1
|
Wu ZS, Kao CY, Wang HJ, Lee WC, Luo HL, Huang CC, Chuang YC. Antibacterial and therapeutic effects of low energy shock waves on uropathogenic E. coli investigated by in vitro and in vivo cystitis rat model. Int Urol Nephrol 2025; 57:49-61. [PMID: 39078466 DOI: 10.1007/s11255-024-04173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
AIMS Low-energy shock waves (LESWs) are known to alter cell-membrane permeability. This study aimed to investigate the effect of LESWs on Escherichia coli and E. coli-induced cystitis in rats. MAIN METHODS Standardized suspensions of E. coli ATCC25922 were treated with or without LESWs (100 or 300 pulses; 0.12 mJ/mm2; 2 pulses/s) followed by bacterial counting, an antibiotic sensitivity test, and gene ontology analysis and gene-set enrichment analysis. Intravesical administration of saline or E. coli (0.5 mL with 108 CFU/mL) for 30 min was performed in female Sprague-Dawley rats. The rats were treated with or without LESWs (300 pulses; 0.12 mJ/mm2; 2 pulses/s) on days 4 and 5. The changes in inflammatory reactions, uroplakin IIIa staining, and correlation with urodynamic findings were assessed on day 8. KEY FINDINGS LESW treatment induced a decrease in CFU and the autoaggregation rate and increased the inhibition zone sizes in a cefazolin-sensitivity study. These changes were associated with gene expression in regulation of cellular membrane components, biofilm formation, and the ATP-binding cassette transporter pathway. E. coli induced bladder hyperactivity and an inflammatory reaction as well as decreased uroplakin IIIa staining; these effects were partially reversed by LESW treatment. SIGNIFICANCE The LESW antibacterial effect occurs by altering bacterial cell-membrane gene expression, enhancing antibiotic sensitivity, and inhibiting bladder inflammatory reaction and overactivity. These findings support the potential benefits of LESWs for treatment of recurrent or refractory bacterial cystitis.
Collapse
Affiliation(s)
- Zong-Sheng Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Hou Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 833, Taiwan.
| |
Collapse
|
2
|
Hu JC, Tzeng HT, Lee WC, Li JR, Chuang YC. Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2024; 25:8015. [PMID: 39125584 PMCID: PMC11312208 DOI: 10.3390/ijms25158015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and, in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy. However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome, often involving extravesical manifestations and different subtypes, calls for a departure from this uniform approach. This review provides insights into recent advancements in experimental strategies in animal models and human studies. The identified therapeutic approaches fall into four categories: (i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation, (ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extracorporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug delivery systems assisted by energy devices. Future investigations will require a broader range of animal models, studies on human bladder tissues, and well-designed clinical trials to establish the efficacy and safety of these therapeutic interventions.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Jian-Ri Li
- Department of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan; (J.-C.H.); (J.-R.L.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
3
|
Mohammad A, Laboulaye MA, Shenhar C, Dobberfuhl AD. Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome. Nat Rev Urol 2024; 21:433-449. [PMID: 38326514 DOI: 10.1038/s41585-023-00850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by bladder and/or pelvic pain, increased urinary urgency and frequency and nocturia. The pathophysiology of IC/BPS is poorly understood, and theories include chronic inflammation, autoimmune dysregulation, bacterial cystitis, urothelial dysfunction, deficiency of the glycosaminoglycan (GAG) barrier and urine cytotoxicity. Multiple treatment options exist, including behavioural interventions, oral medications, intravesical instillations and procedures such as hydrodistension; however, many clinical trials fail, and patients experience an unsatisfactory treatment response, likely owing to IC/BPS phenotype heterogeneity and the use of non-targeted interventions. Oxidative stress is implicated in the pathogenesis of IC/BPS as reactive oxygen species impair bladder function via their involvement in multiple molecular mechanisms. Kinase signalling pathways, nociceptive receptors, mast-cell activation, urothelial dysregulation and circadian rhythm disturbance have all been linked to reactive oxygen species and IC/BPS. However, further research is necessary to fully uncover the role of oxidative stress in the pathways driving IC/BPS pathogenesis. The development of new models in which these pathways can be manipulated will aid this research and enable further investigation of promising therapeutic targets.
Collapse
Affiliation(s)
- Ashu Mohammad
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallory A Laboulaye
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chen Shenhar
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Rahnama’i MS, Marand AJB, Janssen D, Mostafaei H, Gatsos S, Hajebrahimi S, Apostolidis A, Taneja R. Botulinum Toxin Therapy for Bladder Pain Syndrome/Interstitial Cystitis. CURRENT BLADDER DYSFUNCTION REPORTS 2023. [DOI: 10.1007/s11884-023-00695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Purpose of Review
Bladder pain syndrome (BPS)/interstitial cystitis (IC) can also be classified as either non-ulcerative or ulcerative, corresponding to the characteristic cystoscopic findings under hydrodistention. Promising therapeutic effects, including decreased bladder pain, have been reported from recent clinical trials using botulinum toxin A (BoNTA) for the treatment of BPS/IC. This review summarizes the current state of the literature on the underlying mechanisms of BoNTA therapy in BPS/IC as well as new forms of its application.
Recent Findings
BoNTA has its effect in the central nervous system in the afferent nerves as well as in the bladder wall. Besides the well-known effects of BoNTA in the nervous system, pain control as well as reduction of urinary urgency in BPS patients could be achieved by mast cell stabilization effecting histamine release as well as modulation of TRPV and PGE2 pathways, among other systems. In addition, new forms of BoNTA administration have focused on intravesical instillation of the drug in order to circumvent bladder wall injections. Hyperthermia, intravesical hydrogel, and lysosomes have been studied as new ways of BoNTA application in BPS/IC patients. From the available studies, bladder instillation of BoNTA in combination with EMDA is the most promising and effective novel approach.
Summary
The most promising novel application methods for BoNTA in patient with BPS/IC are bladder instillations. Future research needs to point out if bladder instillations with BoNTA with some form of bladder absorption enhancement such as hyperthermia or EMDA would be able to replace BoNTA injections in patients with BPS/IC
Collapse
|
5
|
Ha JY, Lee EH, Chun SY, Lee JN, Ha YS, Chung JW, Yoon BH, Jeon M, Kim HT, Kwon TG, Yoo ES, Kim BS. The Efficacy and Safety of a Human Perirenal Adipose Tissue-Derived Stromal Vascular Fraction in an Interstitial Cystitis Rat Model. Tissue Eng Regen Med 2023; 20:225-237. [PMID: 36600004 PMCID: PMC10070579 DOI: 10.1007/s13770-022-00505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Interstitial cystitis (IC) is a chronic and intractable disease that can severely deteriorate patients' quality of life. Recently, stem cell therapy has been introduced as a promising alternative treatment for IC in animal models. We aimed to verify the efficacy and safety of the human perirenal adipose tissue-derived stromal vascular fraction (SVF) in an IC rat model. METHODS From eight-week-old female rats, an IC rat model was established by subcutaneous injection of 200 μg of uroplakin3A. The SVF was injected into the bladder submucosal layer of IC rats, and pain scale analysis, awakening cytometry, and histological and gene analyses of the bladder were performed. For the in vivo safety analysis, genomic DNA purification and histological analysis were also performed to check tumorigenicity and thrombus formation. RESULTS The mean pain scores in the SVF 20 μl group were significantly lower on days 7 and 14 than those in the control group, and bladder intercontraction intervals were significantly improved in the SVF groups in a dose-dependent manner. Regeneration of the bladder epithelium, basement membrane, and lamina propria was observed in the SVF group. In the SVF groups, however, bladder fibrosis and the expression of inflammatory markers were not significantly improved compared to those in the control group. CONCLUSION This study demonstrated that a perirenal adipose tissue-derived SVF is a promising alternative for the management of IC in terms of improving bladder pain and overactivity.
Collapse
Affiliation(s)
- Ji Yong Ha
- Department of Urology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Bo Hyun Yoon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minji Jeon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Chilgok Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
6
|
Low-energy shock wave therapy ameliorates ischemic-induced overactive bladder in a rat model. Sci Rep 2022; 12:21960. [PMID: 36536004 PMCID: PMC9763424 DOI: 10.1038/s41598-022-26292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study was to evaluate whether Low-energy shock wave therapy (LESW) improves ischemic-induced overactive bladder in rats and investigate its therapeutic mechanisms. Sixteen-week-old male Sprague-Dawley rats were divided into three groups: arterial injury (AI), AI with LESW (AI-SW), and control groups. LESW was irradiated in AI-SW during 20-23 weeks of age. At 24 weeks of age, conscious cystometry was performed (each n = 8). The voiding interval was shortened in AI (mean ± SEM: 5.1 ± 0.8 min) than in control (17.3 ± 3.0 min), whereas significant improvements were observed in AI-SW (14.9 ± 3.3 min). The bladder blood flow was significantly increased in AI-SW than in AI. Microarray analysis revealed higher gene expression of soluble guanylate cyclase (sGC) α1 and β1 in the bladder of AI-SW compared to AI. Protein expression of sGCα1 and sGCβ1 was higher in AI-SW and control groups than in AI. Cyclic guanosine monophosphate (cGMP) was elevated in AI-SW. As an early genetic response, vascular endothelial growth factor and CD31 were highly expressed 24 h after the first LESW. Suburothelial thinning observed in AI was restored in AI-SW. Activation of sGC-cGMP may play a therapeutic role of LESW in the functional recovery of the bladder.
Collapse
|
7
|
Hung FC, Kuo HC. Liposome-Encapsulated Botulinum Toxin A in Treatment of Functional Bladder Disorders. Toxins (Basel) 2022; 14:toxins14120838. [PMID: 36548734 PMCID: PMC9781836 DOI: 10.3390/toxins14120838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Botulinum toxin A (BoNT-A) intravesical injections have been used to treat patients with refractory functional bladder disorders such as overactive bladder (OAB) and interstitial cystitis/bladder pain syndrome (IC/BPS), but the risk of adverse events and the need for repeated injections continue to prevent widespread application of this treatment. Liposomes are vesicles that comprise concentric phospholipid layers and an aqueous core; their flexible compositions enable them to adsorb and fuse with cell membranes and to deliver drugs or proteins into cells. Therefore, liposomes have been considered as promising vehicles for the less invasive delivery of BoNT-A. In previous placebo-controlled trials including patients with OAB refractory to medical treatment, it was shown that liposomal BoNT-A could significantly decrease the frequency and urgency of urination. In patients with IC/BPS, it was shown that liposomal BoNT-A could also improve bladder pain, but the therapeutic efficacy was not superior to that of the placebo. As the therapeutic mechanisms of BoNT-A include the decreased expression of nerve growth factors, P2X3 receptors, and vanilloid receptors on C-fibers, liposomal BoNT-A might play a more promising role in the treatment of bladder oversensitivity. This article features the contemporary literature regarding BoNT-A, liposomes, and liposomal BoNT-A treatment for functional bladder disorders and potential clinical applications in the future.
Collapse
Affiliation(s)
- Fan-Ching Hung
- Department of Urology, National Taiwan University Hospital Yunlin Branch, Douliu 64041, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8561825 (ext. 2113); Fax: +886-3-8560794
| |
Collapse
|
8
|
Jhang JF, Jiang YH, Kuo HC. Current Understanding of the Pathophysiology and Novel Treatments of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022; 10:biomedicines10102380. [PMID: 36289642 PMCID: PMC9598807 DOI: 10.3390/biomedicines10102380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS) is multifactorial. Identifying the clinical characteristics and cystoscopic findings of bladder-centered IC/BPS facilitates optimal treatment strategies targeting the diseased urinary bladder. Patients with Hunner’s lesion (HIC) and without Hunner’s lesion (NHIC) should be treated differently. Based on the histopathological findings, NHIC can be treated with intravesical instillation of urothelial protective agents, such as hyaluronic acid, to cover the urothelial defects. In non-responders, chronic inflammation and higher urothelial dysfunction can be treated with intravesical botulinum toxin A injection, platelet-rich plasma injection, or low-energy shock wave treatment to reduce inflammation, increase tissue regeneration, and improve the urothelial barrier. Patients with HIC should be treated with electrocauterization first; augmentation enterocystoplasty should only be used in end-stage HIC when the contracted bladder is refractory to other treatments. The antiviral agent, valacyclovir, can be used in patients with HIC, small bladder capacity, and high-grade glomerulations. In addition, behavioral modification is always recommended from the beginning of treatment. Treatment with cognitive behavioral therapy interventions in combination with bladder therapy can reduce anxiety and improve treatment outcomes. Herein, recent advances in the pathophysiology and novel treatments for IC/BPS are reviewed.
Collapse
Affiliation(s)
| | | | - Hann-Chorng Kuo
- Correspondence: ; Tel.: +886-3-8561825 (ext. 2117); Fax: +886-3-8560794
| |
Collapse
|
9
|
Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: A review. Front Neurol 2022; 13:963849. [PMID: 36062022 PMCID: PMC9428455 DOI: 10.3389/fneur.2022.963849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological disorders are one of the leading causes of morbidity and mortality worldwide, and their therapeutic options remain limited. Recent animal and clinical studies have shown the potential of extracorporeal shock wave therapy (ESWT) as an innovative, safe, and cost-effective option to treat neurological disorders. Moreover, the cellular and molecular mechanism of ESWT has been proposed to better understand the regeneration and repairment of neurological disorders by ESWT. In this review, we discuss the principles of ESWT, the animal and clinical studies involving the use of ESWT to treat central and peripheral nervous system diseases, and the proposed cellular and molecular mechanism of ESWT. We also discuss the challenges encountered when applying ESWT to the human brain and spinal cord and the new potential applications of ESWT in treating neurological disorders.
Collapse
|
10
|
Abstract
In this issue of Biomedical Journal we encounter the chemokine superfamily and its clinical potential. The time course from 56 days zero COVID-19 to a resurgence in cases is presented, as well as a possible solution to overcome rejection in vascularized composite allotransplantation. We are shown the opportunity deep learning (DL) offers in the case of tracking single cells and particles, and also use of DL to bring all hands on deck to counter the current challenge of the COVID-19 pandemic. This issue contains articles about the effect of low energy shock waves in cystitis; the negative effect of high fructose on aortic valve stenosis; a study about the outcome of fecal microbiota transplantation in case of refractory Clostridioides difficile infection; a novel long non-coding RNA that could serve in treating triple-negative breast cancer; the benefits of acupressure in patients with restless leg syndrome; and Filamin A mutations in abnormal neuronal migration development. Finally, a link between jaw surgery and the psychological impact on the patient is explored; a method presented that allows identification of cervical characteristics associated with difficult embryo transfer; and a letter suggesting new parameters to evaluate the use of bone-substitute augmentation in the treatment of osteoporotic intertrochanteric fractures.
Collapse
|
11
|
Chen PY, Cheng JH, Wu ZS, Chuang YC. New Frontiers of Extracorporeal Shock Wave Medicine in Urology from Bench to Clinical Studies. Biomedicines 2022; 10:675. [PMID: 35327477 PMCID: PMC8945448 DOI: 10.3390/biomedicines10030675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
A shock wave (SW), which carries energy and propagates through a medium, is a type of continuous transmitted sonic wave that can achieve rapid energy transformations. SWs have been applied for many fields of medical science in various treatment settings. In urology, high-energy extracorporeal SWs have been used to disintegrate urolithiasis for 30 years. However, at lower energy levels, SWs enhance the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), proliferating cell nuclear antigen (PCNA), chemoattractant factors, and the recruitment of progenitor cells, and inhibit inflammatory molecules. Low energy extracorporeal shock wave (LESW) therapy has been used in urology for treating chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), interstitial cystitis/bladder pain syndrome (IC/BPS), overactive bladder, stress urinary incontinence, and erectile dysfunction through the mechanisms of anti-inflammation, neovascularization, and tissue regeneration. Additionally, LESW have been proven to temporarily increase tissue permeability and facilitate intravesical botulinum toxin delivery for treating overactive bladders in animal studies and in a human clinical trial. LESW assisted drug delivery was also suggested to have a synergistic effect in combination with cisplatin to improve the anti-cancer effect for treating urothelial cancer in an in vitro and in vivo study. LESW assisted drug delivery in uro-oncology is an interesting suggestion, but no comprehensive clinical trials have been conducted as of yet. Taken together, LESW is a promising method for the treatment of various diseases in urology. However, further investigation with a large scale of clinical studies is necessary to confirm the real role of LESW in clinical use. This article provides information on the basics of SW physics, mechanisms of action on biological systems, and new frontiers of SW medicine in urology.
Collapse
Affiliation(s)
- Po-Yen Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Graduate Institute of Human Sexuality, Shu-Te University, Kaohsiung 833, Taiwan
| | - Jai-Hong Cheng
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Zong-Sheng Wu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (P.-Y.C.); (Z.-S.W.)
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
12
|
Low-Energy Shock Wave Plus Intravesical Instillation of Botulinum Toxin A for Interstitial Cystitis/Bladder Pain Syndrome: Pathophysiology and Preliminary Result of a Novel Minimally Invasive Treatment. Biomedicines 2022; 10:biomedicines10020396. [PMID: 35203604 PMCID: PMC8962423 DOI: 10.3390/biomedicines10020396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Low-energy shock wave (LESW) therapy is known to facilitate tissue regeneration with analgesic and anti-inflammatory effects. LESW treatment has been demonstrated to be effective in treating chronic prostatitis and pelvic pain syndrome as well as overactive bladder, and it has a potential effect on interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. LESW reduces pain behavior, downregulates nerve growth factor expression, and suppresses bladder overactivity by decreasing the expression of inflammatory proteins. Previous rat IC models have shown that LESW can increase urothelial permeability, facilitate intravesical delivery of botulinum toxin A (BoNT-A), and block acetic acid-induced hyperactive bladder, suggesting that LESW might be a potential therapeutic module for relieving bladder inflammatory conditions, such as bladder oversensitivity, IC/BPS, and overactive bladder. A recent clinical trial showed that LESW monotherapy was associated with a significant reduction in pain scores and IC symptoms. BoNT-A detrusor injection or liposome-encapsulated BoNT-A instillation could also inhibit inflammation and improve IC symptoms. However, BoNT-A injection requires anesthesia and certain complications might occur. Our preliminary study using LESW plus intravesical BoNT-A instillation every week demonstrated an improvement in global response assessment without any adverse events. Moreover, an immunohistochemistry study revealed the presence of cleaved SNAP25 protein in the suburothelium of IC bladder tissue, indicating that BoNT-A could penetrate across the urothelial barrier after application of LESW. These results provide evidence for the efficacy and safety of this novel IC/BPS treatment by LESW plus BoNT-A instillation, without anesthesia, and no bladder injection. This article reviews the current evidence on LESW and LESW plus intravesical therapeutic agents on bladder disorders and the pathophysiology and pharmacological mechanism of this novel, minimally invasive treatment model for IC/BPS.
Collapse
|
13
|
Urinary Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome and Its Impact on Therapeutic Outcome. Diagnostics (Basel) 2021; 12:diagnostics12010075. [PMID: 35054241 PMCID: PMC8774507 DOI: 10.3390/diagnostics12010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is defined as a chronic bladder disorder with suprapubic pain (pelvic pain) and pressure and/or discomfort related to bladder filling accompanied by lower urinary tract symptoms, such as urinary frequency and urgency without urinary tract infection (UTI) lasting for at least 6 weeks. IC/BPS presents significant bladder pain and frequency urgency symptoms with unknown etiology, and it is without a widely accepted standard in diagnosis. Patients’ pathological features through cystoscopy and histologic features of bladder biopsy determine the presence or absence of Hunner lesions. IC/PBS is categorized into Hunner (ulcerative) type IC/BPS (HIC/BPS) or non-Hunner (nonulcerative) type IC/BPS (NHIC/BPS). The pathophysiology of IC/BPS is composed of multiple possible factors, such as chronic inflammation, autoimmune disorders, neurogenic hyperactivity, urothelial defects, abnormal angiogenesis, oxidative stress, and exogenous urine substances, which play a crucial role in the pathophysiology of IC/BPS. Abnormal expressions of several urine and serum specimens, including growth factor, methylhistamine, glycoprotein, chemokine and cytokines, might be useful as biomarkers for IC/BPS diagnosis. Further studies to identify the key molecules in IC/BPS will help to improve the efficacy of treatment and identify biomarkers of the disease. In this review, we discuss the potential medical therapy and assessment of therapeutic outcome with urinary biomarkers for IC/BPS.
Collapse
|
14
|
Chen NW, Gao JL, Li HL, Xu H, Wu LF, Meng FG, Chen W, Cao YF, Xie WH, Zhang XQ, Liu SH, Jin J, He Y, Lv JW. The protective effect of manganese superoxide dismutase from thermophilic bacterium HB27 on hydrochloric acid-induced chemical cystitis in rats. Int Urol Nephrol 2021; 54:1681-1691. [PMID: 34783980 PMCID: PMC9184365 DOI: 10.1007/s11255-021-03054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Purpose To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. Methods Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. Results Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. Conclusions Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Hai-Long Li
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Fan-Guo Meng
- Redox Medical Center for Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yi-Fang Cao
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medical, Jiaxing University, Jiaxing, Zhejiang, 314001, People's Republic of China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Jian-Wei Lv
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
15
|
Wang R, Hong M, Huang J, Zhou N, Zhang Y, Xu S, Liu J, Yuan J, Zhang L, Huang L, Huang P, Tan B, Cao HY. Low-Dose Cyclophosphamide Induces Nerve Injury and Functional Overactivity in the Urinary Bladder of Rats. Front Neurosci 2021; 15:715492. [PMID: 34658764 PMCID: PMC8517437 DOI: 10.3389/fnins.2021.715492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: This research aimed to investigate the neurotoxicity of low-dose cyclophosphamide (CYP) on the urinary bladder of rats by in vivo and in vitro studies. Methods: To establish CYP-induced cystitis rat model, rats were treated with three intraperitoneal injections of CYP (25 mg/kg) in a week. During treatment, the up-down method was used to assess the mechanical withdrawal threshold. On day 8, urodynamic test and bladder smooth muscle contractility study, including the contraction of bladder strips to electrical field stimulation (EFS, 2-64 Hz), carbachol (CCh, 10-8-10-5 M) and KCl (120 mM), were performed to evaluate the function of bladder function. Body weight and bladder weight were also recorded. Morphometric analysis using an optical microscope and transmission electron microscope was performed to observe the changes of microstructure and submicrostructure of the bladder. The major pelvic neurons were isolated and treated with acrolein (the main CYP metabolite) to assess apoptosis in vitro. RT-PCR assays were used to quantify the mRNA expression levels of Nlrp6, Asc, Casp11 and Casp1 in bladder tissues and primary neurons. Results: After CYP injections, the body weights decreased, but the bladder weights increased in the model group. The mechanical withdrawal threshold of the cystitis model remained at a low level. The morphometric analysis suggested bladder inflammation and neuroinflammation in the bladder of the cystitis rat model. Urodynamic test revealed that, the amplitude, the pressure baseline, the peak pressure and pressure threshold of model rats significantly increased after CYP treatment. The muscle strips of model rats exhibited significantly higher contractility caused by EFS and CCh than the controls. Apoptotic cells appeared at the highest concentration group (100 μM acrolein) after 6 h of acrolein incubation in apoptosis assay of primary neurons. The mRNA expression levels of Nlrp6 and Casp11 were significantly increased in the cystitis rat model and in the acrolein-treated neurons. Conclusions: Low-dose CYP treatment was confirmed to induce nerve injury, which leading to bladder pain and overactive bladder in female rats, and the up-regulation of Nlrp6 and Casp11 may contribute to these pathological changes.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Hong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaye Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjie Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lusiqi Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linyuan Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Low-Intensity Extracorporeal Shock Wave Therapy Promotes Bladder Regeneration and Improves Overactive Bladder Induced by Ovarian Hormone Deficiency from Rat Animal Model to Human Clinical Trial. Int J Mol Sci 2021; 22:ijms22179296. [PMID: 34502202 PMCID: PMC8431217 DOI: 10.3390/ijms22179296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Postmenopausal women with ovary hormone deficiency (OHD) are subject to overactive bladder (OAB) symptoms. The present study attempted to elucidate whether low-intensity extracorporeal shock wave therapy (LiESWT) alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity to influence bladder function in OHD-induced OAB in human clinical trial and rat model. The ovariectomized (OVX) for 12 months Sprague–Dawley rat model mimicking the physiological condition of menopause was utilized to induce OAB and assess the potential therapeutic mechanism of LiESWT (0.12 mJ/mm2, 300 pulses, and 3 pulses/second). The randomized, single-blinded clinical trial was enrolled 58 participants to investigate the therapeutic efficacy of LiESWT (0.25 mJ/mm2, 3000 pulses, 3 pulses/second) on postmenopausal women with OAB. The results revealed that 8 weeks’ LiESWT inhibited interstitial fibrosis, promoted cell proliferation, enhanced angiogenesis protein expression, and elevated the protein phosphorylation of ErK1/2, P38, and Akt, leading to decreased urinary frequency, nocturia, urgency, urgency incontinence, and post-voided residual urine volume, but increased voided urine volume and the maximal flow rate of postmenopausal participants. In conclusion, LiESWT attenuated inflammatory responses, increased angiogenesis, and promoted proliferation and differentiation, thereby improved OAB symptoms, thereafter promoting social activity and the quality of life of postmenopausal participants.
Collapse
|
17
|
A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2021; 9:biomedicines9080865. [PMID: 34440069 PMCID: PMC8389661 DOI: 10.3390/biomedicines9080865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.
Collapse
|
18
|
Wang HJ, Tyagi P, Lin TK, Huang CC, Lee WC, Chancellor MB, Chuang YC. Low Energy Shock Wave Therapy Attenuates Mitochondrial Dysfunction and Improves Bladder Function in HCl induced Cystitis in Rats. Biomed J 2021; 45:482-490. [PMID: 34224911 PMCID: PMC9421920 DOI: 10.1016/j.bj.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We examine the effects of low energy shock wave (LESW)) on bladder and mitochondrial function in a rat model of HCl induced cystitis, and the influence of dynamic bladder filling volume on LESW responses. Dysregulation of mitochondria function may impact the urothelial barrier and contribute to bladder dysfunction in patients with Interstitial cystitis/bladder pain syndrome (IC/BPS). MATERIALS AND METHODS Female Sprague-Dawley rats underwent urethral catheterization and intravesical instillation of 0.2 ml of 0.4N HCl (N=32) or 0.2 ml saline (N=8) kept for 90 s. After HCl instillation, the bladder received LESW treatment while filled with 0 ml, 0.2 ml or 0.4 ml saline or no LESW treatment. Continuous cystometry (CMG) was performed on day 8. The bladder was harvested after CMG for histology and Western blotting. RESULTS HCl provoked bladder overactivity, bladder wall inflammation marked by infiltration of mast cells, increased bax/bcl2 ratio consistent with increased TUNEL staining and increased release of mitochondrial-integrity markers (cleaved caspase 3 and Cytochrome c). LESW treatment suppressed HCl provoked bladder overactivity in association with lower inflammatory reaction, mast cells infiltration, and a lower bax/bcl2 ratio also reflected by reduced TUNEL staining and mitochondrial-integrity markers irrespective of the volume of saline in bladder at the time of LESW. CONCLUSIONS These findings support that antiinflammatory effect of LESW in chemical cystitis is associated with the reversal of the molecular-cellular perturbations in mitochondrial dependent intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15231, USA.
| | - Tsu-Kung Lin
- Department of Neurology, Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Michael B Chancellor
- Department of Urology(4), Beaumont Health System, Oakland University William Beaumont School of Medicine, Royal Oak, MI, 84073, USA.
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
19
|
Özatik FY, Özatik O, Tekşen Y, Yiğitaslan S, Arı NS. Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turk J Med Sci 2021; 51:1531-1543. [PMID: 33550762 PMCID: PMC8283498 DOI: 10.3906/sag-2003-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/06/2021] [Indexed: 11/03/2022] Open
Abstract
Backround/aim Cyclophosphamide (CP) is a drug used for treatment of many malignant diseases. However, it can cause serious side effects such as hemorrhagic cystitis and male infertility. Hydrogen sulfide (H2S) is a gaseous mediator and is suggested to have antioxidant, antiinflammatory, and antiapoptotic effects. In this study, dose-dependent effects of H2S donor sodium hydrosulfide (NaHS) on cyclophosphamide-induced hemorrhagic cystitis and testicular dysfunction were investigated in rats. Material and methods Rats were divided into 5 groups (n = 8): control, CP, NaHS25 μmol/kg, NaHS50 μmol/kg, and NaHS100 μmol/ kg. After treatment for 7 days intraperitoneally (ip), a single ip dose of CP 200 mg/kg was given on the 8th day. Then, treatment was continued for 7 days. In bladder and testicular tissues, IL 6, IL 10, cGMP, NO, H2S, FSH, LH, and testosterone levels were measured by ELISA. Histopathological examination with H&E staining, as well as immunohistochemical staining for acrolein in bladder and caspase-3 and APAF-1 in testis were performed. Results NaHS prevented the increased IL 6 and IL 10 values induced by CP as well as prevented the decrease in cGMP values associated with CP. There was no significant change in FSH values, but the LH value, which increased with CP, decreased with 25, 50, and 100 μmol/kg NaHS. In contrast, testosterone decreased in the CP group and increased in the treatment groups. NaHS was effective in many biochemical and histopathological parameters at 25 and 50 μmol/kg doses, and this effect decreased at 100 μmol/kg dose. Conclusion H2S has a protective and therapeutic effect on hemorrhagic cystitis and testicular dysfunction induced by cyclophosphamide. It can be suggested that H2S is a promising molecule in facilitating cancer treatment.
Collapse
Affiliation(s)
- Fikriye Yasemin Özatik
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Orhan Özatik
- Department of Histology and Embriology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Semra Yiğitaslan
- Department of Pharmacology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Neziha Senem Arı
- Department of Histology and Embriology, Evliya Celebi Training and Research Hospital, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
20
|
Lu JH, Chueh KS, Chuang SM, Wu YH, Lin KL, Long CY, Lee YC, Shen MC, Sun TW, Juan YS. Low Intensity Extracorporeal Shock Wave Therapy as a Potential Treatment for Overactive Bladder Syndrome. BIOLOGY 2021; 10:biology10060540. [PMID: 34208659 PMCID: PMC8235660 DOI: 10.3390/biology10060540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary Overactive bladder (OAB) is a common urologic condition with urinary frequency, urinary urgency, nocturia, and urgency incontinence, which can get in the way of a patient’s social life, exercise, work, and sleep. Exploring a promising option for OAB patients is very important, especially one with less side effects or invasive alternations. This study uses low intensity extracorporeal shock wave therapy (LiESWT) to investigate the therapeutic effect and duration on OAB symptoms. Abstract Background: The present study attempted to investigate the therapeutic effect and duration of low intensity extracorporeal shock wave therapy (LiESWT) on overactive bladder (OAB) symptoms, including social activity and the quality of life (QoL). Methods: In this prospective, randomized, single-blinded clinical trial, 65 participants with OAB symptom were randomly divided into receive LiESWT (0.25 mJ/mm2, 3000 pulses, 3 pulses/second) once a week for 8 weeks, or an identical sham LiESWT treatment without the energy transmission. We analyzed the difference in overactive bladder symptom score (OABSS) and 3-day urinary diary as the primary end. The secondary endpoint consisted of the change in uroflowmetry, post-voided residual (PVR) urine, and validated standardized questionnaires at the baseline (W0), 4-week (W4) and 8-week (W8) of LiESWT, and 1-month (F1), 3-month (F3) and 6-month (F6) follow-up after LiESWT. Results: 8-week LiESWT could significantly decrease urinary frequency, nocturia, urgency, and PVR volume, but meaningfully increase functional bladder capacity, average voided volume and maximal flow rate (Qmax) as compared with the W0 in the LiESWT group. In addition, the scores calculated from questionnaires were meaningfully reduced at W4, W8, F1, F3, and F6 in the LiESWT group. Conclusions: Our results revealed that the therapeutic efficacy of LiESWT could improve voided volume and ameliorate OAB symptoms, such as urgency, frequency, nocturia, and urinary incontinence, and lasted up to 6 month of follow-up. Moreover, LiESWT treatment brought statistically significant and clinically meaningful improvements in social activity and QoL of patients. These findings suggested that LiESWT could serve as an alternative non-invasive therapy for OAB patients.
Collapse
Affiliation(s)
- Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung County 91201, Taiwan;
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kuang-Shun Chueh
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.L.); (C.-Y.L.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Yi-Hsuan Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.L.); (C.-Y.L.)
| | - Kun-Ling Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.L.); (C.-Y.L.)
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Cheng-Yu Long
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.L.); (C.-Y.L.)
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 81267, Taiwan
- Regenerative Medicine and Cell Therapy Research Center (RCC), Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yung-Chin Lee
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 81267, Taiwan
| | - Mei-Chen Shen
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Ting-Wei Sun
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-S.C.); (S.-M.C.); (Y.-C.L.); (M.-C.S.); (T.-W.S.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-L.L.); (C.-Y.L.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80661, Taiwan
- Regenerative Medicine and Cell Therapy Research Center (RCC), Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101; Fax: +886-7-3506269
| |
Collapse
|
21
|
Jhang JF, Kuo HC. Novel Applications of Non-Invasive Intravesical Botulinum Toxin a Delivery in the Treatment of Functional Bladder Disorders. Toxins (Basel) 2021; 13:toxins13050359. [PMID: 34069951 PMCID: PMC8157602 DOI: 10.3390/toxins13050359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Although intravesical botulinum toxin type A (BoNT-A) injection for functional bladder disorders is effective, the injection-related problems-such as bladder pain and urinary tract infection-make the procedure invasive and inconvenient. Several vehicles have recently been developed to deliver BoNT-A without injection, thereby making the treatment less or non-invasive. Laboratory evidence revealed that liposome can carry BoNT-A across the uroepithelium and act on sub-urothelial nerve endings. A randomized placebo controlled study revealed that intravesical administration of liposome-encapsulated BoNT-A and TC-3 hydrogel embedded BoNT-A can improve urinary frequency, urgency, and reduce incontinence in patients with overactive bladders. A single-arm prospective study also revealed that intravesical administration of TC-3 hydrogel embedded BoNT-A can relieve bladder pain in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). We recently administered suprapubic energy shock wave (ESW) after BoNT-A intravesical administration in six patients with IC/BPS. Although pain reduction and symptom improvement were not significant, immunochemical staining showed cleaved synaptosome-associated protein 25 in the bladder after the procedure. This suggests that ESW can promote passage of BoNT-A across the uroepithelium. In conclusion, using vehicles to intra-vesically deliver BoNT-A for functional bladder disorders is promising. Further studies are necessary to confirm the efficacy and explore novel applications.
Collapse
|
22
|
Sokolakis I, Pyrgidis N, Neisius A, Gierth M, Knoll T, Rassweiler J, Hatzichristodoulou G. The Effect of Low-intensity Shockwave Therapy on Non-neurogenic Lower Urinary Tract Symptoms: A Systematic Review and Meta-analysis of Preclinical and Clinical Studies. Eur Urol Focus 2021; 8:840-850. [PMID: 33985934 DOI: 10.1016/j.euf.2021.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
CONTEXT Low-intensity shockwave therapy (LiST) has emerged as an effective treatment for pain in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), and it has been postulated that LiST may also be effective in patients with lower urinary tract symptoms (LUTS). OBJECTIVE To perform a systematic review and meta-analysis of experimental and clinical studies exploring the effect of LiST on LUTS in an attempt to provide clinical implications for future research. EVIDENCE ACQUISITION We systematically searched PubMed, Cochrane Library, and Scopus databases from inception to March 2021 for relevant studies. We provided a qualitative synthesis regarding the role of LiST in LUTS and performed a single-arm, random-effect meta-analysis to assess the absolute effect of LiST on LUTS only in patients with CP/CPPS (PROSPERO: CRD42021238281). EVIDENCE SYNTHESIS We included 23 studies (11 experimental studies, seven nonrandomized controlled trials [non-RCTs], and five RCTs) in the systematic review and seven in the meta-analysis. All experimental studies were performed on rats with LUTS, and the clinical studies recruited a total of 539 participants. In patients with CP/CPPS, the absolute effect of LiST on maximum flow rate and postvoid residual was clinically insignificant. However, the available studies suggest that LiST is effective for the management of pain in patients with either CP/CPPS or interstitial cystitis/bladder pain syndrome. Additionally, LiST after intravesical instillation of botulinum neurotoxin type A may enhance its absorption and substitute botulinum neurotoxin type A injections in patients with overactive bladder. Furthermore, the available evidence is inconclusive about the role of LiST in patients with benign prostatic obstruction, stress urinary incontinence, or underactive bladder/detrusor hypoactivity. CONCLUSIONS LiST may be effective for some disorders causing LUTS. Still, further studies on the matter are necessary, since the available evidence is scarce. PATIENT SUMMARY Low-intensity shockwave therapy represents a safe, easily applied, indolent, and repeatable on an outpatient basis treatment modality that may improve lower urinary tract symptoms.
Collapse
Affiliation(s)
- Ioannis Sokolakis
- Department of Urology, Martha-Maria Hospital Nuremberg, Nuremberg, Germany
| | - Nikolaos Pyrgidis
- Department of Urology, Martha-Maria Hospital Nuremberg, Nuremberg, Germany
| | - Andreas Neisius
- Department of Urology, Barmherzige Brüder Hospital Trier, Trier, Germany
| | - Michael Gierth
- Department of Urology, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Knoll
- Department of Urology, Klinikverbund Südwest, Sindelfingen Hospital, Sindelfingen, Germany
| | - Jens Rassweiler
- Department of Urology, SLK Hospital Heilbronn, Heilbronn, Germany
| | | |
Collapse
|
23
|
c-Jun/p38MAPK/ASIC3 pathways specifically activated by nerve growth factor through TrkA are crucial for mechanical allodynia development. Pain 2021; 161:1109-1123. [PMID: 31977937 DOI: 10.1097/j.pain.0000000000001808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.
Collapse
|
24
|
Shen YC, Tyagi P, Lee WC, Chancellor M, Chuang YC. Improves symptoms and urinary biomarkers in refractory interstitial cystitis/bladder pain syndrome patients randomized to extracorporeal shock wave therapy versus placebo. Sci Rep 2021; 11:7558. [PMID: 33824389 PMCID: PMC8024394 DOI: 10.1038/s41598-021-87040-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Extracorporeal shock wave therapy (ESWT) has been shown to improve symptoms in patients with interstitial cystitis/bladder pain syndrome (IC/BPS); however, there is a lack of objective evidence. We measured change of urinary biomarker levels in 25 patients with IC/BPS received ESWT or placebo once a week for 4 weeks. Urines were collected from participants at baseline, 4 and 12 weeks post treatment. A representative 41 inflammatory growth factors, cytokines, and chemokines in urine were measured using a MILLIPLEX immunoassay kit. Symptom bother was assessed by O’Leary-Sant symptom scores (OSS), and visual analog scale (VAS) for pain. The ESWT group exhibited a significant reduction in the OSS and VAS compared to the placebo group 4 weeks post-treatment (P < 0.05), and the effects were persistent at 12 weeks. The difference in urinary markers change in ESWT versus placebo was P = 0.054 for IL4, P = 0.013 for VEGF, and P = 0.039 for IL9 at 4 weeks. The change of urine biomarker was not significant in other biomarkers or all the measured proteins at 12 weeks. The current data suggest that IL4, IL9, and VEGF mediation may be involved in its pathophysiologic mechanisms and response to LESW treatment.
Collapse
Affiliation(s)
- Yuan-Chi Shen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan.,The Center of Excellence in Shockwave Medicine and Tissue Regeneration, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan
| | - Pradeep Tyagi
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan.,The Center of Excellence in Shockwave Medicine and Tissue Regeneration, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan
| | - Michael Chancellor
- Department of Urology, Beaumont Health System, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan. .,The Center of Excellence in Shockwave Medicine and Tissue Regeneration, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Song District, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
The Effect of Low-Intensity Extracorporeal Shockwave Treatment on the Urinary Bladder in an Experimental Diabetic Rat Model. Int Neurourol J 2021; 25:34-41. [PMID: 33676379 PMCID: PMC8022171 DOI: 10.5213/inj.2040344.172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose Preclinical data increasingly support an impact of low-intensity extracorporeal shockwave therapy (Li-ESWT) on the bladder. We investigated the molecular effects of Li-ESWT on the bladder of a streptozotocin-induced diabetic rat model. Methods Fifteen 8-week-old male Wistar rats were randomized into 3 groups: a control group (n=5), a group of diabetic rats without treatment (diabetes mellitus [DM], n=5) and a group of diabetic rats treated with Li-ESWT (DM-ESWT, n=5). A single intraperitoneal dose of streptozotocin (60 mg/kg) was used to induce diabetes. Twenty days after diabetes induction, each rat in the DM-ESWT group received 300 shockwaves with an energy flux density of 0.09 mJ/mm2. Sessions were repeated 3 times/week for 2 weeks, followed by a 2-week washout period. Total RNA from bladder tissue was extracted, cDNA was synthesized, and quantitative real-time polymerase chain reaction was performed to analyze the expression pattern of transient receptor potential vanilloid 1 (Trpv1), interleukin-1β (Il1b), and the muscarinic receptors M1, M2, and M3 (Chrm1, Chrm2, and Chrm3). Results The expression of Trpv1, Il1b, and Chrm2 genes was significantly different between the 3 groups (P=0.002, P<0.0001, and P=0.011, respectively; 1-way analysis of variance). In the DM group, the expression of all genes was higher than in the control group, but statistical significance was observed only for Trpv1 and Il1b (P=0.002 and P<0.0001, respectively). Li-ESWT significantly reduced the expression of Il1b and Chrm2 (P=0.001 and P=0.011, respectively), whereas a nonsignificant tendency for reduced expression was noted for Trpv1 (P=0.069). Conclusions The induction of diabetes was associated with increased expression of genes related to mechanosensation, inflammation/ischemia, and contraction in the rat bladder. Li-ESWT reduced the expression of IL1b, Chrm2, and to a lesser extent Trpv1 toward the control levels, suggesting the therapeutic potential of this treatment modality for diabetic cystopathy.
Collapse
|
26
|
New Frontiers or the Treatment of Interstitial Cystitis/Bladder Pain Syndrome - Focused on Stem Cells, Platelet-Rich Plasma, and Low-Energy Shock Wave. Int Neurourol J 2020; 24:211-221. [PMID: 33017892 PMCID: PMC7538293 DOI: 10.5213/inj.2040104.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS), which is characterized by bladder pain and irritative voiding symptoms, is a frustrating disease without effective treatment. The cause is still largely not understood, although urothelium ischemia/hypoxia, apoptosis, denudation, and infiltration of inflammatory cells are common histopathological findings. The current uncertainty regarding the etiology and pathology of IC/BPS has a negative impact on its timely and successful treatment; therefore, the development of new treatment modalities is urgently needed. Herein, we present advances in our knowledge on this topic and review the potential application of regenerative medicine for the treatment of IC/BPS. This article provides information on the basic characteristics and clinical evidence of stem cells, platelet-rich plasma (PRP), and low-energy shock waves (LESWs) based on a literature review with a search strategy for articles related to IC/BPS, stem cells, PRP, and LESW published in MEDLINE and PubMed. Stem cells, PRP, and LESW, which modulate inflammatory processes and promote tissue repair, have been proven to improve bladder regeneration, relieve bladder pain, inhibit bladder inflammation, and increase bladder capacity in some preclinical studies. However, clinical studies are still in their infancy. Based on the mechanisms of action of stem cells, PRP, and LESW documented in many preclinical studies, the potential applications of regenerative medicine for the treatment of IC/BPS is an emerging frontier of interest. However, solid evidence from clinical studies remains to be obtained.
Collapse
|
27
|
Elkashef A, Barakat N, Khater SM, Awadalla A, Belal F, El-Assmy AM, Sheir KZ, Shokeir AA. Effect of low-energy shock wave therapy on intravesical epirubicin delivery in a rat model of bladder cancer. BJU Int 2020; 127:80-89. [PMID: 32654305 DOI: 10.1111/bju.15173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To study the efficacy of low-energy shock wave therapy (LESW) on enhancing intravesical epirubicin (EPI) delivery in a rat model of bladder cancer (BCa). MATERIALS AND METHODS A total of 100 female Fischer rats were randomly allocated into five groups: control; BCa; LESW; EPI; and EPI plus LESW. After BCa induction by N-butyl-N-(4-hydroxybutyl)nitrosamine, EPI (0.6 mg/0.3 mL of EPI diluted in 0.3 mL saline) or saline (0.6 mL) was administered and retained in the bladders for 1 h with or without LESW treatment (300 pulses at 0.12 mJ/mm2 ). This was repeated weekly for 6 weeks. Survival was then calculated, rats were weighed and their bladders were harvested for bladder/body ratio estimation, histopathological examination, p53 immunostaining, miR-210, hypoxia-inducible factor (HIF)-1α, tumour necrosis factor (TNF)-α and interleukin (IL)-6 relative gene expression and fluorescence spectrophotometric drug quantification. Heart and blood samples were also collected for assessment of the safety profile and toxicity. RESULTS The EPI plus LESW group had significantly lower mortality rates, loss of body weight and bladder/body ratio. Histopathological results in terms of grossly visible bladder lesions, mucosal thickness, dysplasia formation and tumour invasion were significantly better in the combined treatment group. The EPI plus LESW group also had statistically significant lower expression levels of p53 , miR-210, HIF-1α, TNF-α and IL-6. LESW increased urothelial concentration of EPI by 5.7-fold (P < 0.001). No laboratory variable exceeded the reference ranges in any of the groups. There was an improvement of the indicators of EPI-induced cardiomyopathy in terms of congestion, hyalinization and microvesicular steatosis of cardiomyocytes (P = 0.068, 0.003 and 0.046, respectively) in the EPI plus LESW group. CONCLUSIONS The combined use of intravesical EPI and LESW results in less BCa invasion and less dysplasia formation, as LESW increases urothelial permeability of EPI and enhances its delivery into tumour tissues, without subsequent toxicity.
Collapse
Affiliation(s)
- Ahmed Elkashef
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Nashwa Barakat
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Sherry M Khater
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Fathallah Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed M El-Assmy
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Khaled Z Sheir
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shokeir
- Department of Urology, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt.,Center of Excellence for Genome and Cancer Research, Urology and Nephrology Centre, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Liu J, Dou Q, Zhou C, Zhou L, Zhao F, Xu L, Xu Z, Ge Y, Wu R, Jia R. Low-energy shock wave pretreatment recruit circulating endothelial progenitor cells to attenuate renal ischaemia reperfusion injury. J Cell Mol Med 2020; 24:10589-10603. [PMID: 32761803 PMCID: PMC7521246 DOI: 10.1111/jcmm.15678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Low‐energy shock wave (LESW) has been recognized as a promising non‐invasive intervention to prevent the organs or tissues against ischaemia reperfusion injury (IRI), whereas its effect on kidney injury is rarely explored. To investigate the protective role of pretreatment with LESW on renal IRI in rats, animals were randomly divided into Sham, LESW, IRI and LESW + IRI groups. At 4, 12, 24 hours and 3 and 7 days after reperfusion, serum samples and renal tissues were harvested for performing the analysis of renal function, histopathology, immunohistochemistry, flow cytometry and Western blot, as well as enzyme‐linked immunosorbent assay. Moreover, circulating endothelial progenitor cells (EPCs) were isolated, labelled with fluorescent dye and injected by tail vein. The fluorescent signals of EPCs were detected using fluorescence microscope and in vivo imaging system to track the distribution of injected circulating EPCs. Results showed that pretreatment with LESW could significantly reduce kidney injury biomarkers, tubular damage, and cell apoptosis, and promote cell proliferation and vascularization in IRI kidneys. The renoprotective role of LESW pretreatment would be attributed to the remarkably increased EPCs in the treated kidneys, part of which were recruited from circulation through SDF‐1/CXCR7 pathway. In conclusion, pretreatment with LESW could increase the recruitment of circulating EPCs to attenuate and repair renal IRI.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Chen YH, Man KM, Chen WC, Liu PL, Tsai KS, Tsai MY, Wu YT, Chen HY. Platelet-Rich Plasma Ameliorates Cyclophosphamide-Induced Acute Interstitial Cystitis/Painful Bladder Syndrome in a Rat Model. Diagnostics (Basel) 2020; 10:diagnostics10060381. [PMID: 32521683 PMCID: PMC7344907 DOI: 10.3390/diagnostics10060381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Interstitial cystitis/painful bladder syndrome (IC/PBS) could be treated to ameliorate urothelial injury. Here, we investigated the efficacy of intravesical instillation with platelet-rich plasma (PRP) and hyaluronic acid for acute IC/PBS. Methods: The effects of PRP and hyaluronic acid on the proliferation of normal human fibroblast cells (HFCs) were assessed. Additionally, thirty virgin female rats were randomized into five groups: group 1, saline-injected control; group 2, cyclophosphamide (CYP) plus intravesical instillation with normal saline; group 3, CYP plus intravesical instillation with hyaluronic acid (1 mg/mL); group 4, CYP plus intravesical instillation with PRP; and group 5, CYP plus intravesical instillation with PRP plus hyaluronic acid. A cystometry and histological assessments were performed. The expression of cell junction-associated protein zonula occludens-2 (ZO-2) and inflammatory cytokine interleukin 6 (IL-6) was also measured. Results: Low dose PRP increased proliferation in HFCs. The acute IC/PBS rats showed significantly lower voiding interval values. Voiding interval values were significantly higher in the CYP plus intravesical instillation with PRP group than in the CYP-induced acute IC/PBS group. Additionally, the expression of ZO-2 was increased and IL-6 was decreased in the CYP plus intravesical instillation with PRP group compared with the CYP-induced acute IC/PBS group. Conclusion: These findings suggest that PRP modulate urothelial repair, which ameliorate the increase in urination frequency in rats treated with CYP. Overall, PRP may confer potential benefits by acting as urothelial repair modulators.
Collapse
Affiliation(s)
- Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Kee-Ming Man
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Anesthesiology, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da Yeh University, Changhua 51591, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kao-Sung Tsai
- Department of Applied Cosmetology, Hungkuang University, Taichung 43302, Taiwan;
| | - Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yu-Tzu Wu
- Department of Neurology, Kuang Tien General Hospital, Taichung 43303, Taiwan;
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence:
| |
Collapse
|
30
|
Langendorf EK, Klein A, Drees P, Rommens PM, Mattyasovszky SG, Ritz U. Exposure to radial extracorporeal shockwaves induces muscle regeneration after muscle injury in a surgical rat model. J Orthop Res 2020; 38:1386-1397. [PMID: 31840830 DOI: 10.1002/jor.24564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
The leading cause of training interruption in sport is a muscle injury, for which the standard treatment is nonsteroidal anti-inflammatory drugs (NSAIDs). To find alternative treatments, we investigated whether the radial extracorporeal shockwave application (rESWT) could stimulate muscle regeneration. A lesion with complete rupture (grade III muscle tear) was set in the musculus rectus femoris of 12-week-old Wistar rats, and the NSAID diclofenac, rESWT, or a combined therapy were applied on day 0, 3, and 5 directly following the surgery. Rats were euthanized at 2, 4, and 7 days after surgery and the area of muscle lesion was excised for histological and gene expression analysis to determine the progress in the healing of damaged fibers and tissue regeneration. The best effect on muscle regeneration was observed in the group treated with rESWT alone. Monotherapy by diclofenac showed a smaller but still positive effect and lowest effects were detected when both therapies were applied. rESWT alone demonstrated a significant upregulation of the muscle markers MyoD and myosin. The presence of myosin gene expression indicated newly formed muscle fibers, which was confirmed by hematoxylin and eosin staining. Seven days after injury the amount of mononucleated cell decreased and regenerating fibers could be detected. This effect is most pronounced in the group treated with rESWT alone. In our study, shockwaves demonstrated the best effect on muscle regeneration. Therefore, we recommend prospective clinical studies to analyze the effect of rESWT after sports trauma to improve muscle regeneration and to shorten the rehabilitation.
Collapse
Affiliation(s)
- Eva K Langendorf
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Anja Klein
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Stefan G Mattyasovszky
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
31
|
Chuang Y, Meng E, Chancellor M, Kuo H. Pain reduction realized with extracorporeal shock wave therapy for the treatment of symptoms associated with interstitial cystitis/bladder pain syndrome—A prospective, multicenter, randomized, double‐blind, placebo‐controlled study. Neurourol Urodyn 2020; 39:1505-1514. [DOI: 10.1002/nau.24382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Yao‐Chi Chuang
- Department of Urology, Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityTaoyuan City Taiwan
| | - En Meng
- Division of Urology, Department of SurgeryTri‐Service General Hospital, National Defense Medical CenterTaipei Taiwan
| | - Michael Chancellor
- Department of urologyOakland University William Beaumont School of Medicine Royal Oak Michigan
| | - Hann‐Chorng Kuo
- Department of UrologyHualien Tzu Chi General Hospital, Tzu Chi Medical Foundation, Buddhist Tzu Chi University Hualien Taiwan
| |
Collapse
|
32
|
Long CY, Lin KL, Lee YC, Chuang SM, Lu JH, Wu BN, Chueh KS, Ker CR, Shen MC, Juan YS. Therapeutic effects of Low intensity extracorporeal low energy shock wave therapy (LiESWT) on stress urinary incontinence. Sci Rep 2020; 10:5818. [PMID: 32242035 PMCID: PMC7118154 DOI: 10.1038/s41598-020-62471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the therapeutic effects of Low intensity extracorporeal low energy shock wave therapy (LiESWT) on stress urinary incontinence (SUI). The investigation was a single-arm, open-label, multicentre study conducted in Taiwan. 50 female patients with SUI received LiESWT-treated with 0.25 mJ/mm2 intensity, 3000 pulses, and 3 pulses/second, once weekly for 4-weeks (W4) and 8-weeks (W8). The pad test, uroflowmetry, life quality questionnaires, and 3-day urinary diary measurement were performed before and after LiESWT intervention. The results revealed that 8-week of LiESWT treatment meaningfully improved urine leakage (pad test), maximum flow rate, post-voided residual urine, average urine volume, functional bladder capacity, urinary frequency, urgency symptom, and nocturia, which also persisted to show significant improvements at 1-month follow up (F1). Moreover, bothersome questionnaires scores were significantly improved at W4, W8, and F1 as compared to the baseline (W0). These results indicated that 8 weeks of LiESWT attenuated SUI symptoms on physical activity, reduced bladder leaks and overactive bladder (OAB), implying that LiESWT brought significant improvement in the quality of life. (ClinicalTrials.gov number, NCT04059133).
Collapse
Affiliation(s)
- Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Chin Lee
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University hospital, Kaohsiung, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Cancer Center, Department of Medical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jian-He Lu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-Shun Chueh
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mei-Chen Shen
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Urology, Kaohsiung Medical University hospital, Kaohsiung, Taiwan. .,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Therapeutic Effect of Botulinum Toxin A on Sensory Bladder Disorders-From Bench to Bedside. Toxins (Basel) 2020; 12:toxins12030166. [PMID: 32182780 PMCID: PMC7150911 DOI: 10.3390/toxins12030166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder oversensitivity arises from several different conditions involving the bladder, bladder outlet, systemic or central nervous system diseases. Increase of the bladder sensation results from activation of the sensory receptors in the urothelial cells or suburothelial tissues. Medical treatment targeting the overactive bladder (OAB) or interstitial cystitis (IC) might relieve oversensitive bladder symptoms (frequency, urgency and pain) in a portion of patients, but a certain percentage of patients still need active management. Botulinum toxin A (BoNT-A) has been demonstrated to have anti-inflammatory and antinociceptive effects in bladder sensory disorders and has been shown effective in the reduction of bladder oversensitivity and the increase of functional bladder capacity. For patients with OAB, urgency and urinary incontinence improved, while in patients with IC, bladder pain could be relieved in association with reduction of bladder oversensitivity after BoNT-A intravesical injection. Histological evidence has confirmed the therapeutic mechanism and clinical efficacy of intravesical BoNT-A injection on patients with OAB or IC. Bladder oversensitivity can also be relieved with the instillation of liposome encapsulated BoNT-A or low energy show waves (LESWs), which enable the BoNT-A molecule to penetrate into the urothelium and suburothelial space without affecting the detrusor contractility. Liposome encapsulated BoNT-A or combined LESWs and BoNT-A instillation might be future treatment alternatives for bladder oversensitivity in sensory bladder disorders.
Collapse
|
34
|
Low Energy Shock Wave Therapy Inhibits Inflammatory Molecules and Suppresses Prostatic Pain and Hypersensitivity in a Capsaicin Induced Prostatitis Model in Rats. Int J Mol Sci 2019; 20:ijms20194777. [PMID: 31561455 PMCID: PMC6801724 DOI: 10.3390/ijms20194777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
The effect of low energy shock wave (LESW) therapy on the changes of inflammatory molecules and pain reaction was studied in a capsaicin (10 mM, 0.1 cc) induced prostatitis model in rats. Intraprostatic capsaicin injection induced a pain reaction, including closing of the eyes, hypolocomotion, and tactile allodynia, which effects were ameliorated by LESW treatment. LESW therapy (2Hz, energy flux density of 0.12 mJ/mm2) at 200 and 300 shocks significantly decreased capsaicin-induced inflammatory reactions, reflected by a reduction of tissue edema and inflammatory cells, COX-2 and TNF-α stained positive cells, however, the therapeutic effects were not observed at 100 shocks treated group. Capsaicin-induced IL-1β, COX-2, IL-6, caspase-1, and NGF upregulation on day 3 and 7, while NALP1 and TNF-α upregulation was observed on day 7. LESW significantly suppressed the expression of IL-1β, COX-2, caspase-1, NGF on day 3 and IL-1β, TNF-α, COX-2, NALP1, caspase-1, NGF expression on day 7 in a dose-dependent fashion. LESW has no significant effect on IL-6 expression. Intraprostatic capsaicin injection activates inflammatory molecules and induces prostatic pain and hypersensitivity, which effects were suppressed by LESW. These findings might be the potential mechanisms of LESW therapy for nonbacterial prostatitis in humans.
Collapse
|
35
|
Zhang ZX, Zhang D, Yu XT, Ma YW. Efficacy of Radial Extracorporeal Shock Wave Therapy for Chronic Pelvic Pain Syndrome: A Nonrandomized Controlled Trial. Am J Mens Health 2018; 13:1557988318814663. [PMID: 30486723 PMCID: PMC6775558 DOI: 10.1177/1557988318814663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study aims to determine the effect of radial extracorporeal shock wave therapy (rESWT) versus drug when treating chronic pelvic pain syndrome (CPPS; type III B chronic prostatitis). The study included 45 participants with CPPS, divided into two groups: Group I comprised 25 participants, who were treated with rESWT (3,000 pulses each; pressure: 1.8-2.0 bar; frequency: 10 Hz) once a week; Group II consisted of 20 participants who received a combination of an α-blocker and an anti-inflammatory agent. Participants were treated for 8 weeks. The assessments were done before treatment, after the fourth and eighth rESWT, and 3 months after the end of treatment by Visual Analogue Scale (VAS) for pain, National Institutes of Health-developed Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), quality of life (QoL), and International Index of Erectile Function-5 (IIEF-5). Both groups of participants showed statistically significant improvement in all the assessments ( p < .001) after the treatment, with significantly better results in Group I in NIH-CPSI ( p < .001). The recurrence rate of symptoms in Group I at 3 months after end of treatment was much lower than that in Group II (4% vs. 50%, p < .001). This prospectively nonrandomized, control study revealed perineal rESWT as a new therapy option for CPPS with statistically significant effects in comparison to drugs at least for 3 months after cessation of treatment.
Collapse
Affiliation(s)
- Zhao-Xuan Zhang
- 1 Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dai Zhang
- 1 Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Tong Yu
- 2 Institute of Meta-Synthesis Medicine, Beijing, China
| | - Yue-Wen Ma
- 1 Department of Rehabilitation Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Chuang YC, Tyagi P, Wang HJ, Huang CC, Lin CC, Chancellor MB. Urodynamic and molecular characteristics of detrusor underactivity in a rat cryoinjury model and effects of low energy shock wave therapy. Neurourol Urodyn 2017; 37:708-715. [PMID: 28767169 DOI: 10.1002/nau.23381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023]
Abstract
AIMS Low energy shock wave (LESW) has been shown to facilitate tissue regeneration and reduce inflammation. We investigated the effects of LESW in an underactive (DU) model induced by cryoinjury of rat detrusor. METHODS Forty-six female Sprague-Dawley rats were divided into sham, cryoinjury with or without LESW (0.12 mJ/mm2 ; 200 pulses). Under halothane anesthesia, a low midline incision was made and a cryoinjury of detrusor was induced by placing an aluminum rod (chilled with dry ice) for 30 s on the serosal side of the bladder filled with 1 mL sterile saline bilaterally. Awake cystometrogram (CMG), molecular and histopathology studies were performed on Day 8 or 15 after cryoinjury. RESULTS Significant urodynamic, histological, and molecular changes induced by cryoinjury of rat detrusor were detected on Day 8 and decrease in the contraction amplitude (54.3%), a significant increase in wet bladder weight (64.1%), edematous changes, muscle thinning and downregulation of α-SMA, IL-6, and upregulation of COX-2. LESW reversed the cryoinjury induced histological and COX-2 expression to cause a 49.0% increase in the contraction amplitude (P < 0.05). LESW induced cell proliferation was revealed by increased CD31 and Ki67 immunostaining. The effect of cryoinjury on urodynamic and histological changes was maintained till Day 15. CONCLUSION The cryoinjury of rat detrusor models myogenic DU, which is partially reversed by LESW. LESW may afford a simple, non-invasive modality to facilitate tissue regeneration and improve voiding function in myogenic detrusor underactivity.
Collapse
Affiliation(s)
- Yao-Chi Chuang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,The Center of Excellence in Shockwave Medicine and Tissue Regeneration, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,The Center of Excellence in Shockwave Medicine and Tissue Regeneration, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chieh Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
37
|
Tyagi P, Kashyap M, Majima T, Kawamorita N, Yoshizawa T, Yoshimura N. Intravesical liposome therapy for interstitial cystitis. Int J Urol 2017; 24:262-271. [DOI: 10.1111/iju.13317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Pradeep Tyagi
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Mahendra Kashyap
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Tsuyoshi Majima
- Department of Urology; Nagoya University Graduate School of Medicine; Nagoya Aichi Japan
| | - Naoki Kawamorita
- Department of Urology; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | | | - Naoki Yoshimura
- Department of Urology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|