1
|
Meijboom KE, Sutton ER, McCallion E, McFall E, Anthony D, Edwards B, Kubinski S, Tapken I, Bünermann I, Hazell G, Ahlskog N, Claus P, Davies KE, Kothary R, Wood MJA, Bowerman M. Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice. Skelet Muscle 2022; 12:18. [PMID: 35902978 PMCID: PMC9331072 DOI: 10.1186/s13395-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Gene Therapy Center, UMass Medical School, Worcester, USA
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Emily McFall
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Benjamin Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabrina Kubinski
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Ines Tapken
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Ines Bünermann
- SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Peter Claus
- Center for Systems Neuroscience and Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,SMATHERIA - Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Rashmi Kothary
- Regenerative Medicine Program and Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,School of Medicine, Keele University, Staffordshire, UK. .,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
2
|
What Is Parvalbumin for? Biomolecules 2022; 12:biom12050656. [PMID: 35625584 PMCID: PMC9138604 DOI: 10.3390/biom12050656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin (PA) is a small, acidic, mostly cytosolic Ca2+-binding protein of the EF-hand superfamily. Structural and physical properties of PA are well studied but recently two highly conserved structural motifs consisting of three amino acids each (clusters I and II), which contribute to the hydrophobic core of the EF-hand domains, have been revealed. Despite several decades of studies, physiological functions of PA are still poorly known. Since no target proteins have been revealed for PA so far, it is believed that PA acts as a slow calcium buffer. Numerous experiments on various muscle systems have shown that PA accelerates the relaxation of fast skeletal muscles. It has been found that oxidation of PA by reactive oxygen species (ROS) is conformation-dependent and one more physiological function of PA in fast muscles could be a protection of these cells from ROS. PA is thought to regulate calcium-dependent metabolic and electric processes within the population of gamma-aminobutyric acid (GABA) neurons. Genetic elimination of PA results in changes in GABAergic synaptic transmission. Mammalian oncomodulin (OM), the β isoform of PA, is expressed mostly in cochlear outer hair cells and in vestibular hair cells. OM knockout mice lose their hearing after 3–4 months. It was suggested that, in sensory cells, OM maintains auditory function, most likely affecting outer hair cells’ motility mechanisms.
Collapse
|
3
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M, Sáez JC. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 2012; 245:423-36. [PMID: 22850938 DOI: 10.1007/s00232-012-9485-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
6
|
Harris RL, Bennett DJ, Levine MA, Putman CT. Tail muscle parvalbumin content is decreased in chronic sacral spinal cord injured rats with spasticity. Exp Physiol 2011; 96:1311-20. [PMID: 21930674 DOI: 10.1113/expphysiol.2011.061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, chronic sacral spinal isolation eliminates both descending and afferent inputs to motoneurons supplying the segmental tail muscles, eliminating daily tail muscle EMG activity. In contrast, chronic sacral spinal cord transection preserves afferent inputs, causing tail muscle spasticity that generates quantitatively normal daily EMG. Compared with normal rats, rats with spinal isolation and transection/spasticity provide a chronic model of progressive neuromuscular injury. Using normal, spinal isolated and spastic rats, we characterized the activity dependence of calcium-handling protein expression for parvalbumin, fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) and slow SERCA2. As these proteins may influence fatigue resistance, we also assayed the activities of oxidative (citrate synthase; CS) and glycolytic enzymes (glyceraldehyde phosphate dehydrogenase; GAPDH). We hypothesized that, compared with normal rats, chronic isolation would cause decreased parvalbumin, SERCA1 and SERCA2 expression and CS and GAPDH activities. We further hypothesized that chronic spasticity would promote recovery of parvalbumin, SERCA1 and SERCA2 expression and of CS and GAPDH activities. Parvalbumin, SERCA1 and SERCA2 were quantified with Western blotting. Citrate synthase and GAPDH activities were quantified photometrically. Compared with normal rats, spinal isolation caused large decreases in parvalbumin (95%), SERCA1 (70%) and SERCA2 (68%). Compared with spinal isolation, spasticity promoted parvalbumin recovery (ninefold increase) and a SERCA2-to-SERCA1 transformation (84% increase in the ratio of SERCA1 to SERCA2). Compared with normal values, CS and GAPDH activities decreased in isolated and spastic muscles. In conclusion, with complete paralysis due to spinal isolation, parvalbumin expression is nearly eliminated, but with muscle spasticity after spinal cord transection, parvalbumin expression partly recovers. Additionally, spasticity after transection causes a slow-to-fast SERCA isoform transformation that may be compensatory for decreased parvalbumin content.
Collapse
Affiliation(s)
- R Luke Harris
- School of Health Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | | | | | | |
Collapse
|
7
|
Shen T, Liu Y, Randall WR, Schneider MF. Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity. J Muscle Res Cell Motil 2006; 27:405-11. [PMID: 16874450 DOI: 10.1007/s10974-006-9080-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/26/2006] [Indexed: 12/23/2022]
Abstract
Skeletal muscle fibers exhibit plasticity of their physiological and biochemical properties in response to the firing pattern from the innervating motor neuron. In particular, the gene expression pattern generally characteristic of a slow twitch fiber can be induced in a fast twitch fiber by chronic slow fiber type electrical stimulation. We have studied the nucleo-cytoplasmic distribution of two transcriptional regulators of slow fiber type genes, HDAC4 and NFATc1, both in response to slow fiber type stimulation and in resting conditions using cultured fast twitch skeletal muscle fibers. HDAC4 is present in both cytoplasm and nuclei of resting fibers, and moves out of the nuclei in response to slow fiber type stimulation. The stimulation-dependent nuclear efflux of HDAC4 requires activation of nuclear CaMKII, which phosphorylates nuclear HDAC4 and thus allows its exit of the nucleus. In unstimulated resting fibers, a balance of nuclear efflux and influx of HDAC4 establishes the resting level of nuclear HDAC4. However, the nuclear efflux of HDAC4 in resting fibers does not involve CaMKII. Slow fiber type stimulation also causes NFATc1 translocation from the cytoplasm into muscle fiber nuclei following dephosphorylation by calcineurin (CaN) activated by the elevated cytosolic Ca2+ accompanying fiber stimulation. In resting fibers, NFATc1 exhibits balanced shuttling between cytoplasm and nucleus, but during this shuttling NFATc1 influx does not require CaN and NFATc1 efflux does not require the kinases involved in removing nuclear NFATc1 following prior activity. Thus different enzymes are responsible for HDAC4 nuclear efflux in resting and active fibers, and different pathways mediate NFATc1 nuclear influx and efflux in resting and active fibers. Such dual mechanisms for resting shuttling and active movements provide the potential for the resting level and the rate of translocation during fiber stimulation to be controlled independently for both of the transcriptional regulators HDAC4 and NFATc1.
Collapse
Affiliation(s)
- Tiansheng Shen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201-1503, USA
| | | | | | | |
Collapse
|
8
|
Liu Y, Cseresnyés Z, Randall WR, Schneider MF. Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 2001; 155:27-39. [PMID: 11581284 PMCID: PMC2150785 DOI: 10.1083/jcb.200103020] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
TTranscription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S-->A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S-->A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc-GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A-sensitive appearance of fluorescent foci of NFATc-GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc-GFP without electrical stimulation. Nuclear translocation of NFATc-GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern-dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Electric Stimulation
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Genes, Reporter/genetics
- Humans
- Image Processing, Computer-Assisted
- Imidazoles/pharmacology
- Immunohistochemistry
- MEF2 Transcription Factors
- Mice
- Microscopy, Confocal
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myogenic Regulatory Factors
- NFATC Transcription Factors
- Nuclear Proteins/metabolism
- Pyridines/pharmacology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Ribonucleoproteins
- Serine-Arginine Splicing Factors
- Time Factors
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
9
|
Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 2000; 80:1215-65. [PMID: 10893434 DOI: 10.1152/physrev.2000.80.3.1215] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca(2+) as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca(2+) release channel, 2) the troponin protein complex that mediates the Ca(2+) effect to the myofibrillar structures leading to contraction, 3) the Ca(2+) pump responsible for Ca(2+) reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca(2+) storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.
Collapse
Affiliation(s)
- M W Berchtold
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
10
|
Lewis MI, Lorusso TJ, Zhan WZ, Sieck GC. Interactive effects of denervation and malnutrition on diaphragm structure and function. J Appl Physiol (1985) 1996; 81:2165-72. [PMID: 8941542 DOI: 10.1152/jappl.1996.81.5.2165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to examine the interactive effects of unilateral denervation (DN) and prolonged malnutrition (MN) on the structure and function of the diaphragm muscle (Dia). Four groups of rats were studied: control (Con), MN, DN, and DN-MN. MN began 2 wk after DN and lasted 4 wk. In both the DN and DN-MN groups, the relative loss in Dia weight exceeded the relative change in body weight. Compared with the Con group, Dia specific force was reduced by approximately 40% in both the DN and DN-MN groups but was unaffected in the MN group. Dia fatigue resistance improved in all experimental groups but to a greater extent in the DN and DN-MN groups. In both the DN and DN-MN groups, approximately 50% of Dia fibers were classified as type IIc, whereas fiber type proportions did not change in the MN group. In the DN group, only type IIb/x fibers atrophied, whereas all fiber types atrophied in the MN and DN-MN groups. We conclude that in the DN-MN group the reduction in specific force combined with the reduction in total cross-sectional area of the muscle significantly curtails Dia force-generating capacity.
Collapse
Affiliation(s)
- M I Lewis
- Department of Medicine, Cedars-Sinai Medical Center Burns and Allen Research Institute, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine 90048, USA
| | | | | | | |
Collapse
|
11
|
Huber B, Pette D. Dynamics of parvalbumin expression in low-frequency-stimulated fast-twitch rat muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:814-9. [PMID: 8665899 DOI: 10.1111/j.1432-1033.1996.t01-2-00814.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Similar to previous observations in rabbit muscle, chronic low-frequency stimulation suppressed parvalbumin expression in fast-twitch muscles of the rat. In extensor digitorum longus and tibialis anterior muscles, parvalbumin mRNA levels steeply declined with apparent half-lives of approximately 26 h and 45 h, respectively. Measurements of parvalbumin synthesis indicated that the reduction in mRNA was immediately transmitted to the level of translation. Relative parvalbumin synthesis rates decayed with an apparent half-life of approximately 60 h. Both the decrease in parvalbumin mRNA and synthesis considerably preceded the decay of parvalbumin protein. Although parvalbumin synthesis had approached zero in 14-day-stimulated muscles, parvalbumin content started to decrease only after some delay (28-day-stimulated muscles still contained 40-50% of their normal parvalbumin content). The lag time between fully suppressed synthesis and the onset of parvalbumin decay, as well as the stability of parvalbumin against tryptic cleavage in the presence of Ca2+ and Mg2+, indicated proteolysis as an important post-translational control of parvalbumin levels. The decrease in parvalbumin mRNA followed a similar time course as that of the mRNA specific to the fast myosin heavy chain HCIIb. After complete suppression, parvalbumin mRNA reached control levels 4 days after cessation of stimulation, which demonstrates the complete reversibility of the stimulation-induced parvalbumin suppression. These results show that a slow motoneuron-like impulse pattern rapidly silences the parvalbumin gene, thus overriding fast-fiber-type-specific programs of gene expression. Due to posttranscriptional regulation and the stability of parvalbumin, this high responsiveness of adult skeletal muscle to altered neuromuscular activity is more conspicuous at the mRNA level than at the protein level.
Collapse
Affiliation(s)
- B Huber
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
12
|
Nitsch C, Scotti AL, Nitsch FM. Distribution of parvalbumin-containing interneurons in the hippocampus of the gerbil--a qualitative and quantitative statistical analysis. J Chem Neuroanat 1995; 9:135-47. [PMID: 8561951 DOI: 10.1016/0891-0618(95)00076-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the gerbil (Meriones unguiculatus) hippocampal formation, the calcium-binding protein parvalbumin (PV) shows a unique species-specific distribution: it is present in the perforant path from the entorhinal cortex to the stratum molecular of the dentate are and cornu ammonis. A possible relation of this to the seizure-sensitivity of gerbils has been suggested. In addition, as in other species, PV is contained in a subpopulation of GABAergic nerve cells of the gerbil hippocampus. The characteristics of these PV-containing neurons are here described. Distribution and shape of the PV-positive neurons in general agreed with the features described for rat hippocampus with two notable exceptions: in CA2 PV-containing perikarya were densely crowded and gave rise to an intense immunoreactive plexus around the pyramidal cells and, in CA1, the number of stained neurons was variable, often much lower than in rats and occasionally not a single PV-positive neuron was present. In parasagittal brain sections of the lateralities 1.0, 1.6 and 2.2 mm from the midline, obtained from 27 male gerbils, the number of PV-containing neurons was determined. The data set obtained in CA3 and dentate area resembled unimodal distributions, while in CA1 a bimodal frequency distribution was present. Since parametric and non-parametric correlation tests rely on a unimodal distribution of the data set, they gave falsely significant values in CA1. The bimodal distribution suggests that, with respect to the PV-containing interneurons in CA1, two different populations of gerbils were included in our sample, those with many positive neurons and those with only a few. Since the nerve terminal staining is preserved also in those gerbils with only a few positive perikarya in CA1, it seems possible that an unknown factor influenced PV expression and storage in the soma. Sex, age, seasonal or circadian rhythm or quality of immunocytochemical staining did not influence the outcome of the quantitative analysis. However, a relation of the expression of the high affinity calcium buffering PV in interneurons and the individual seizure sensitivity of the gerbil is considered.
Collapse
Affiliation(s)
- C Nitsch
- Section of Neuroanatomy, University of Basel, Switzerland
| | | | | |
Collapse
|
13
|
Abstract
Parvalbumin is a calcium-binding protein which, in muscle, is mainly found in type 2B fibres, whereas type 1 fibres lack parvalbumin immunoreactivity. Previous studies have shown that this pattern is highly dependent upon motor neuron innervation and is modified in denervated, cross-reinnervated or chronic low-frequency stimulated muscles. In the present study, we have examined the modifications of parvalbumin immunocytochemistry in the anterior tibialis muscle of the rat at different intervals following section of the sciatic nerve. During the first 2 weeks after denervation, no changes in parvalbumin immunoreactivity were seen, although a global reduction of fibre diameter was observed. Three weeks after denervation, small angulated, strongly parvalbumin-immunoreactive fibres appeared. From the second month onwards, the pattern of parvalbumin immunohistochemistry was characterized by areas composed of small, strongly immunoreactive fibres separated by less atrophic areas displaying a normal chequerboard distribution of parvalbumin immunoreactivity. The increase of parvalbumin-immunoreactivity in denervated and reinnervated muscle, as seen in our study, indicates that important changes in parvalbumin distribution occurs in muscle fibres after denervation. These changes are probably produced in an attempt to bind the free cytosolic calcium which accumulates in denervated fibres, and further reinforces the role of parvalbumin in calcium homeostasis during denervation and reinnervation.
Collapse
Affiliation(s)
- M Olive
- Unidad de Neuropatología, Hospital Príncipes de España, Universidad de Barcelona
| | | |
Collapse
|
14
|
Kobayashi T, Sano M, Tsukagoshi H, Kamo I. Muscle inactivity reduces the content of parvalbumin in rat thymic myoid cells in vitro. Neurosci Lett 1991; 131:221-4. [PMID: 1762694 DOI: 10.1016/0304-3940(91)90618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the influence of muscle inactivity by the addition of 1 microM tetrodotoxin in culture medium (complete abolishment of spontaneous firings); feeding with 50 mM KCl in the culture medium (inactivation of action potentials by depolarization) and the addition of 50 microM dantrolene sodium in culture medium (excitation-contraction uncoupling) on the content of parvalbumin in a cultured rat thymic myoid cell line (R615B2: M cells) using a highly sensitive enzyme immunoassay for rat parvalbumin. This is the first report of the content of parvalbumin in thymic myoid cells. Our studies clearly show that the content of parvalbumin is significantly decreased in paralyzed M cells compared with controls which had continuous muscle contractions. It is strongly suggested that muscle contractile activity plays an important role on the expression of parvalbumin in thymic myoid cells.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Neurology, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
The cellular distribution of parvalbumin-like immunoreactivity (PA-LI) in the human brain was investigated by peroxidase-antiperoxidase methods using antiserum to rat skeletal muscle parvalbumin. PA-LI was present in non-pyramidal neurons of the cerebral cortices, stellate cells, basket cells and Purkinje cells in cerebellar cortices, and neurons of some nuclei in human brain stem; the distribution of PA-LI in human brain was very similar to that in rat brain. These results indicate that PA-LI is widely distributed in a specific subpopulation of neurons of the human brain.
Collapse
Affiliation(s)
- T Ohshima
- Third Department of Internal Medicine, University of Yamanashi Medical School, Japan
| | | | | |
Collapse
|
16
|
Kaprielian Z, Bandman E, Fambrough DM. Expression of Ca2(+)-ATPase isoforms in denervated, regenerating, and dystrophic chicken skeletal muscle. Dev Biol 1991; 144:199-211. [PMID: 1825303 DOI: 10.1016/0012-1606(91)90491-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of fast and slow isoforms of the sarcoplasmic reticulum Ca2(+)-ATPase was studied in denervated, regenerating, and dystrophic fast and slow avian skeletal muscles. We found that both fast and slow Ca2(+)-ATPase isoforms were expressed in most myofibers following denervation of adult fast-twitch muscle, but only the slow Ca2(+)-ATPase isoform was found in slow-tonic muscle which had been denervated. Regenerating myotubes in normally innervated and previously denervated adult fast-twitch or slow-tonic muscle expressed both Ca2(+)-ATPase isoforms. Expression of the slow Ca2(+)-ATPase isoform was found to persist in dystrophic fast-twitch muscle, long after it had disappeared from normal fast-twitch muscle. However, the fast Ca2(+)-ATPase isoform disappeared from slow-tonic muscle similarly in normal and dystrophic birds. These results demonstrate that the appearance of myosin heavy chain isoforms characteristic of developing muscle is correlated with similar changes in the expression of sarcoplasmic reticulum Ca2(+)-ATPases.
Collapse
Affiliation(s)
- Z Kaprielian
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
17
|
Braun K, Scheich H, Braun S, Rogers JH, Heizmann CW. Parvalbumin-, calretinin- and calbindin-D28k-immunoreactivity and GABA in a forebrain region involved in auditory filial imprinting. Brain Res 1991; 539:31-44. [PMID: 2015501 DOI: 10.1016/0006-8993(91)90683-m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution and morphology of neurons containing the Ca-binding proteins parvalbumin (PV), calbindin-D28k (CaBP) and calretinin (CaR) are described in a rostral forebrain region (MNH) of the chick, known to be involved in auditory filial imprinting. PV immunoreactivity is chiefly a marker for numerous large to medium-sized neurons in the neostriatal part of MNH. They show patchy staining of their dendrites, but PV-positive spines are not visible. CaBP is represented in a different neuron population with on the average slightly smaller-sized somata, which carry long, spiny, CaBP-positive dendrites. In contrast to PV and CaBP, CaR immunoreactivity is a marker chiefly for neuropil in MNH but only for few stained neurons. They may be spiny and show the largest size variations. The density of CaR-immunoreactive neuropil is highest in the hyperstriatal part of MNH. Double immunostaining for PV and CaBP reveals that these proteins are expressed mostly in different neuron populations, with only few neurons containing both proteins. These neuron populations appear to form an interconnected network within MNH. A possible relationship between the expression of either Ca-binding protein and the presence of the inhibitory transmitter GABA is also examined. The GABA-antibody labels scattered, very small to medium-sized neurons and dense punctate neuropil. The comparison of the area histograms of somata reveals an overlap with all 3 Ca-binding protein containing cell populations, except for a large proportion of small GABA-positive neurons. The characteristics of immunostained neuron populations are compared to the previously described 3 Golgi-types of neurons in MNH, and possibilities of a functional implication of the proteins in MNH plasticity are examined.
Collapse
Affiliation(s)
- K Braun
- Institute of Zoology, Technical University Darmstadt, F.R.G
| | | | | | | | | |
Collapse
|
18
|
Braun K, Scheich H, Heizmann CW, Hunziker W. Parvalbumin and calbindin-D28K immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch. Neuroscience 1991; 40:853-69. [PMID: 2062443 DOI: 10.1016/0306-4522(91)90017-i] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The posthatch developmental profiles of parvalbumin and calbindin-D28K immunoreactivity were compared for the auditory nucleus mesencephalicus lateralis pars caudalis in the midbrain, n. ovoidalis in the thalamus, and telencephalic field L, as well as for the telencephalic vocal motor nuclei hyperstriatum ventrale pars caudalis and n. robustus archistriatalis. The two calcium-binding proteins showed specific temporal patterns of expression in each nucleus, without following an ascending or descending sequence. Calbindin-D28K immunoreactivity usually preceded parvalbumin immunoreactivity. Onset of expression, especially of parvalbumin-immunostaining, was earlier in auditory nuclei than in vocal motor nuclei. The developmental order of appearance of immunoreactivity in somata, dendrites and axons was different in various brain regions. In some structures parvalbumin or calbindin-D28K immunoreactivity occurred only transiently. The two antibodies bound to separate but spatially complementary groups of cells in the nucleus mesencephalicus lateralis pars dorsalis and n. ovoidalis, as has previously been described in visual nuclei. This pattern was maintained into adulthood. These hitherto unknown subcompartments may reflect internal functional organization in these nuclei. A transitory neostriatal zone containing parvalbumin-positive neurons and fibres was observed between the immature field L and the emerging hyperstriatum ventrale pars caudalis. Some comparative aspects are discussed as to the way in which neurons distinguished by the two Ca-binding proteins may differ in energy metabolism, activity pattern and other functional mechanisms.
Collapse
Affiliation(s)
- K Braun
- Institute of Zoology, Technical University Darmstadt, F.R.G
| | | | | | | |
Collapse
|
19
|
Sano M, Yokota T, Endo T, Tsukagoshi H. A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle. J Neurol Sci 1990; 97:261-72. [PMID: 2119423 DOI: 10.1016/0022-510x(90)90224-b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly sensitive enzyme immunoassay for mouse parvalbumin was developed in this study. The amount of parvalbumin was determined by a sandwich enzyme immunoassay method using anti-parvalbumin IgG-coated polystyrene balls and an anti-parvalbumin Fab'-horseradish peroxidase conjugate. Parvalbumin could not be detected in normal and dystrophic skeletal muscles of newborn mice. In normal mice, it appeared in the first postnatal week and increased linearly thereafter until the 12th week in fast twitch muscle. Rapid increase in parvalbumin was seen during 3rd and 8th week. On the other hand, parvalbumin detected in the first postnatal week increased gradually, but did not yet reach the adult level at the 16th postnatal week in slow twitch muscle. In mdx mice, fast twitch muscles such as the gastrocnemius and tibialis anterior were found to contain significantly decreased amounts of parvalbumin, compared with those in control mice. In fast twitch muscle parvalbumin in mdx mice could not be detected in the newborn, increased until 4th week and thereafter did not increase as that in normal mice. In slow twitch muscle the postnatal increase in parvalbumin content was not different from that in control mice. These results suggest that the decrease in the content of parvalbumin in dystrophic muscle may contribute to the elevation of the level of sarcoplasmic free Ca2+ and the activated Ca2(+)-dependent proteolysis.
Collapse
Affiliation(s)
- M Sano
- Department of Neurology, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
20
|
Asaoka K, Tanokura M. Purification and characterization of the parvalbumin from monkey skeletal muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 96:665-9. [PMID: 2121412 DOI: 10.1016/0305-0491(90)90211-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. A high affinity Ca2+ binding and low mol. wt protein, parvalbumin, was purified from monkey skeletal muscle. 2. As compared with other animals, only one component and a lower content of monkey parvalbumin were found. 3. This may suggest that both the component and the content of parvalbumin decreases with biological evolution. 4. The parvalbumin was found to have a mol. wt of 11,400, a pI of 5.1, a high aspartic acid and lysine content, maximum absorption at around 260 nm, a blocked amino-terminal, an immunological distinction, 2 mol Ca2+ binding/mol, and a conformational change by Ca2+ binding. 5. Parvalbumin was shown to have alpha type properties.
Collapse
Affiliation(s)
- K Asaoka
- Department of Biochemistry, Kyoto University, Aichi, Japan
| | | |
Collapse
|
21
|
Schöffl F, Jockusch H. Genetic mapping and physical characterization of parvalbumin genes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1990; 22:1211-5. [PMID: 2257946 DOI: 10.1016/0020-711x(90)90300-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- F Schöffl
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, B.R.D
| | | |
Collapse
|
22
|
Berchtold MW. Structure and expression of genes encoding the three-domain Ca2+-binding proteins parvalbumin and oncomodulin. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1009:201-15. [PMID: 2688747 DOI: 10.1016/0167-4781(89)90104-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M W Berchtold
- Institute of Pharmacology and Biochemistry, University Zürich-Irchel, Switzerland
| |
Collapse
|
23
|
Martonosi A. Calcium regulation in muscle diseases; the influence of innervation and activity. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 991:155-242. [PMID: 2655711 DOI: 10.1016/0304-4165(89)90110-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A Martonosi
- Department of Biochemistry and Molecular Biology, State University of New York, Syracuse 13210
| |
Collapse
|
24
|
Abstract
Parvalbumin is a cytosolic calcium-binding protein found in adult fast-twitch mammalian muscle. Using an antibody to paravalbumin, we have shown that its distribution in adult mouse muscles is associated with certain fibre types. It is absent from slow-twitch type 1 fibres, is absent or at low levels in fast-twitch type 2A fibres, but is present at moderate or high levels in fast-twitch type 2B fibres. When adult mouse muscle is cultured with embryonic mouse spinal cord, the regenerated fibres become innervated, express the adult fast isoform of myosin heavy chain and appear histochemically as fast-twitch fibres. We therefore investigated whether these apparently mature fibres also contained parvalbumin. Parvalbumin was not found in any fibres of twenty mature cultures, suggesting that neurotrophic activity in the absence of specific adult nerve activity patterns was insufficient to cause the expression of parvalbumin in the cultures.
Collapse
Affiliation(s)
- M S Ecob-Prince
- Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, UK
| | | |
Collapse
|
25
|
Braun K, Scheich H, Zuschratter W, Heizmann CW, Matute C, Streit P. Postnatal development of parvalbumin-, calbindin- and adult GABA-immunoreactivity in two visual nuclei of zebra finches. Brain Res 1988; 475:205-17. [PMID: 3214731 DOI: 10.1016/0006-8993(88)90609-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The characterization of neuron populations by their immunoreactivity against parvalbumin- and calbindin (28-kDa)-antisera has been used to study the postnatal development of the visual diencephalic nucleus rotundus and the mesencephalic nucleus isthmi complex in zebra finches. In nucleus rotundus, parvalbumin-immunoreactivity was restricted to the neuropil during the first 10 days and appears additionally in somata around day 12 where it remains until adulthood. Calbindin-immunoreactivity of the very scarce neuropil and the few somata, which can be observed during the first two weeks, disappears until adulthood. Thus, the adult nucleus rotundus shows an almost complementary distribution of calbindin- and parvalbumin-immunoreactive structures: the numerous, heavily parvalbumin-positive somata, which are surrounded by dense immunoreactive neuropil are in sharp contrast to the complete absence of calbindin-immunoreactive somata. Only a thin rim surrounding this nucleus contains punctate calbindin-positive neuropil. In the nucleus isthmi complex, parvalbumin and calbindin staining patterns show markedly different developmental profiles. While the density of parvalbumin-immunoreactive neuropil in the parvocellular part of the nucleus isthmi continuously increases and the somata remain unstained, the initially heavily calbindin-positive somata gradually lose their immunoreactivity during the first two weeks. In the adult nucleus isthmi complex, parvalbumin- and calbindin show nearly identical staining patterns. A comparison between the two calcium-binding proteins and GABA-immunoreactivity in adult brains revealed different relationships in the two nuclei: while in nucleus rotundus GABA-staining pattern neither resembles that of parvalbumin nor of calbindin, in the nucleus isthmi complex all three staining patterns coincide.
Collapse
Affiliation(s)
- K Braun
- Institute of Zoology, Technical University Darmstadt, F.R.G
| | | | | | | | | | | |
Collapse
|
26
|
Anderson JE, Bressler BH, Ovalle WK. Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil 1988; 9:499-515. [PMID: 3209690 DOI: 10.1007/bf01738755] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The pattern of spontaneous skeletal muscle degeneration and clinical recovery hindlimb muscles of the mdx mutant mouse was examined for functional and metabolic confirmation of apparent structural regeneration. The contractile properties, histochemical staining and myosin light chain and parvalbumin contents of extensor digitorum longus (EDL) and soleus (Sol) muscles of mdx and age-matched control mice were studied at 3-4 and 32 weeks. Histochemical staining (myofibrillar ATPase and NADH-tetrazolium reductase) revealed no significant change in slow-twitch-oxidative (SO) or fast-twitch-oxidative-glycolytic (FOG) fibre type proportions in mdx Sol apart from the normal age-related increase in SO fibres. At 32 weeks mdx EDL, however, showed significantly smaller fast-twitch-glycolytic (FG) and larger FOG proportions than those in control EDL. These fibre type distributions were confirmed by differential staining with antibodies to myosin slow-twitch and fast-twitch heavy chain isozymes. Frequency distribution of cross-sectional area for each fibre type showed a wider than normal range of areas especially in FOG fibres of mdx Sol, and FG fibres of mdx EDL, supporting previous observations using autoradiography of myofibre regeneration. Isometric twitch and tetanic tensions in Sol were significantly less than in controls at 4 weeks, but by 32 weeks, values were not different from age-matched controls. In mdx EDL at 3 weeks, twitch and tetanus tensions were significantly less, and time-to-peak twitch tensions were significantly faster than in control EDL. By 32 weeks, mdx EDL twitch and tetanus tensions expressed relative to muscle weight continued to be significantly lower than in age-matched controls, despite normal absolute tensions. The maximum velocity of shortening in 32-week mdx EDL was significantly lower than in control EDL. Myosin light chain distribution in mdx Sol exhibited significantly less light chain 2-slow (LC2s) and more light chain 1b-slow(LC1bs) at 32 weeks than age-matched control Sol. Gels of EDL from 32-week-old mdx mice showed significantly less light chain 2-fast-phosphorylated (LC2f-P) and light chain 3-fast (LC3f) and significantly more light chain 1-fast (LC1f) and light chain 2-fast (LC2f), but normal parvalbumin content compared to age-matched controls. These observations suggest that mdx hindlimb muscles are differentially affected by the disease process as it occurs in murine models of dystrophy. However, the uniqueness of mdx Sol and to a lesser extent EDL is that they also undergo an important degree of functional regeneration which is able to compensate spontaneously for degenerative influences of genetic origin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J E Anderson
- Department of Anatomy, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
27
|
Kluxen FW, Schöffl F, Berchtold MW, Jockusch H. Opposite regulation of the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:153-8. [PMID: 3138114 DOI: 10.1111/j.1432-1033.1988.tb14262.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The gene mutation in the mouse, 'arrested development of righting response', adr, causes a defect of chloride conductance of the muscle fibre membrane leading to the symptoms of myotonia [Mehrke, G., Brinkmeier, H. and Jockusch, H. (1988) Muscle & Nerve 11, 440-446]. In fast muscle, the myotonic phenotype is accompanied by a drastic reduction of the Ca2+-binding protein, parvalbumin. Messenger RNA levels in organs of myotonic (ADR) mice were analysed. In fast muscles of the mutant, in-vitro-translatable parvalbumin mRNA was strongly reduced, whereas the mRNA for the slow-muscle-specific protein, p19/6.8, was increased. In contrast, the parvalbumin mRNA in the cerebellum was not affected by the adr mutation. A reduction of the two parvalbumin mRNA species (700 and 1100 nucleotides) in ADR fast muscle and unaltered parvalbumin mRNA levels in mutant cerebella were demonstrated by cDNA/mRNA hybridisation, using a rat parvalbumin cDNA as a probe. The mRNA level for another Ca2+-binding protein, calmodulin, was low in muscle and high in the central nervous system but was unaffected by the mutation. When adr/adr mice were fed a diet containing the membrane-stabilising drug, tocainide, the levels in muscle of the mRNAs for parvalbumin and p19/6.8 were partially normalised.
Collapse
Affiliation(s)
- F W Kluxen
- Developmental Biology Unit, University of Bielefeld, Federal Republic of Germany
| | | | | | | |
Collapse
|
28
|
Davis HL, Bressler BH, Jasch LG. Myotrophic effects on denervated fast-twitch muscles of mice: correlation of physiologic, biochemical, and morphologic findings. Exp Neurol 1988; 99:474-89. [PMID: 3338537 DOI: 10.1016/0014-4886(88)90164-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Certain morphological, biochemical, and physiological parameters were assessed in fast-twitch muscles of 6-week-old mice with unilateral hindlimb denervation for 4 weeks. Some of the mice received daily injections (i.p.) of nerve extract throughout the period of denervation. Values from treated and untreated denervated muscles were compared with each other and with those from contralateral, innervated controls. The cross-sectional areas of denervated types IIA and IIATy muscle fibers were 45% and 28% greater, respectively, in muscles of treated than of untreated mice, which resulted in greater maximal tetanic tension. Injection with nerve extract did not influence the postdenervation reduction of phosphorylation of myosin light chain 2-fast nor the loss of posttetanic twitch potentiation, two parameters thought to be related. Denervation produced a significant decrease in relative content of cytosolic parvalbumin; however, this change was completely prevented by administration of nerve extract. This latter finding correlated with the amelioration of greater than 50% of the postdenervation prolongation of half-relaxation time of the twitch in treated than in untreated muscles. More than half of the prolongation of time-to-peak of the twitch was also prevented in denervated muscles of treated than of untreated mice.
Collapse
Affiliation(s)
- H L Davis
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
29
|
Effect of neonatal denervation on the distribution of fiber types in a mouse fast-twitch skeletal muscle. HISTOCHEMISTRY 1988; 89:333-42. [PMID: 2970447 DOI: 10.1007/bf00500634] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study was designed to assess the changes in fiber-type distribution of the extensor digitorum longus (EDL) muscle of the mouse during the first 21 days of age following neonatal sciatic neurectomy. Denervated and normal muscles were compared at 7, 14, and 21 days of age and the normal EDL was also studied at 1 day of age. Frozen sections of the EDL were treated histochemically to detect NADH-tetrazolium reductase and myosin ATPase reactions. Quantitative assessment included measurements of cross-sectional areas and fiber counting. Denervation resulted in muscle atrophy which was due primarily to a decrease in individual fiber area as opposed to fiber loss. Histochemical maturation of the EDL was severely affected by neonatal denervation during the first three postnatal weeks. By 21 days, two extrafusal fiber types which were both oxidative could be distinguished. One type was highly atrophied and resembled an immature fiber exhibiting myosin ATPase staining at both acid and alkaline preincubation conditions, whereas another type was less atrophied and showed myosin ATPase staining resembling fast-twitch (type IIA) fibers. These findings emphasize the importance of an intact nerve supply in determining the phenotypic expression of skeletal muscle, and point to the early postnatal period as a critical stage in fiber type differentiation.
Collapse
|
30
|
Müntener M, van Hardeveld C, Everts ME, Heizmann CW. Analysis of the Ca2+-binding parvalbumin in rat skeletal muscles of different thyroid states. Exp Neurol 1987; 98:529-41. [PMID: 2960556 DOI: 10.1016/0014-4886(87)90262-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Ca2+-binding parvalbumin (PV) is possibly involved in the relaxation of fast-twitch muscle fibers and believed to be a marker for early muscular disturbances. The muscular content of parvalbumin has been shown to change with alterations of the relaxation speed that follow an experimentally changed nervous input. In hypo- and hyperthyroidism isometric twitch contraction and half-relaxation times are also altered, namely increased in hypothyroidism and decreased in hyperthyroidism. These changes are largely paralleled by modifications in the fiber type composition. Therefore we investigated the distribution and concentration of parvalbumin in extensor digitorum longus, soleus, and gastrocnemius muscles of rats by immunohistochemical and biochemical methods. The combined results of both procedures showed that parvalbumin distribution and concentration were largely unaffected in all thyroid states. This suggests that the expression of parvalbumin is neuronally controlled and not by thyroid hormones. Additionally our findings support the view that the changes in physiologic properties and fiber type composition are generated by a direct action of thyroid hormone on muscle fibers, and not via their nervous input.
Collapse
Affiliation(s)
- M Müntener
- Institute of Anatomy, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
31
|
Heizmann CW, Berchtold MW. Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 1987; 8:1-41. [PMID: 3548995 DOI: 10.1016/0143-4160(87)90034-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Leberer E, Klug GA, Seedorf U, Pette D. Regulation of parvalbumin concentration in mammalian muscle. Methods Enzymol 1987; 139:763-76. [PMID: 3587046 DOI: 10.1016/0076-6879(87)39125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
SANO MOTOKI, YOKOTA TSUKASA, SATO JUNICHI, ENDO TOYOSHI, TSUKAGOSHI HIROSHI. ENZYME IMMUNOASSAY SYSTEM FOR RAT PARVALBUMIN . Biomed Res 1987. [DOI: 10.2220/biomedres.8.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- MOTOKI SANO
- Department of Neurology, Faculty of Medicine, Tokyo Medical and Dental University
| | - TSUKASA YOKOTA
- Department of Neurology, Faculty of Medicine, Tokyo Medical and Dental University
| | - JUNICHI SATO
- Department of Neurology, Faculty of Medicine, Tokyo Medical and Dental University
| | - TOYOSHI ENDO
- Third Department of Internal Medicine, University of Yamanashi Medical School
| | - HIROSHI TSUKAGOSHI
- Department of Neurology, Faculty of Medicine, Tokyo Medical and Dental University
| |
Collapse
|
34
|
Müntener M, Rowlerson AM, Berchtold MW, Heizmann CW. Changes in the concentration of the calcium-binding parvalbumin in cross-reinnervated rat muscles. Comparison of biochemical with physiological and histochemical parameters. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75950-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
|
36
|
Leberer E, Seedorf U, Pette D. Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem J 1986; 239:295-300. [PMID: 2880579 PMCID: PMC1147280 DOI: 10.1042/bj2390295] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tissue contents of the sarcoplasmic-reticulum Ca2+-ATPase (Ca2+ +Mg2+-dependent ATPase), of calsequestrin and of parvalbumin were immunochemically quantified in homogenates of fast- and slow-twitch muscles of embryonic, maturing and adult rabbits. Unlike parvalbumin, Ca2+-ATPase and calsequestrin were expressed in embryonic muscles. Presumptive fast-twitch muscles displayed higher contents of these two proteins than did presumptive slow-twitch muscles. Calsequestrin steeply increased before birth and reached adult values in the two muscle types 4 days after birth. The main increase in Ca2+-ATPase occurred during the first 2 weeks after birth. Denervation of postnatal fast- and slow-twitch muscles decreased calsequestrin to amounts typical of embryonic muscle and suppressed further increases of Ca2+-ATPase. Denervation caused slight decreases in Ca2+-ATPase in adult fast-twitch, but not in slow-twitch, muscles, whereas calsequestrin was greatly decreased in both. Chronic low-frequency stimulation induced a rapid decrease in parvalbumin in fast-twitch muscle, which was preceded by a drastic decrease in the amount of its polyadenylated RNA translatable in vitro. Tissue amounts of Ca2+-ATPase and calsequestrin were essentially unaltered up to periods of 52 days stimulation. These results indicate that in fast- and slow-twitch muscles different basal amounts of Ca2+-ATPase and calsequestrin are expressed independent of innervation, but that neuromuscular activity has a modulatory effect. Conversely, the expression of parvalbumin is greatly enhanced by phasic, and drastically decreased by tonic, motor-neuron activity.
Collapse
|
37
|
Abstract
Parvalbumin was purified from rabbit fast skeletal muscle and used to raise antibodies in sheep. Subsequently, a sensitive 'sandwich' enzyme-linked immunoadsorbent assay permitted quantification of parvalbumin in homogenates of embryonic, maturing, innervated, denervated and chronically stimulated skeletal muscles of the rabbit. High concentrations of parvalbumin were detected in various adult fast-twitch muscles of the rabbit (700-1200 micrograms/g of muscle), whereas slow-twitch muscles contained negligible concentrations (3-5 micrograms/g of muscle). Parvalbumin was not detectable in embryonic-rabbit muscles (21, 25, 28 days of gestation), either presumptive fast- or slow-twitch. However, parvalbumin concentrations did increase during postnatal development in presumptive fast-twitch muscles. Thus the onset of parvalbumin synthesis appears to be correlated with the neonatal-to-adult transition of motor-neuron activity [Navarrete & Vrbová (1983) Dev. Brain Res. 8, 11-19]. The increase of parvalbumin in maturing, presumptive fast-twitch muscle was suppressed by denervation. In the adult rabbit, denervation of the tibialis anterior muscle caused a reduction of parvalbumin to a level normally found in slow-twitch muscles. In contrast, the already low levels of parvalbumin in maturing and adult slow-twitch soleus muscle were unaffected by denervation. Chronic low-frequency stimulation of adult fast-twitch muscle resulted in a rapid reduction of parvalbumin to a level normally found in slow-twitch muscle. These data support the hypothesis that the expression of parvalbumin is under positive control of fast-type motor-neuron activity.
Collapse
|
38
|
Johnson MI, Ovalle WK. A comparative study of muscle spindles in slow and fast neonatal muscles of normal and dystrophic mice. THE AMERICAN JOURNAL OF ANATOMY 1986; 175:413-27. [PMID: 2940857 DOI: 10.1002/aja.1001750403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.
Collapse
|
39
|
Müntener M, Zenker W. Fiber type and non-endplate acetylcholinesterase in normal and experimentally altered muscles. ANATOMY AND EMBRYOLOGY 1986; 173:377-83. [PMID: 3008593 DOI: 10.1007/bf00318922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The non-endplate (sarcoplasmic) acetylcholinesterase (AChE) was investigated in eight different muscles of the rat. Serial consecutive sections were stained for AChE, myofibrillar ATPase (after alkaline and acid preincubation), and cytochrome C-oxidase. The following general correlation could be established: within a given muscle the sarcoplasmic AChE was highest in type IIB fibers, lowest in type I and intermediate in type IIA. Additionally, the intensity of the reaction was directly proportional to the size of the type IIA fibers. The distribution of sarcoplasmic AChE was correlated to the ATPase fiber types but was complementary to the cytochrome C-oxidase staining pattern. In single fiber preparations, accumulation of AChE at the myotendinous junction was found to occur in "cap-like" form exclusively in fibers with very low or absent sarcoplasmic AChE. To study the role of innervation in the expression of the sarcoplasmic AChE, we cross-reinnervated the extensor digitorum longus (EDL) muscle with the soleus (SOL) nerve and vice versa (X-EDL, X-SOL). In the X-EDL the sarcoplasmic AChE was transformed to that of a normal SOL as were also the ATPase and the cytochrome oxidase. Surprisingly, in the X-SOL the high AChE activity typical for a normal EDL was present after 3 weeks but decreased steadily to very low levels lacking any correlation with ATPase and cytochrome oxidase. The results suggest that the cytoplasmic AChE of the SOL muscle depends more on the load-bearing function of the muscle than on the imposed impulse pattern. There is additional evidence for a retrograde effect of the X-SOL upon its motoneurons.
Collapse
|
40
|
Abstract
Parvalbumin was isolated from human cerebral cortex and biceps and triceps muscles by HPLC. The immunological properties of the human protein and the mobility in two-dimensional polyacrylamide gels were similar to that of parvalbumin isolated from the muscles of rat, mouse, rabbit, and chicken. The tryptic peptide maps of the human parvalbumin, however, differed considerably from all other parvalbumins, indicating a distinct primary structure. The immunolabeled cells in the hippocampus of the human brain were of different sizes and forms; they occurred in all subfields and probably represent interneurons.
Collapse
|
41
|
Heizmann CW. Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. EXPERIENTIA 1984; 40:910-21. [PMID: 6205895 DOI: 10.1007/bf01946439] [Citation(s) in RCA: 310] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|