFCS level I/II/III (14/5/1)). Additionally, the effects on gait and spasticity were assessed in all treated children and a subgroup (n = 14), respectively. BoNT-A treatment was applied following an established integrated approach. Gastrocnemius and semitendinosus volume and echogenicity intensity were assessed by 3D-freehand ultrasound, spasticity was quantified through electromyography during passive muscle stretches at different velocities. Ankle and knee kinematics were evaluated by 3D-gait analysis. Medial gastrocnemius (p = 0.018, -5.2%) and semitendinosus muscle volume (p = 0.030, -16.2%) reduced post-BoNT-A, but not in the untreated control group, while echogenicity intensity did not change. Spasticity reduced and ankle gait kinematics significantly improved, combined with limited effects on knee kinematics. This study demonstrated that BoNT-A reduces spasticity and partly improves pathological gait but reduces muscle volume 8-10 weeks post-injections. Close post-BoNT-A follow-up and well-considered treatment selection is advised before BoNT-A application in SCP.
Collapse
Affiliation(s)
- Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Lauraine Staut
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Marc Degelaen
- Inkendaal Rehabilitation Hospital, 1602 Vlezenbeek, Belgium
- Rehabilitation Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, 3212 Leuven, Belgium
| |
Collapse
|
10
|
Herring SW, Liu ZJ, Rafferty KL, Baldwin MC, Salamati A, Cunningham C, Owart B, Tamasas B. Repeated botulinum treatment of rabbit masseter causes cumulative tissue damage. Arch Oral Biol 2022; 141:105480. [PMID: 35724521 DOI: 10.1016/j.archoralbio.2022.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Botulinum neurotoxins (BoNT) are used in masticatory muscles for pain relief, unloading of the mandible, and cosmetic facial contouring. Treatment is often repeated every few months as function returns. This study assessed masticatory function and musculoskeletal structure after multiple BoNT treatment of the rabbit masseter. DESIGN Female rabbits received 3 injections of BoNT (n = 13) or saline (n = 5) into one masseter muscle at intervals of 12 weeks. The contralateral side served as control. Periodic measurements of masticatory electromyography (EMG) and stimulated anterior bite force were made. After the final 12-week recovery interval, neuromuscular connection was investigated by stimulating the masseteric nerve to elicit an evoked EMG response. Mandibular specimens were collected for microCT analysis, and masseters were collected for histomorphometry and counts of replicating cells. RESULTS Control and saline-injected muscles maintained consistent masticatory EMG and anterior bite force throughout the study. BoNT-injected masseters showed strong declines after each injection; during the 12-week recovery period, masticatory EMG and anterior bite force improved, although only electrical activity reached normal levels. Multiple injection resulted in persistently atrophied muscle fibers with fibrosis, and notable loss of bone from the mandibular body and condyle. The uninjected masseters of the BoNT group also showed evidence of mild toxin-related changes. CONCLUSIONS Although muscle function is mostly regained after each injection, masseters receiving multiple doses of BoNT show extensive damage. In addition, mandibular bone density is decreased on the injected side.
Collapse
Affiliation(s)
- Susan W Herring
- Department of Orthodontics, University of Washington, Seattle, WA 98195, USA.
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Seattle, WA 98195, USA.
| | | | - Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Atriya Salamati
- Department of Oral Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Cambria Cunningham
- Department of Orthodontics, University of Washington, Seattle, WA 98195, USA.
| | - Birkin Owart
- Department of Orthodontics, University of Washington, Seattle, WA 98195, USA.
| | - Basma Tamasas
- Department of Oral Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Botox Injections in Paraspinal Muscles Result in Low Maximal Specific Force and Shortening Velocity in Fast but Not Slow Skinned Muscle Fibers. Spine (Phila Pa 1976) 2022; 47:833-840. [PMID: 34265813 DOI: 10.1097/brs.0000000000004162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic science, experimental animal study. OBJECTIVE To determine the effects of Botulinum toxin type A (BTX-A) injections on the mechanical properties of skinned muscle fibers (cells) of rabbit paraspinal muscles. SUMMARY OF BACKGROUND DATA BTX-A has been widely used in the treatment of disorders of muscle hyperactivity, such as spasticity, dystonia, and back pain. However, BTX-A injection has been shown to cause muscle atrophy, fat infiltration, and decreased force output in target muscles, but its potential effects on the contractile machinery and force production on the cellular level remain unknown. METHODS Nineteen-month-old, male New Zealand White Rabbits received either saline or BTX-A injections into the paraspinal muscles, equally distributed along the left and right sides of the spine at T12, L1, and L2 at 0, 8, 12, 16, 20, and 24 weeks. Magnetic resonance imaging was used to quantify muscle crosssectional area and structural changes before and at 28 weeks following the initial injection. Skinned fibers isolated from the paraspinal muscles were tested for their active and passive force-length relationships, unloaded shortening velocity, and myosin heavy chain isoforms. RESULTS BTX-A injections led to significant fat infiltration within the injected muscles and a greater proportion of IIa to IIx fibers. Isolated fast fibers from BTX-A injected animals had lower active force and unloaded shortening velocity compared with fibers from saline-injected control animals. Force and velocity properties were not different between groups for the slow fibers. CONCLUSION Injection of BTX-A into the paraspinal rabbit muscles leads to significant alterations in the contractile properties of fast, but not slow, fibers.Level of Evidence: N/A.
Collapse
|
12
|
Chandra S, Afsharipour B, Rymer WZ, Suresh NL. Characteristic Variation of Electromechanical Delay After the Botulinum Toxin Injection in Spastic Biceps Brachii Muscles. Front Neurol 2022; 12:789442. [PMID: 35222227 PMCID: PMC8868127 DOI: 10.3389/fneur.2021.789442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to characterize the effects of intramuscular botulinum toxin (BT) injections on the electromechanical delay (EMD) in spastic human biceps muscles. The EMD is calculated as the time lag between the muscle activation onset, as recorded from the surface electromyogram (sEMG), and the onset of recorded force. In a cohort of chronic stroke survivors, we compared the computed EMD derived from the spastic (injected) biceps brachii with that from the contralateral muscle. Eight participants were tested before and up to 3 months after a BT injection. At each session, participants followed an isometric trapezoidal force trajectory at 50 and 30%, respectively, of the tested maximum voluntary contraction (MVC). Joint force and sEMG signals were recorded as well. The number of zero crossings (ZC) of the sEMG during the steady-state portion of the task was also computed. The EMD post-BT was found to increase by 64 ± 10% (at 50% MVC) and 93 ± 18% (at 30% MVC) when compared to pre-BT values, while the number of sEMG-ZC, the mean MVC values, and the force-EMD slope exhibited striking reductions. These parameters, calculated on the contralateral side, remained relatively constant across sessions, with the EMD significantly lower and the MVC values much higher. We discuss potential contributing factors to an increase in EMD values on the affected side, both pre- and post-BT. The observed co-variation across sessions of the increased EMD values with the decreased ZC estimates, a surrogate of motor outflow, and, potentially, more compliant muscle fascicles suggests that the altered motor unit (MU) behavior contributes, at least in part, to the delayed force production.
Collapse
Affiliation(s)
- Sourav Chandra
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Arms and Hand Laboratory, Shirley Ryan Ability Lab, Chicago, IL, United States
- *Correspondence: Sourav Chandra
| | - Babak Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - William Z. Rymer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Arms and Hand Laboratory, Shirley Ryan Ability Lab, Chicago, IL, United States
| | - Nina L. Suresh
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Arms and Hand Laboratory, Shirley Ryan Ability Lab, Chicago, IL, United States
| |
Collapse
|
13
|
Azzollini V, Dalise S, Chisari C. How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective. Front Neurol 2022; 12:797559. [PMID: 35002937 PMCID: PMC8733480 DOI: 10.3389/fneur.2021.797559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.
Collapse
Affiliation(s)
- Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, DS Neurorehabilitation, University of Pisa, Pisa, Italy
| | - Stefania Dalise
- Department of Neurorehabilitation, Pisa University Hospital - Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, DS Neurorehabilitation, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Cox SM, DeBoef A, Salzano MQ, Katugam K, Piazza SJ, Rubenson J. Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth. J Exp Biol 2021; 224:jeb242694. [PMID: 34522962 PMCID: PMC10659036 DOI: 10.1242/jeb.242694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Elastic energy storage and release can enhance performance that would otherwise be limited by the force-velocity constraints of muscle. Although functional influence of a biological spring depends on tuning between components of an elastic system (the muscle, spring-driven mass and lever system), we do not know whether elastic systems systematically adapt to functional demand. To test whether altering work and power generation during maturation alters the morphology of an elastic system, we prevented growing guinea fowl (Numida meleagris) from jumping. We compared the jump performance of our treatment group at maturity with that of controls and measured the morphology of the gastrocnemius elastic system. We found that restricted birds jumped with lower jump power and work, yet there were no significant between-group differences in the components of the elastic system. Further, subject-specific models revealed no difference in energy storage capacity between groups, though energy storage was most sensitive to variations in muscle properties (most significantly operating length and least dependent on tendon stiffness). We conclude that the gastrocnemius elastic system in the guinea fowl displays little to no plastic response to decreased demand during growth and hypothesize that neural plasticity may explain performance variation.
Collapse
Affiliation(s)
- Suzanne M. Cox
- Biology Department, Duke University, Durham, NC 27708, USA
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam DeBoef
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew Q. Salzano
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Kinesiology, The University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Kavya Katugam
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Baldwin MC, Liu ZJ, Rafferty KL, Keith A, Tamasas B, Kaiyala K, Herring SW. Botulinum toxin in the masseter muscle: Lingering effects of denervation. Anat Rec (Hoboken) 2021; 305:1215-1230. [PMID: 34486243 DOI: 10.1002/ar.24756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
Botulinum neurotoxins (BoNTs) are paralytic agents used to treat a variety of conditions in jaw muscles. Although their effect is considered temporary, there are reports of persistent functional changes. Using rabbits that received BoNT injection in one masseter muscle, the recovery of neuromuscular connection was investigated using nerve stimulation to evoke an electromyographic (EMG) response, and the recovery of muscle fibers was investigated using histological morphometry and bromodeoxyuridine (BrdU) immunohistochemistry. One month after treatment, evoked EMG was greatly reduced in both amplitude and duration, indicating that little reinnervation had taken place. Muscle fibers were atrophied and collagenous tissue was increased. Three months after treatment, evoked EMG duration was normal, indicating that at least some neuromuscular junctions were functional. Histologically, some muscle fibers were hypertrophied, some were still atrophied, and some appeared to have died. Fibrosis was still apparent amid slight increases in dividing cells and regenerating fibers. The histological effects of BoNT were evident although attenuated at a distance of about 1 cm from the injection level, but no regional differences could be discerned for the evoked EMGs. In conclusion, there were persistent muscular deficits seen 3 months after BoNT treatment that may have been caused by the failure of some affected muscle fibers to become reinnervated.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Zi Jun Liu
- Department of Orthodontics, University of Washington, Seattle, Washington, USA
| | | | - Andrew Keith
- Department of Orthodontics, University of Washington, Seattle, Washington, USA
| | - Basma Tamasas
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA.,Department of Orthodontics, Boston University, Boston, MA, USA
| | - Karl Kaiyala
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Binder-Markey BI, Murray WM, Dewald JPA. Passive Properties of the Wrist and Fingers Following Chronic Hemiparetic Stroke: Interlimb Comparisons in Persons With and Without a Clinical Treatment History That Includes Botulinum Neurotoxin. Front Neurol 2021; 12:687624. [PMID: 34447346 PMCID: PMC8383209 DOI: 10.3389/fneur.2021.687624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neural impairments that follow hemiparetic stroke may negatively affect passive muscle properties, further limiting recovery. However, factors such as hypertonia, spasticity, and botulinum neurotoxin (BoNT), a common clinical intervention, confound our understanding of muscle properties in chronic stroke. Objective: To determine if muscle passive biomechanical properties are different following prolonged, stroke-induced, altered muscle activation and disuse. Methods: Torques about the metacarpophalangeal and wrist joints were measured in different joint postures in both limbs of participants with hemiparetic stroke. First, we evaluated 27 participants with no history of BoNT; hand impairments ranged from mild to severe. Subsequently, seven participants with a history of BoNT injections were evaluated. To mitigate muscle hypertonia, torques were quantified after an extensive stretching protocol and under conditions that encouraged participants to sleep. EMGs were monitored throughout data collection. Results: Among participants who never received BoNT, no significant differences in passive torques between limbs were observed. Among participants who previously received BoNT injections, passive flexion torques about their paretic wrist and finger joints were larger than their non-paretic limb (average interlimb differences = +42.0 ± 7.6SEM Ncm, +26.9 ± 3.9SEM Ncm, respectively), and the range of motion for passive finger extension was significantly smaller (average interlimb difference = -36.3° ± 4.5°SEM; degrees). Conclusion: Our results suggest that neural impairments that follow chronic, hemiparetic stroke do not lead to passive mechanical changes within the wrist and finger muscles. Rather, consistent with animal studies, the data points to potential adverse effects of BoNT on passive muscle properties post-stroke, which warrant further consideration.
Collapse
Affiliation(s)
- Benjamin I Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States.,School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States
| | - Wendy M Murray
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States.,Research Service, Edward Hines Jr., VA Hospital, Hines, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Cumulative Efficacy of Longitudinal Repeat Salivary Gland OnabotulinumtoxinA Injection: A Retrospective Study. Am J Phys Med Rehabil 2021; 100:798-802. [PMID: 33394592 DOI: 10.1097/phm.0000000000001675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM We hypothesized that repeat onabotulinumtoxinA (BTX-A) injections to salivary glands would have a cumulative effect on drooling, leading to prolonged efficacy duration. METHODS We retrospectively reviewed medical records and conducted a telephone survey of individuals treated with BTX-A to the salivary glands to investigate ongoing efficacy or adverse effects. Outcome measures were duration of decrease in drooling and adverse events. The main independent variable was the number of injections. We identified 52 consecutive individuals (26 females) with cerebral palsy with an average age of 9 yrs, 3 mos ± 5 yrs 2 mos, who had received BTX-A for sialorrhea. RESULTS Linear regression analysis showed that each additional injection resulted in the duration of efficacy being 0.68 mos longer (P < 0.001, R2 = 0.47). Age, sex, Gross Motor Function Classification System level, presence of tube feeding, presence of tracheostomy, gastroesophageal reflex, seizures, and concurrent intramuscular injections seizures were not significant contributors to the association between injection number and efficacy duration (F (6, 45) = 1.01, P = 0.431). INTERPRETATION There may be a cumulative effect of BTX-A injections to the salivary glands, resulting in longer periods of efficacy with consecutive injection.
Collapse
|
18
|
Katchburian LR, Oulton K, Main E, Morris C, Carr LJ. Protocol for The Toxin Study: Understanding clinical and patient reported response of children and young people with cerebral palsy to intramuscular lower limb Botulinum neurotoxin-A injections, exploring all domains of the ICF. A pragmatic longitudinal observational study using a prospective one-group repeated measures design. BMJ Open 2021; 11:e049542. [PMID: 33883158 PMCID: PMC8061828 DOI: 10.1136/bmjopen-2021-049542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Botulinum neurotoxin-A (BoNT-A) is an accepted treatment modality for the management of hypertonia in children and young people with cerebral palsy (CYPwCP). Nevertheless, there are concerns about the long-term effects of BoNT-A, with a lack of consensus regarding the most meaningful outcome measures to guide its use. Most evidence to date is based on short-term outcomes, related to changes at impairment level (restrictions of body functions and structures), rather than changes in adaptive skills (enabling both activity and participation). The proposed study aims to evaluate clinical and patient reported outcomes in ambulant CYPwCP receiving lower limb BoNT-A injections over a 12-month period within all domains of the WHO's International Classification of Functioning, Disability and Health and health-related quality of life (HRQoL). METHODS AND ANALYSIS This pragmatic prospective longitudinal observational study will use a one-group repeated measures design. Sixty CYPwCP, classified as Gross Motor Function Classification System (GMFCS) levels I-III, aged between 4 and 18 years, will be recruited from an established movement disorder service in London, UK. Standardised clinical and patient reported outcome measures within all ICF domains; body structures and function, activity (including quality of movement), goal attainment, participation and HRQoL, will be collected preinjection and at 6 weeks, 6 months and up to 12 months postinjection. A representative subgroup of children and carers will participate in a qualitative component of the study, exploring how their experience of BoNT-A treatment relates to clinical outcome measures. ETHICS AND DISSEMINATION Central London Research Ethics Committee has granted ethics approval (#IRAS 211617 #REC 17/LO/0579). Findings will be disseminated in peer-reviewed publications, conferences and via networks to participants and relevant stakeholders using a variety of accessible formats including social media.
Collapse
Affiliation(s)
- Lesley R Katchburian
- Neuroscience Unit,The Wolfson Neurodisability Movement Disorder Service, Great Ormond Street Hospital For Children, London, UK
- Physiotherapy, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kate Oulton
- Centre for Outcomes and Experience Research in Children's Health, Illness and Disability (ORCHID), Great Ormond Street Hospital for Children, London, UK
| | - Eleanor Main
- Physiotherapy, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Christopher Morris
- Peninsula Childhood Disability Research Unit (PenCRU), University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lucinda J Carr
- Neuroscience Unit,The Wolfson Neurodisability Movement Disorder Service, Great Ormond Street Hospital For Children, London, UK
| |
Collapse
|
19
|
Weidensteiner C, Madoerin P, Deligianni X, Haas T, Bieri O, Akinci D'Antonoli T, Bracht-Schweizer K, Romkes J, De Pieri E, Santini F, Rutz E, Brunner R, Garcia M. Quantification and Monitoring of the Effect of Botulinum Toxin A on Paretic Calf Muscles of Children With Cerebral Palsy With MRI: A Preliminary Study. Front Neurol 2021; 12:630435. [PMID: 33935939 PMCID: PMC8085320 DOI: 10.3389/fneur.2021.630435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Muscles from patients with cerebral palsy (CP) are often spastic and form contractures that limit the range of motion. Injections of botulinum toxin A (BTX) into the calf muscles are an important treatment for functional equinus; however, improvement in gait function is not always achieved. BTX is also used to test muscle weakening for risk evaluation of muscle lengthening surgery. Our aim was to assess the effect of BTX over time on calf muscle properties in pediatric CP patients with MRI. Material and Methods: Six toe-walking CP patients (mean age 11.6 years) with indication for lengthening surgery were prospectively enrolled and received BTX injections into the gastrocnemius and soleus muscles. MRI scans at 3T of the lower legs and clinical examinations were performed pre-BTX, 6 weeks (6w), and 12 weeks (12w) post-BTX. A fat-suppressed 2D multi-spin-echo sequence was used to acquire T2 maps and for segmentation. Fat fraction maps were calculated from 3D multi-echo Dixon images. Diffusion tensor imaging (DTI) with a 2D echo-planar imaging (EPI) sequence yielded maps of the mean apparent diffusion coefficient (ADC) and of the fractional anisotropy (FA). Hyperintense regions of interest (ROIs) on the T2-weighted (T2w) images at 6w were segmented in treated muscles. Mean values of T2, fat fraction, ADC, and FA were calculated in hyperintense ROIs and in reference ROIs in non-treated muscles. Results: Hyperintensity on T2w scans and increased T2 (group mean ± standard deviation: 35 ± 1 ms pre-BTX, 45 ± 2 ms at 6w, and 44 ± 2 ms at 12w) were observed in all patients at the injection sites. The T2 increase was spatially limited to parts of the injected muscles. FA increased (0.30 ± 0.03 pre-BTX, 0.34 ± 0.02 at 6w, and 0.36 ± 0.03 at 12w) while ADC did not change in hyperintense ROIs, indicating a BTX-induced increase in extracellular space and a simultaneous decrease of muscle fiber diameter. Fat fraction showed a trend for increase at 12w. Mean values in reference ROIs remained unchanged. Conclusion: MRI showed limited spatial distribution of the BTX-induced effects in pediatric CP patients. It could be a promising non-invasive tool for future studies to test BTX treatment protocols.
Collapse
Affiliation(s)
- Claudia Weidensteiner
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philipp Madoerin
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
| | - Xeni Deligianni
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tugba Akinci D'Antonoli
- Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Radiology, University Children's Hospital Basel, Basel, Switzerland
| | | | - Jacqueline Romkes
- Laboratory for Movement Analysis, University Children's Hospital Basel, Basel, Switzerland
| | - Enrico De Pieri
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.,Laboratory for Movement Analysis, University Children's Hospital Basel, Basel, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Erich Rutz
- Murdoch Children's Research Insitute, The University of Melbourne, Pediatric Orthopedic Department, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, The University of Basel, Basel, Switzerland
| | - Reinald Brunner
- Laboratory for Movement Analysis, University Children's Hospital Basel, Basel, Switzerland.,Department of Orthopedic Surgery, University Children's Hospital Basel, Basel, Switzerland
| | - Meritxell Garcia
- Department of Radiology, Division of Neuroradiology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Chandra S, Afsharipour B, Rymer WZ, Suresh NL. Precise quantification of the time course of voluntary activation capacity following Botulinum toxin injections in the biceps brachii muscles of chronic stroke survivors. J Neuroeng Rehabil 2020; 17:102. [PMID: 32703213 PMCID: PMC7376714 DOI: 10.1186/s12984-020-00716-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Spasticity is a key motor impairment that affects many hemispheric stroke survivors. Intramuscular botulinum toxin (BT) injections are used widely to clinically manage spasticity-related symptoms in stroke survivors by chemically denervating muscle fibers from their associated motor neurons. In this study, we sought to understand how BT affects muscle activation, motor unit composition and voluntary force generating capacity over a time period of 3 months. Our purpose was to characterize the time course of functional changes in voluntary muscle activity in stroke survivors who are undergoing BT therapy as part of their physician-prescribed clinical plan. Method Our assessment of the effects of BT was based on the quantification of surface electromyogram (sEMG) recordings in the biceps brachii (BB), an upper arm muscle and of voluntary contraction force. We report here on voluntary force and sEMG responses during isometric elbow contractions across consecutive recording sessions, spread over 12 weeks in three segments, starting with a preliminary session performed just prior to the BT injection. At predetermined time points, we conducted additional clinical assessments and we also recorded from the contralateral limbs of our stroke cohort. Eight subjects were studied for approximately 86 experimental recording sessions on both stroke-affected and contralateral sides. Results We recorded an initial reduction in force and sEMG in all subjects, followed by a trajectory with a progressive return to baseline over a maximum of 12 weeks, although the minimum sEMG and minimum force were not always recorded at the same time point. Three participants were able to complete only one to two segments. Slope values of the sEMG-force relations were also found to vary across the different time segments. While sEMG-force slopes provide assessments of force generation capacity of the BT injected muscle, amplitude histograms from novel sEMG recordings during the voluntary tasks provide additional insights about differential actions of BT on the overall motor unit (MU) population over time. Conclusions The results of our study indicate that there are potential short term as well as long term decrements in muscle control and activation properties after BT administration on the affected side of chronic stroke survivors. Muscle activation levels as recorded using sEMG, did not routinely return to baseline even at three months’ post injection. The concurrent clinical measures also did not follow the same time course, nor did they provide the same resolution as our experimental measures. It follows that even 12 weeks after intramuscular BT injections muscle recovery may not be complete, and may thereby contribute to pre-existing paresis.
Collapse
Affiliation(s)
- S Chandra
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA.
| | - B Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, CA, Canada
| | - W Z Rymer
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA
| | - N L Suresh
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Reyna WE, Pichika R, Ludvig D, Perreault EJ. Efficiency of skeletal muscle decellularization methods and their effects on the extracellular matrix. J Biomech 2020; 110:109961. [PMID: 32827769 DOI: 10.1016/j.jbiomech.2020.109961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022]
Abstract
Extracellular matrix (ECM) is widely considered to be integral to the function of skeletal muscle, providing mechanical support, transmitting force, and contributing to passive stiffness. Many functions and dysfunctions attributed to ECM are thought to stem from its mechanical properties, yet there are few data describing the mechanics of intact ECM. Such measurements require isolating intact ECM from the muscle cells it surrounds. The objectives of this study were to quantify the efficiency of three techniques for this purpose: Triton, Triton with sodium dodecyl sulfate, and latrunculin B; and to determine their impact on properties of the remaining ECM. Efficiency was quantified by DNA content and evaluation of western blot intensities for myosin and actin. The properties of ECM were quantified by collagen content and uniaxial tensile testing. We found that latrunculin B was the most efficient method for removing skeletal muscle cells, reducing DNA content to less than 10% of that seen in control muscles, and substantially reducing the myosin and actin to 15% and 23%, respectively; these changes were larger than for the competing methods. Collagen content after decellularization was not significantly different from control muscles for all methods. Only the stiffness of the muscles decellularized with latrunculin B differed significantly from control, having a Young's modulus reduced by 47% compared to the other methods at matched stresses. Our results suggest that latrunculin B is the most efficient method for decellularizing skeletal muscle and that the remaining ECM accounts for approximately half of the stiffness in passive muscle.
Collapse
Affiliation(s)
- William E Reyna
- Biomedical Engineering, Northwestern University, Evanston, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Rajeswari Pichika
- Shirley Ryan AbilityLab, Chicago, IL, USA; Pysical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Daniel Ludvig
- Biomedical Engineering, Northwestern University, Evanston, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Eric J Perreault
- Biomedical Engineering, Northwestern University, Evanston, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA; Pysical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Afsharipour B, Chandra S, Li G, Rymer WZ, Suresh NL. Characterization of Differences in the Time Course of Reflex and Voluntary Responses Following Botulinum Toxin Injections in Chronic Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1642-1650. [PMID: 32634101 DOI: 10.1109/tnsre.2020.2997213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spasticity is a major impairment that can occur following a hemispheric stroke and is often treated with injections of botulinum toxin, a neurotoxin that impairs transmission at the neuromuscular junction. Hyperreflexia is a defining feature of spasticity. Our main objective here was to quantify the time course of changes in the deep tendon reflex (DTR) responses and voluntary activation capacity following BT injection as well as to track changes in a clinical assessment of spasticity. Four chronic stroke survivors, scheduled to receive BT in their Biceps Brachii(BB) as part of their clinical care plan, were recruited for repeated testing sessions over the course of 4 months post injection. Both surface BB EMG reflex response to bicipital tendon taps as well as signals of applied tendon tap forces were recorded before and up to 18 weeks post-BT. Voluntary force and biceps EMG signals were also recorded during maximum voluntary (isometric) contractions (MVC) at each testing session. Our results show major reductions (up to 75%) in voluntary sEMG and force arising between 11 to 35 days post-BT-injection. The stretch reflex gain declined two weeks after the maximal reductions in voluntary EMG and force. Paradoxically, there was a short-term increase in stretch reflex gain, in three out of four participants, approximately 11-35 days post BT. The time course of recovery of voluntary MVC and reflex responses varied considerably with a longer recovery time for the reflex responses.
Collapse
|
23
|
Sätilä H. Over 25 Years of Pediatric Botulinum Toxin Treatments: What Have We Learned from Injection Techniques, Doses, Dilutions, and Recovery of Repeated Injections? Toxins (Basel) 2020; 12:toxins12070440. [PMID: 32640636 PMCID: PMC7404978 DOI: 10.3390/toxins12070440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Botulinum toxin type A (BTXA) has been used for over 25 years in the management of pediatric lower and upper limb hypertonia, with the first reports in 1993. The most common indication is the injection of the triceps surae muscle for the correction of spastic equinus gait in children with cerebral palsy. The upper limb injection goals include improvements in function, better positioning of the arm, and facilitating the ease of care. Neurotoxin type A is the most widely used serotype in the pediatric population. After being injected into muscle, the release of acetylcholine at cholinergic nerve endings is blocked, and a temporary denervation and atrophy ensues. Targeting the correct muscle close to the neuromuscular junctions is considered essential and localization techniques have developed over time. However, each technique has its own limitations. The role of BTXA is flexible, but limited by the temporary mode of action as a focal spasticity treatment and the restrictions on the total dose deliverable per visit. As a mode of treatment, repeated BTXA injections are needed. This literature reviewed BTXA injection techniques, doses and dilutions, the recovery of muscles and the impact of repeated injections, with a focus on the pediatric population. Suggestions for future studies are also discussed.
Collapse
Affiliation(s)
- Heli Sätilä
- Department of Neuropediatrics, Päijät-Häme Central Hospital, Lahti, Finland, Keskussairaalankatu 7, 15850 Lahti, Finland
| |
Collapse
|
24
|
Chardon MK, Suresh NL, Dhaher YY, Rymer WZ. In-Vivo Study of Passive Musculotendon Mechanics in Chronic Hemispheric Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1022-1031. [PMID: 32149642 PMCID: PMC7233468 DOI: 10.1109/tnsre.2020.2972206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We characterized the passive mechanical properties of the affected and contralateral musculotendon units in 9 chronic stroke survivors as well as in 6 neurologically-intact controls. Using a position-controlled motor, we precisely indented the distal tendon of the biceps brachii to a 20 mm depth from skin, recording both its sagittal motion using ultrasound movies and the compression force at the tip of the indenter. Length changes of 8 equally-spaced features along the aponeurosis axis were quantified using a pixel-tracking protocol. We report that, on the aggregate and with respect to contralateral and control, respectively, the affected side initiates feature motion at a shorter indentation distance by 61% and 50%, travels further by 15% and 9%, at a lower rate of 28% and 15%, and is stiffer by 40% and 57%. In an extended analysis including the spatial location of the 8 designated features, we report that in contrast to the contralateral and control muscles, the affected musculotendon unit does not strain measurably within the imaging window. These results confirm that chronic stroke-induced spasticity changes musculotendon unit passive mechanics, causing it to not strain under stretch. The mechanisms responsible for altered passive mechanics may lie within extracellular matrix fibrosis.
Collapse
|
25
|
Multani I, Manji J, Tang MJ, Herzog W, Howard JJ, Graham HK. Sarcopenia, Cerebral Palsy, and Botulinum Toxin Type A. JBJS Rev 2019; 7:e4. [DOI: 10.2106/jbjs.rvw.18.00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Abstract
During the past 25 years, botulinum toxin type A (BoNT-A) has become the most widely used medical intervention in children with cerebral palsy. In this review we consider the gaps in our knowledge in the use of BoNT-A and reasons why muscle morphology and function in children with cerebral palsy are impaired. We review limitations in our knowledge regarding the mechanisms underlying the development of contractures and the difficulty in preventing them. It is clear from this review that injection of BoNT-A in the large muscles of both the upper and lower limbs of children with cerebral palsy will result in a predictable decrease in muscle activity, which is usually reported as a reduction in spasticity, for between 3 and 6 months. These changes are noted by the use of clinical tools such as the Modified Ashworth Scale and the Modified Tardieu Scale. Decreased muscle over-activity usually results in improved range of motion in distal joints. Injection of the gastrocnemius muscle for toe-walking in a child with hemiplegia or diplegia usually has the effect of increasing the passive range of dorsiflexion at the ankle. In our review, we found that this may result in a measurable improvement in gait by the use of observational gait scales or gait analysis, in some children. However, improvements in gait function are not always achieved and are small in magnitude and short lived. We found that some of the differences in outcomes in clinical trials may relate to the use of adjunctive interventions such as serial casting, orthoses, night splints and intensive therapy. We note that the majority of clinical trials of the use of BoNT-A in children with cerebral palsy have focussed on a single injection cycle and this is insufficient to understand the balance between benefit and harm. Most outcomes were reported in terms of changes in muscle tone and there were fewer studies with robust methodology that reported improvements in function. Changes in the domains of activities and participation have rarely been reported in studies to date. There were no clinical reviews to date that consider the findings of studies in human volunteers and in experimental animals and their relevance to clinical protocols. In this review we found that studies in human volunteers and in experimental animals show muscle atrophy after an injection of BoNT-A for at least 12 months. Muscle atrophy was accompanied by loss of contractile elements in muscle and replacement with fat and connective tissue. It is not currently known if these changes, mediated at a molecular level, are reversible. We conclude that there is a need to revise clinical protocols by using BoNT-A more thoughtfully, less frequently and with greatly enhanced monitoring of the effects on injected muscle for both short-term and long-term benefits and harms.
Collapse
Affiliation(s)
- Iqbal Multani
- Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Orthopaedic Department, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Jamil Manji
- Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Orthopaedic Department, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Tandy Hastings-Ison
- Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Hugh Williamson Gait Laboratory, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Abhay Khot
- Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Orthopaedic Department, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Hugh Williamson Gait Laboratory, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Kerr Graham
- Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
- Orthopaedic Department, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
- Hugh Williamson Gait Laboratory, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.
- University of Melbourne, Parkville, Australia.
| |
Collapse
|
27
|
Gómez de Liaño R. The Use of Botulinum Toxin in Strabismus Treatment. J Binocul Vis Ocul Motil 2019; 69:51-60. [PMID: 31058579 DOI: 10.1080/2576117x.2019.1601973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
There is a long and extensive experience with the use of Botulinum Toxin type A (BoNT-A) injection in the treatment of different types of strabismus and oculomotor palsies. The frequency of its use varies depending on the country and institution. It is a short procedure, may reduce general anesthesia exposure, causes minimal scarring compared to surgery, and can be proposed as an early treatment in unstable strabismus. Over many years, the experience of using BoNT-A indications has been refined and new applications have been reported. The use of BoNT-A in the postoperative period, after strabismus surgery or during surgery, can also be beneficial.
Collapse
Affiliation(s)
- Rosario Gómez de Liaño
- a Facultad de Medicina, IIORC, and Hospital Clinico San Carlos Madrid , Universidad Complutense de Madrid, Spain , Madrid , Spain
| |
Collapse
|
28
|
Valentine J, Dyke J, Ward R, Thornton A, Blair E, Stannage K, Elliott C, Fabian V. Normative data of muscle fiber diameter of vastus lateralis during childhood: a field test. Muscle Nerve 2019; 59:590-593. [PMID: 30680744 DOI: 10.1002/mus.26426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, our knowledge of standard data for muscle morphology in children is largely limited to the 1969 article by Brooke and Engel (BE). In 2016, we reported normal muscle morphology from vastus lateralis biopsies in ambulant children with cerebral palsy (CP). This report compares our normal biopsy results against BE standard value criteria. METHODS Single-blind prospective cross-sectional study design. RESULTS Results of biopsies taken in ambulant children with CP were normal according to morphometry and light and electron microscopy; however, only 5 of 10 fulfilled the BE standard value criteria. DISCUSSION This short report highlights the requirement for contemporary age-specific normative data from a larger number of biopsies, including typically developing children. Review of the literature suggests that biopsy material may be available from typically developing children who were control patients in research trials. This morphometric data could contribute to expanding the normative data set. Muscle Nerve 59:590-590, 2019.
Collapse
Affiliation(s)
- Jane Valentine
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Jason Dyke
- Neuropathology Section, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Rosyln Ward
- Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Ashleigh Thornton
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Eve Blair
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Katherine Stannage
- Department of Orthopaedic Surgery, Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Catherine Elliott
- Department of Paediatric Rehabilitation, Princess Margaret Hospital, Perth, Western Australia, Australia.,Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Vicki Fabian
- University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
29
|
Ursu D, Cederna PS. Discussion: Contralateral Botulinum Toxin Improved Functional Recovery after Tibial Nerve Repair in Rats. Plast Reconstr Surg 2018; 142:1520-1522. [PMID: 30489525 DOI: 10.1097/prs.0000000000005075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Daniel Ursu
- From the Section of Plastic Surgery and the Department of Biomedical Engineering, University of Michigan
| | - Paul S Cederna
- From the Section of Plastic Surgery and the Department of Biomedical Engineering, University of Michigan
| |
Collapse
|
30
|
Worton LE, Gardiner EM, Kwon RY, Downey LM, Ausk BJ, Bain SD, Gross TS. Botulinum toxin A-induced muscle paralysis stimulates Hdac4 and differential miRNA expression. PLoS One 2018; 13:e0207354. [PMID: 30427927 PMCID: PMC6235354 DOI: 10.1371/journal.pone.0207354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
At sufficient dose, intramuscular injection of Botulinum toxin A causes muscle wasting that is physiologically consistent with surgical denervation and other types of neuromuscular dysfunction. The aim of this study was to clarify early molecular and micro-RNA alterations in skeletal muscle following Botulinum toxin A-induced muscle paralysis. Quadriceps were analyzed for changes in expression of micro- and messenger RNA and protein levels after a single injection of 0.4, 2 or 4U Botulinum toxin A (/100g body weight). After injection with 2.0U Botulinum toxin A, quadriceps exhibited significant reduction in muscle weight and increased levels of ubiquitin ligase proteins at 7, 14 and 28 days. Muscle miR-1 and miR-133a/b levels were decreased at these time points, whereas a dose-responsive increase in miR-206 expression at day 14 was observed. Expression of the miR-133a/b target genes RhoA, Tgfb1 and Ctfg, and the miR-1/206 target genes Igf-1 and Hdac4, were upregulated at 28 days after Botulinum toxin A injection. Increased levels of Hdac4 protein were observed after injection, consistent with anticipated expression changes in direct and indirect Hdac4 target genes, such as Myog. Our results suggest Botulinum toxin A-induced denervation of muscle shares molecular characteristics with surgical denervation and other types of neuromuscular dysfunction, and implicates miR-133/Tgf-β1/Ctfg and miR-1/Hdac4/Myog signaling during the resultant muscle atrophy.
Collapse
Affiliation(s)
- Leah E. Worton
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
- * E-mail:
| | - Edith M. Gardiner
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Leah M. Downey
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Brandon J. Ausk
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Steven D. Bain
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Organ JM, Allen MR, Myers-White A, Elkhatib W, O'Neill KD, Chen NX, Moe SM, Avin KG. Effects of treadmill running in a rat model of chronic kidney disease. Biochem Biophys Rep 2018; 16:19-23. [PMID: 30229133 PMCID: PMC6140622 DOI: 10.1016/j.bbrep.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) progression results in musculoskeletal dysfunction that is associated with a higher likelihood of hospitalization and is predictive of hospitalizations and mortality. Despite this, there is a lack of effective interventions to treat the musculoskeletal dysfunction. We studied treadmill running as an intervention to improve musculoskeletal health in a translational rat model that has slowly progressive CKD. CKD rats were subjected to treadmill exercise or no treadmill exercise for 10 weeks (n = 8 each group). Animals ran for 60 min, 5 times per week starting at a speed of 8 m/min and ending at 18 m/min (1 m/min increase/week). Treadmill training had no effect on muscle strength (assessed as maximally stimulated torque), half-relaxation time (time from peak torque to 50%) or muscle cross-sectional area. Overall, there were no biochemical improvements related to CKD progression. Skeletal muscle catabolism was higher than non-exercised animals without a concomitant change in muscle synthesis markers or regeneration transcription factors. These results suggest that aerobic exercise, achieved via treadmill running was not protective in CKD animals and actually produced potentially harmful effects (increased catabolism). Given the high prevalence and dramatic musculoskeletal mobility impairment in patients with CKD, there is a clear need to understand how to effectively prescribe exercise in order to benefit the musculoskeletal system.
Collapse
Affiliation(s)
- J M Organ
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - M R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States.,Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - A Myers-White
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W Elkhatib
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - K D O'Neill
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - N X Chen
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S M Moe
- Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States.,Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - K G Avin
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States.,Physical Therapy, Indiana University School of Health and Human Sciences, Indianapolis, IN, United States
| |
Collapse
|
32
|
Botulinum Toxin Induced Atrophy: An Uncharted Territory. Toxins (Basel) 2018; 10:toxins10080313. [PMID: 30072597 PMCID: PMC6115806 DOI: 10.3390/toxins10080313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) produce local chemo-denervation by cleaving soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins. Botulinum neurotoxins are therapeutically indicated in several neurological disorders and have been in use for three decades. The long-term efficacy, safety, and side effects of BoNTs have been well documented in the literature. However, the development of muscle atrophy following chronic exposure to BoNTs has not received sufficient attention. Muscle atrophy is not only cosmetically distressing, but also has an impact on future injections. An extensive literature search was conducted on atrophy and mechanisms of atrophy. Five hundred and four relevant articles in the English language were reviewed. This review revealed the surprising lack of documentation of atrophy within the literature. In addition, as demonstrated in this review, the mechanisms and the clinical factors that may lead to atrophy have also been poorly studied. However, even with this limited information it is possible to indicate factors that could modify the clinical approach to botulinum toxin injections. This review highlights the need for further study of atrophy following BoNT injections.
Collapse
|
33
|
Hastings-Ison T, Sangeux M, Thomason P, Rawicki B, Fahey M, Graham HK. Onabotulinum toxin-A (Botox) for spastic equinus in cerebral palsy: a prospective kinematic study. J Child Orthop 2018; 12:390-397. [PMID: 30154931 PMCID: PMC6090192 DOI: 10.1302/1863-2548.12.180044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Botulinum toxin-A (or Botox) is widely used for the management of equinus gait in children with cerebral palsy but few recent studies have included instrumented gait analysis. METHODS This was a prospective cohort study. Gait analysis was performed four weeks before and four weeks after Botulinum toxin-A injection for spastic equinus to detect the maximum effects on gait kinematics. Outcome measures included the Gait Profile Score (GPS), the Gait Variable Score (GVS) for the ankle, maximal ankle dorsiflexion and maximal knee extension at midstance. RESULTS In all, 37 children participated (20 boys); mean age five years seven months (4 years 1 month to 8 years 2 months); 19 with unilateral and 18 bilateral involvement. At a mean four weeks post-injection, the GPS and ankle GVS were unchanged. However maximum ankle dorsiflexion increased for the whole group; median 7.7° (confidence interval (CI) 4° to 10.6°) to 11.5° (CI 7.7° to 12.9°), p = 0.02. Maximum midstance knee extension was unchanged for the whole group, but median knee flexion increased in children with bilateral involvement; 10.9° (CI 7.4° to 20.8°) to 16.5° (CI 8.4° to 19.7°), p = 0.58. CONCLUSION Injections of the gastrocsoleus for spastic equinus did not result in objective improvements in overall gait. Improvements in ankle dorsiflexion for children with bilateral involvement may be offset by deterioration at the knee. LEVEL OF EVIDENCE II - prospective cohort study, before and after intervention.
Collapse
Affiliation(s)
- T. Hastings-Ison
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Hugh Williamson Gait Laboratory, The Royal Children’s Hospital, Parkville, Victoria, Australia, Correspondence should be sent to T. Hastings-Ison, Hugh Williamson Gait Laboratory, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia. E-mail:
| | - M. Sangeux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Hugh Williamson Gait Laboratory, The Royal Children’s Hospital, Parkville, Victoria, Australia,Melbourne School of Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - P. Thomason
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Hugh Williamson Gait Laboratory, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - B. Rawicki
- Victorian Paediatric Rehabilitation Service, Monash Children’s Hospital, Clayton, Victoria, Australia,Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - M Fahey
- Department of Paediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - H. K. Graham
- Hugh Williamson Gait Laboratory, The Royal Children’s Hospital, Parkville, Victoria, Australia,National Health and Medical Research Council, Centre of Research Excellence in Cerebral Palsy, Parkville, Victoria, Australia,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Berry DB, Regner B, Galinsky V, Ward SR, Frank LR. Relationships between tissue microstructure and the diffusion tensor in simulated skeletal muscle. Magn Reson Med 2018; 80:317-329. [PMID: 29090480 PMCID: PMC5876103 DOI: 10.1002/mrm.26993] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To establish a series of relationships defining how muscle microstructure and diffusion tensor imaging (DTI) are related. METHODS The relationship among key microstructural features of skeletal muscle (fiber size, fibrosis, edema, and permeability) and the diffusion tensor were systematically simulated over physiologically relevant dimensions individually, and in combination, using a numerical simulation application. Stepwise multiple regression was used to identify which microstructural features of muscle significantly predict the diffusion tensor using single-echo and multi-echo DTI pulse sequences. Simulations were also performed in models with histology-informed geometry to investigate the relationship between fiber size and the diffusion tensor in models with real muscle geometry. RESULTS Fiber size is the strongest predictor of λ2, λ3, mean diffusivity, and fractional anisotropy in skeletal muscle, accounting for approximately 40% of the variance in the diffusion model when calculated with single-echo DTI. This increased to approximately 70% when diffusion measures were calculated from the short T2 component of the multi-echo DTI sequence. This nonlinear relationship begins to plateau in fibers with greater than 60-μm diameter. CONCLUSIONS As the normal fiber size of a human muscle fiber is 40 to 60 μm, this suggests that DTI is a sensitive tool to monitor muscle atrophy, but may be limited in measurements of muscle with larger fibers. Magn Reson Med 80:317-329, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- David B Berry
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Benjamin Regner
- Institute of Engineering in Medicine, San Diego, California, USA
| | - Vitaly Galinsky
- Institute of Engineering in Medicine, San Diego, California, USA
| | - Samuel R Ward
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Lawrence R Frank
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Shih STF, Tonmukayakul U, Imms C, Reddihough D, Graham HK, Cox L, Carter R. Economic evaluation and cost of interventions for cerebral palsy: a systematic review. Dev Med Child Neurol 2018; 60:543-558. [PMID: 29319155 DOI: 10.1111/dmcn.13653] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
AIM Economic appraisal can help guide policy-making for purchasing decisions, and treatment and management algorithms for health interventions. We conducted a systematic review of economic studies in cerebral palsy (CP) to inform future research. METHOD Economic studies published since 1970 were identified from seven databases. Two reviewers independently screened abstracts and extracted data following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Any discrepancies were resolved by discussion. RESULTS Of 980 identified references, 115 were included for full-text assessment. Thirteen articles met standard criteria for a full economic evaluation, two as partial economic evaluations, and 18 as cost studies. Six were full economic evaluations alongside clinical studies or randomized controlled trials, whereas seven involved modelling simulations. The economic case for administration of magnesium sulfate for imminent preterm birth is compelling, achieving both health gain and cost savings. Current literature suggests intrathecal baclofen therapy and botulinum toxin injection are cost-effective, but stronger evidence for long-term effects is needed. Lifestyle and web-based interventions are inexpensive, but broader measurement of outcomes is required. INTERPRETATION Prevention of CP would avoid significant economic burden. Some treatments and interventions have been shown to be cost-effective, although stronger evidence of clinical effectiveness is needed. What this paper adds Cost-effectiveness evidence shows prevention is the most significant strategy. Some treatments are cost-effective, but stronger evidence for long-term effectiveness is required. Comparison of treatment costs is challenging owing to variations in methodologies and varying clinical indications.
Collapse
Affiliation(s)
- Sophy T F Shih
- Deakin Health Economics, Centre for Population Health Research, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Utsana Tonmukayakul
- Deakin Health Economics, Centre for Population Health Research, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Christine Imms
- Centre for Disability and Development Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Dinah Reddihough
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - H Kerr Graham
- Royal Children's Hospital, Parkville, Victoria, Australia
| | - Liz Cox
- Victorian Managed Insurance Authority, Melbourne, Victoria, Australia
| | - Rob Carter
- Deakin Health Economics, Centre for Population Health Research, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
36
|
Odderson IR. Can botulinum toxin cause chronic muscle weakness? Muscle Nerve 2018; 57:350-352. [DOI: 10.1002/mus.25988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ib R. Odderson
- Department of Rehabilitation Medicine; University of Washington, 1959 Northeast Pacific Street, Box 356490; Seattle Washington 98195 USA
| |
Collapse
|
37
|
Pingel J, Nielsen MS, Lauridsen T, Rix K, Bech M, Alkjaer T, Andersen IT, Nielsen JB, Feidenhansl R. Injection of high dose botulinum-toxin A leads to impaired skeletal muscle function and damage of the fibrilar and non-fibrilar structures. Sci Rep 2017; 7:14746. [PMID: 29116170 PMCID: PMC5677119 DOI: 10.1038/s41598-017-14997-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
Botulinum-toxin A (BoNT/A) is used for a wide range of conditions. Intramuscular administration of BoNT/A inhibits the release of acetylcholine at the neuromuscular junction from presynaptic motor neurons causing muscle-paralysis. The aim of the present study was to investigate the effect of high dose intramuscular BoNT/A injections (6 UI = 60 pg) on muscle tissue. The gait pattern of the rats was significantly affected 3 weeks after BoNT/A injection. The ankle joint rotated externally, the rats became flat footed, and the stride length decreased after BoNT/A injection. Additionally, there was clear evidence of microstructural changes on the tissue level by as evidenced by 3D imaging of the muscles by Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM). Both the fibrillar and the non-fibrillar tissues were affected. The volume fraction of fibrillary tissue was reduced significantly and the non-fibrillar tissue increased. This was accompanied by a loss of the linear structure of the muscle tissue. Furthermore, gene expression analysis showed a significant upregulation of COL1A1, MMP-2, TGF-b1, IL-6, MHCIIA and MHCIIx in the BoNT/A injected leg, while MHVIIB was significantly downregulated. IN CONCLUSION The present study reveals that high dose intramuscular BoNT/A injections cause microstructural damage of the muscle tissue, which contributes to impaired gait.
Collapse
Affiliation(s)
- Jessica Pingel
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Kristian Rix
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martin Bech
- Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden
| | - Tine Alkjaer
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ida Torp Andersen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - R Feidenhansl
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- European XFEL, Hamburg, Germany
| |
Collapse
|
38
|
van Vulpen LF, de Groot S, Rameckers E, Becher JG, Dallmeijer AJ. Improved Walking Capacity and Muscle Strength After Functional Power-Training in Young Children With Cerebral Palsy. Neurorehabil Neural Repair 2017; 31:827-841. [DOI: 10.1177/1545968317723750] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background. Strength training programs for children with cerebral palsy (CP) showed inconclusive evidence for improving walking, despite improvements in strength. Recent studies have suggested that strength training with high movement velocity is more effective for improving walking than traditional resistance training. Objective. The purpose of this study was to evaluate the effect of functional high-velocity resistance training (power-training) to improve muscle strength and walking capacity of children with CP. Method. Twenty-two children with spastic CP participated (13 bilateral, Gross Motor Function Classification System [GMFCS] level I [n = 10] and II [n = 12], 7.5 years [SD 1.8, range 4-10 years]). Within-subjects changes in a 14-weeks usual care period were compared with changes in a 14-week functional power-training period (in groups, 3×/wk). Outcome measures were the muscle power sprint test (MPST), 1-minute walk test (1MWT), 10-m shuttle run test (SRT), gross motor function (GMFM-66), isometric strength of lower-limb muscles and dynamic ankle plantar flexor strength. Results. Changes during the training period were significantly larger than changes in the usual care period for all outcome measures ( P < .05). Large improvements were found during the training period for walking capacity (ΔMPST [mean]: 27.6 W [95%CI 15.84-39.46, 83% increase], Δ1MWT: 9.4 m [95% CI 4.17-14.68, 13%], ΔSRT: 4.2 [95%CI 2.57-5.83, 56%], ΔGMFM-66: 5.5 [95% CI 3.33-7.74, 7%]) and muscle strength (18%-128%), while outcomes remained stable in the usual care period. Conclusions. The results indicate that functional power-training is an effective training for improving walking capacity in young children with cerebral palsy.
Collapse
Affiliation(s)
| | - Sonja de Groot
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, the Netherlands
- University of Groningen, University Medical Center Groningen, the Netherlands
| | - Eugene Rameckers
- School for Public Health and Primary Care (CAPHRI), Maastricht University, the Netherlands
- University for Professionals for Pediatric Physical Therapy, AVANSplus, Breda, the Netherlands
| | | | | |
Collapse
|
39
|
Dokur M, Uysal E. Evaluation of botulinum toxin type A effectiveness in preventing postoperative intraperitoneal adhesions. Ann Surg Treat Res 2017; 93:50-56. [PMID: 28706891 PMCID: PMC5507791 DOI: 10.4174/astr.2017.93.1.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Postoperative intraperitoneal adhesions (PIAs) are one of the most important problems surgeons have to face after laparotomies. In this study, we aimed to evaluate the effectiveness of local application of botulinum toxin type A (BoNT-A) in various dosages on the prevention of intra-abdominal adhesions in rats with experimental intra-abdominal adhesions. Methods Forty Wistar Albino female rats were randomly separated into 4 groups. The 4 groups were determined as follows: Control (group 1, n = 10); Sham (group 2, n = 10); 10-µg/kg low-dose BoNT-A (group 3, n = 10) and 30-µg/kg high-dose BoNT-A (group 4, n = 10). Subserosal injuries were created on the caecum of all rats. Laparotomy was performed on the fifth day. Adhesion scores, histopathological examination, and E-cadherin expression levels were evaluated. Results General adhesion scores for groups 1 and 2 were determined to be significantly high when compared to group 4 (P < 0.001). A significant difference was also determined between groups 3 and 4 in terms of general adhesion scores (P < 0.05). In pair comparisons, a significant decrease in high-dose BoNT-A group (group 4) when compared to groups 1 and 2 in terms of neovascularization, fibroblast density, collagen deposition and inflammatory cell count was determined (P < 0.05). Conclusion A significant decrease was observed only in postoperative PIAs in the high-dose BoNT-A group between all 4 rat-groups with experimentally created postoperative PIAs. In this study, high-dose BoNT-A is determined to be an effective agent in preventing postoperative PIAs.
Collapse
Affiliation(s)
- Mehmet Dokur
- Department of Emergency Medicine, Necip Fazil City Hospital, Kahramanmaras, Turkey
| | - Erdal Uysal
- Department of General Surgery, Sanko University School of Medicine, Gaziantep, Turkey
| |
Collapse
|
40
|
Ward SR, Minamoto VB, Suzuki KP, Hulst JB, Bremner SN, Lieber RL. Recovery of rat muscle size but not function more than 1 year after a single botulinum toxin injection. Muscle Nerve 2017; 57:435-441. [PMID: 28556093 DOI: 10.1002/mus.25707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Neurotoxin injection is used to treat a wide variety of neuromuscular disorders. The purpose of this study was to measure the functional and structural properties of botulinum toxin-injected adult rat skeletal muscle over nearly the entire lifespan. METHODS Ten groups of animals were subjected to either neurotoxin injection [Botox, Type A (BT-A); Allergan, Irvine, California] or saline solution injection. Neurotoxin-injected animals (n = 90) were analyzed at different time-points: 1 week; 1 month; 3 months; 6 months; 12 months; or 18 months. RESULTS In spite of the recovery of structural features, such as muscle mass and fiber area, dorsiflexion torque production remained significantly depressed by 25%, even at 12 months after neurotoxin injection. DISCUSSION The data demonstrate that, after a single BT-A injection, although gross muscle morphology recovered over a 12-month time period, loss of contractile function did not recover. Muscle Nerve 57: 435-441, 2018.
Collapse
Affiliation(s)
- Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Viviane B Minamoto
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Kentaro P Suzuki
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Jonah B Hulst
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Richard L Lieber
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, Illinois, 60611, USA
| |
Collapse
|
41
|
Biltz NK, Meyer GA. A novel method for the quantification of fatty infiltration in skeletal muscle. Skelet Muscle 2017; 7:1. [PMID: 28073372 PMCID: PMC5223468 DOI: 10.1186/s13395-016-0118-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fatty infiltration of the skeletal muscle is a common but poorly understood feature of many myopathies. It is best described in human muscle, where non-invasive imaging techniques and representative histology have been optimized to view and quantify infiltrating fat. However, human studies are limited in their ability to identify cellular and molecular mechanisms regulating fatty infiltration, a likely prerequisite to developing targeted interventions. As mechanistic investigations move to small animals, studies may benefit from new or adapted imaging tools optimized for high resolution and whole muscle quantification. RESULTS Here, we describe a novel method to evaluate fatty infiltration, developed for use with mouse muscle. In this methodology, muscle cellular membranes and proteins are removed via decellularization, but fatty infiltrate lipid is spared, trapped in its native distribution in a transparent extracellular matrix construct. This lipid can then be stained with visible or fluorescent dyes and imaged. We present three methods to stain and evaluate lipid in decellularized muscles which can be used individually or combined: (1) qualitative visualization of the amount and 3D spatial distribution of fatty infiltration using visible lipid soluble dye Oil Red O (ORO), (2) quantitative analysis of individual lipid droplet metrics (e.g., volume) via confocal imaging of fluorescent lipid soluble dye boron-dipyrromethene (BODIPY), and (3) quantitative analysis of total lipid content by optical density reading of extracted stained lipid. This methodology was validated by comparing glycerol-induced fatty infiltration between two commonly used mouse strains: 129S1/SvlmJ (129S1) and C57BL/6J (BL/6J). All three methods were able to detect a significant increase in fatty infiltrate volume in the 129S1 muscle compared with that in BL/6J, and methods 1 and 2 additionally described a difference in the distribution of fatty infiltrate, indicating susceptibility to glycerol-induced fatty infiltration is strain-specific. CONCLUSIONS With more mechanistic studies of fatty infiltration moving to small animal models, having an alternative to expensive non-invasive imaging techniques and selective representative histology will be beneficial. In this work, we present a method that can quantify both individual adipocyte lipids and whole muscle total fatty infiltrate lipid.
Collapse
Affiliation(s)
- Nicole K Biltz
- Program in Physical Therapy, Washington University in St. Louis, 4444 Forest Park Blvd, St. Louis, 63108, MO, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, 4444 Forest Park Blvd, St. Louis, 63108, MO, USA. .,Departments of Neurology, Biomedical Engineering and Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
| |
Collapse
|
42
|
Kocaelli H, Yaltirik M, Ayhan M, Aktar F, Atalay B, Yalcin S. Ultrastructural evaluation of intramuscular applied botulinum toxin type A in striated muscles of rats. Hippokratia 2016; 20:292-298. [PMID: 29416302 PMCID: PMC5788228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A) is clinically utilized for therapeutic and cosmetic purposes in maxillofacial surgery as well as many other medical specialties. There is no sufficient ultrastructural research about BTX and it is controversial whether BTX-A causes muscle degeneration to some extent, in the course of therapy. The aim of this study was to evaluate the histological effects of BTX-A when injected into masseter and gluteal muscles. MATERIALS AND METHODS A total of 30 male Sprague-Dawley rats were used and randomly divided into experimental (n =15) and control groups (n =15). Masseter and gluteal muscles were injected with a single dose of BTX-A in normal saline (0.5 U/0.1 ml), or 0.1 ml of normal saline, in the experimental and control groups, respectively. After 12 weeks all the rats were sacrificed. Gluteal, masseter muscles, and the sciatic nerves of the rats were prepared and electron microscopic, and light microscopic evaluation was performed on semi-thin sections cut from Epon embedded tissues and stained with toluidine blue. Quantitative parameters such as muscle fiber thickness and qualitative assessments including sarcosomal (striated muscle mitochondria) deformation, glycogen content, features of the triad structures and the intensity of connective tissue around the muscle fibers, and endoneurial and perineural tissue around nerve fibers were evaluated microscopically. We paired BTX- A (+) and BTX-A (-) samples statistically. Independent Samples t-test was used for the statistical analysis. RESULTS Muscle fiber's diameter was significantly decreased in BTX-A (+) group (p <0,001). Atrophic changes in the myofibrils were characterized by a decrease in the myofibrillar diameter and changes in the sarcomere structure, and were prominent in the BTX-A (+) group. Also, some other changes like dilatation in the sarcoplasmic reticulum cisternae, mitochondrial swelling, and clearing of mitochondrial cristae associated with degeneration, were detected. No morphologic difference in the sciatic nerve fibers was detected, and myelin sheaths of axon structures were intact in both groups. CONCLUSION BTX-A-induced muscular changes that are predominantly related to atrophy instead of degeneration. Although predominantly related to atrophy, our degeneration related findings suggest that further studies are needed focusing on detecting BTX-A effects on a cellular level. Hippokratia 2016, 20(4): 292-298.
Collapse
Affiliation(s)
- H Kocaelli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Yaltirik
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Ayhan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F Aktar
- Department of Histology and Embryology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - B Atalay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - S Yalcin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
43
|
Pingel J, Wienecke J, Lorentzen J, Nielsen JB. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat. J Neurophysiol 2016; 116:2615-2623. [PMID: 27628204 DOI: 10.1152/jn.00452.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures.
Collapse
Affiliation(s)
- Jessica Pingel
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark; and
| | - Jakob Lorentzen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark; .,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
44
|
Matthews DJ. Frequency of botulinum toxin injections for spastic equinus: how much is enough? Dev Med Child Neurol 2016; 58:657-8. [PMID: 26661922 DOI: 10.1111/dmcn.12994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dennis J Matthews
- Department of Physical Medicine & Rehabilitation, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
45
|
Hastings-Ison T, Blackburn C, Rawicki B, Fahey M, Simpson P, Baker R, Graham K. Injection frequency of botulinum toxin A for spastic equinus: a randomized clinical trial. Dev Med Child Neurol 2016; 58:750-7. [PMID: 26589633 DOI: 10.1111/dmcn.12962] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2015] [Indexed: 11/26/2022]
Abstract
AIM We compared two botulinum toxin A (BoNT-A) injection frequency regimens, 12-monthly versus 4-monthly, for spastic equinus in a randomized clinical trial. The primary outcome measure was passive ankle dorsiflexion. METHOD Forty-two ambulant children with spastic equinus, secondary to cerebral palsy (23 males and 19 females; mean age 3y 6mo, SD 13mo; GMFCS levels I [n=20], II [n=19], III [n=3]) were randomized to receive either 12-monthly or 4-monthly BoNT-A injections to the calf, over a 26-month period. Twenty-one children had spastic hemiplegia, 21 children had spastic diplegia. A fixed 6U/kg dose of Botox was injected into the gastrocnemius muscle of both limbs in children with diplegia and the gastrocsoleus of the affected limb in children with hemiplegia, under mask anaesthesia. RESULTS Forty-two children entered the trial with 21 participants randomized to each group. There were three withdrawals and two children received serial casting midway through the trial. There was no significant difference in passive dorsiflexion between 12-monthly and 4-monthly regimens (p=0.41). There were also no significant between group differences on secondary outcome measures. There were no serious adverse events - the rate was 1.2 adverse events per child per year in the 12-monthly group and 2.2 adverse events per child per year in the 4-monthly group. Subgroup analysis revealed a significant difference in passive dorsiflexion between children with hemiplegia and diplegia (p=0.01). INTERPRETATION There was no significant difference between 12-monthly and 4-monthly injection regimens on passive dorsiflexion or secondary outcome measures. BoNT-A injections for spastic equinus may be recommended on a 12-monthly basis.
Collapse
Affiliation(s)
- Tandy Hastings-Ison
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Christine Blackburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic., Australia
| | - Barry Rawicki
- Victorian Paediatric Rehabilitation Service, Monash Children's Hospital, Clayton, Vic., Australia
| | - Michael Fahey
- Department of Paediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| | - Pam Simpson
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Richard Baker
- School of Healthcare Science, University of Salford, Salford, UK
| | - Kerr Graham
- NHMRC-Funded Centre of Research Excellence in Cerebral Palsy, Melbourne, Vic., Australia
| |
Collapse
|
46
|
Abstract
Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging.
Collapse
|