1
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
2
|
Thomas SN, Niemeyer BF, Jimenez-Valdes RJ, Kaiser AJ, Espinosa JM, Sullivan KD, Goodspeed A, Costello JC, Alder JK, Cañas-Arranz R, García-Sastre A, Benam KH. Down syndrome is associated with altered frequency and functioning of tracheal multiciliated cells, and response to influenza virus infection. iScience 2023; 26:107361. [PMID: 37554445 PMCID: PMC10405068 DOI: 10.1016/j.isci.2023.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Individuals with Down syndrome (DS) clinically manifest severe respiratory illnesses; however, there is a paucity of data on how DS influences homeostatic physiology of lung airway, and its reactive responses to pulmonary pathogens. We generated well-differentiated ciliated airway epithelia using tracheas from wild-type and Dp(16)1/Yey mice in vitro, and discovered that Dp(16)1/Yey epithelia have significantly lower abundance of ciliated cells, an altered ciliary beating profile, and reduced mucociliary transport. Interestingly, both sets of differentiated epithelia released similar quantities of viral particles after infection with influenza A virus (IAV). However, RNA-sequencing and proteomic analyses revealed an immune hyperreactive phenotype particularly for monocyte-recruiting chemokines in Dp(16)1/Yey epithelia. Importantly, when we challenged mice in vivo with IAV, we observed immune hyper-responsiveness in Dp(16)1/Yey mice, evidenced by higher quantities of lung airway infiltrated monocytes, and elevated levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Our findings illuminate mechanisms underlying DS-mediated pathophysiological changes in airway epithelium.
Collapse
Affiliation(s)
- Samantha N. Thomas
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Brian F. Niemeyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rocio J. Jimenez-Valdes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander J. Kaiser
- Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan K. Alder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rodrigo Cañas-Arranz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kambez H. Benam
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Allam VSRR, Waern I, Taha S, Akula S, Wernersson S, Pejler G. Nafamostat has anti-asthmatic effects associated with suppressed pro-inflammatory gene expression, eosinophil infiltration and airway hyperreactivity. Front Immunol 2023; 14:1136780. [PMID: 37153590 PMCID: PMC10160450 DOI: 10.3389/fimmu.2023.1136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Asthma is characterized by an imbalance between proteases and their inhibitors. Hence, an attractive therapeutic option could be to interfere with asthma-associated proteases. Here we exploited this option by assessing the impact of nafamostat, a serine protease inhibitor known to neutralize mast cell tryptase. Methods Nafamostat was administered in a mouse model for asthma based on sensitization by house dust mite (HDM) extract, followed by the assessment of effects on airway hyperreactivity, inflammatory parameters and gene expression. Results We show that nafamostat efficiently suppressed the airway hyperreactivity in HDM-sensitized mice. This was accompanied by reduced infiltration of eosinophils and lymphocytes to the airways, and by lower levels of pro-inflammatory compounds within the airway lumen. Further, nafamostat had a dampening impact on goblet cell hyperplasia and smooth muscle layer thickening in the lungs of HDM-sensitized animals. To obtain deeper insight into the underlying mechanisms, a transcriptomic analysis was conducted. This revealed, as expected, that the HDM sensitization caused an upregulated expression of numerous pro-inflammatory genes. Further, the transcriptomic analysis showed that nafamostat suppressed the levels of multiple pro-inflammatory genes, with a particular impact on genes related to asthma. Discussion Taken together, this study provides extensive insight into the ameliorating effect of nafamostat on experimental asthma, and our findings can thereby provide a basis for the further evaluation of nafamostat as a potential therapeutic agent in human asthma.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sowsan Taha
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| |
Collapse
|
4
|
Kastenhuber ER, Johnson JL, Yaron TM, Mercadante M, Cantley LC. Evolution of host protease interactions among SARS-CoV-2 variants of concern and related coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.16.496428. [PMID: 35734085 PMCID: PMC9216717 DOI: 10.1101/2022.06.16.496428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previously, we showed that coagulation factors directly cleave SARS-CoV-2 spike and promote viral entry (Kastenhuber et al., 2022). Here, we show that substitutions in the S1/S2 cleavage site observed in SARS-CoV-2 variants of concern (VOCs) exhibit divergent interactions with host proteases, including factor Xa and furin. Nafamostat remains effective to block coagulation factor-mediated cleavage of variant spike sequences. Furthermore, host protease usage has likely been a selection pressure throughout coronavirus evolution, and we observe convergence of distantly related coronaviruses to attain common host protease interactions, including coagulation factors. Interpretation of genomic surveillance of emerging SARS-CoV-2 variants and future zoonotic spillover is supported by functional characterization of recurrent emerging features.
Collapse
Affiliation(s)
- Edward R. Kastenhuber
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marisa Mercadante
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
5
|
Benam KH, Burgess JK, Stewart AG. Editorial: Accelerated Translation Using Microphysiological Organoid and Microfluidic Chip Models. Front Pharmacol 2022; 12:827172. [PMID: 35046832 PMCID: PMC8762276 DOI: 10.3389/fphar.2021.827172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands.,University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, Netherlands
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia.,ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|