1
|
Peng Z, Wu G. Quadrupole-Central-Transition 23Na, 39K, 87Rb NMR Studies of Alkali Metal Ions under Different Molecular Tumbling Conditions: A Simple Model to Treat Chemical Exchange Involving Quadrupolar Nuclei. J Phys Chem A 2025. [PMID: 39782358 DOI: 10.1021/acs.jpca.4c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive 23Na (I = 3/2), 39K (I = 3/2), and 87Rb (I = 3/2) NMR results from alkali metal ions (Na+, K+, and Rb+) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal. In the slow-motion regime, although the NMR signal from quadrupolar nuclei should in principle exhibit a multi-Lorentzian line shape, only the quadrupole central transition (QCT) is often detectable in practice. In all the cases studied in this work, we found that alkali metal ions undergo fast exchange between free and bound states. Using the new theoretical method, we were able to interpret the experimental transverse relaxation data (i.e., line widths) obtained for 23Na, 39K, and 87Rb NMR signals including QCT signals over a large temperature range and extract information about ion-binding dynamics in different chemical environments. This work fills a gap in the literature where a unified approach for treating NMR transverse relaxation data for quadrupolar nuclei over the entire range of motion has been lacking. Our results suggest that the new approach is applicable in the study of alkali metal ion binding to biological macromolecules.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Shakiba M, Philips AB, Autschbach J, Akimov AV. Machine Learning Mapping Approach for Computing Spin Relaxation Dynamics. J Phys Chem Lett 2025; 16:153-162. [PMID: 39707977 DOI: 10.1021/acs.jpclett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
In this work, a machine learning mapping approach for predicting the properties of atomistic systems is reported. Within this approach, the atomic orbital overlap, density, or Kohn-Sham (KS) Fock matrix elements obtained at a low level of theory such as extended tight-binding have been used as input features to predict the electric field gradient (EFG) tensors at a higher level of theory such as those obtained with hybrid functionals. It is shown that the machine-learning-predicted EFG tensors can be used to compute spin relaxation rates of several ions in aqueous solutions. From only a fraction of data used in direct calculation, one can predict the quadrupolar isotropic spin relaxation rates with good accuracy, achieving relative errors between about 2-8% for different ions.
Collapse
Affiliation(s)
- Mohammad Shakiba
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Pala S, Paajanen A, Ristaniemi A, Nippolainen E, Afara IO, Nykänen O, Nissi MJ. Measurement of T 1ρ dispersion with compressed sensing and magnetization prepared radial balanced steady-state free precession in spontaneous human osteoarthritis. Magn Reson Med 2024; 92:2127-2139. [PMID: 38953429 DOI: 10.1002/mrm.30206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE To assess the potential for accelerating continuous-wave (CW) T1ρ dispersion measurement with compressed sensing approach via studying the effect that the data reduction has on the ability to detect differences between intact and degenerated articular cartilage with different spin-lock amplitudes and to assess quantitative bias due to acceleration. METHODS Osteochondral plugs (n = 27, 4 mm diameter) from femur (n = 14) and tibia (n = 13) regions from human cadaver knee joints were obtained from commercial biobank (Science Care, USA) under Ethical permission 134/2015. MRI of specimens was performed at 9.4T with magnetization prepared radial balanced SSFP (bSSFP) readout sequence, and the CWT1ρ relaxation time maps were computed from the measured data. The relaxation time maps were evaluated in the cartilage zones for different acceleration factors. For reference, Osteoarthritis Research Society International (OARSI) grading and biomechanical measurements were performed and correlated with the MRI findings. RESULTS Four-fold acceleration of CWT1ρ dispersion measurement by compressed sensing approach was feasible without meaningful loss in the sensitivity to osteoarthritic (OA) changes within the articular cartilage. Differences were significant between intact and OA groups in the superficial and transitional zones, and CWT1ρ correlated moderately with the reference measurements (0.3 < r < 0.7). CONCLUSION CWT1ρ was able to differentiate between intact and OA cartilage even with four-fold acceleration. This indicates that acceleration of CWT1ρ dispersion measurement by compressed sensing approach is feasible with negligible loss in the sensitivity to osteoarthritic changes in articular cartilage.
Collapse
Grants
- 780598 Horizon 2020 Framework Programme
- H2020-ICT-2017-1 Horizon 2020 Framework Programme
- 358944 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 315820 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 324529 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 324994 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 325146 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 348410 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 352666 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 354693 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 357787 Research Council of Finland (Flagship of Advanced Mathematics for Sensing, Imaging and Modelling Grant)
- 240130 Sigrid Jusélius Foundation
- Olvi Foundation
- Päivikki and Sakari Sohlberg Foundation
- Instrumentarium Science foundation
- 65231459 Finnish Cultural Foundation, North-Savonia Regional Fund
Collapse
Affiliation(s)
- S Pala
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - A Paajanen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - A Ristaniemi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - E Nippolainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - I O Afara
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - O Nykänen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - M J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Chalian M, Pooyan A, Alipour E, Roemer FW, Guermazi A. What is New in Osteoarthritis Imaging? Radiol Clin North Am 2024; 62:739-753. [PMID: 39059969 DOI: 10.1016/j.rcl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Osteoarthritis (OA) is the leading joint disorder globally, affecting a significant proportion of the population. Recent studies have changed our understanding of OA, viewing it as a complex pathology of the whole joint with a multifaceted etiology, encompassing genetic, biological, and biomechanical elements. This review highlights the role of imaging in diagnosing and monitoring OA. Today's role of radiography is discussed, while also elaborating on the advances in computed tomography and magnetic resonance imaging, discussing semiquantitative methods, quantitative morphologic and compositional techniques, and giving an outlook on the potential role of artificial intelligence in OA research.
Collapse
Affiliation(s)
- Majid Chalian
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Atefe Pooyan
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Ehsan Alipour
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Frank W Roemer
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg; Universitätsklinikum Erlangen, Erlangen, Germany; Department of Radiology, Quantitative Imaging Center, Boston University School of Medicine
| | - Ali Guermazi
- Department of Radiology, Quantitative Imaging Center, Boston University School of Medicine; Department of Radiology, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
5
|
Horkay F, Basser PJ, Geissler E. Cartilage extracellular matrix polymers: hierarchical structure, osmotic properties, and function. SOFT MATTER 2024. [PMID: 39028032 DOI: 10.1039/d4sm00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Proteoglycans are hierarchically organized structures that play an important role in the hydration and the compression resistance of cartilage matrix. In this study, the static and dynamic properties relevant to the biomechanical function of cartilage are determined at different levels of the hierarchical structure, using complementary osmotic pressure, neutron scattering (SANS) and light scattering (DLS) measurements. In cartilage proteoglycans (PGs), two levels of bottlebrush structures can be distinguished: the aggrecan monomer, which consists of a core protein to which are tethered charged glycosaminoglycan (GAG) chains, and complexes formed of the aggrecan monomers attached around a linear hyaluronic acid backbone. The principal component of GAG, chondroitin sulfate (CS), is used as a baseline in this comparison. The osmotic modulus, measured as a function of the proteoglycan concentration, follows the order CS < aggrecan < aggrecan-HA complex. This order underlines the benefit of the increasing complexity at each level of the molecular architecture. The hierarchical bottlebrush configuration, which prevents interpenetration among the bristles of the aggrecan monomers, enhances both the mechanical properties and the osmotic resistance. The osmotic pressure of the collagen solution is notably smaller than in the proteoglycan systems. This is consistent with its known primary role to provide tensile strength to the cartilage and to confine the aggrecan-HA complexes, as opposed to load bearing. The collective diffusion coefficient D governs the rate of recovery of biological tissue after compressive load. In CS solutions the diffusion process is fast, D ≈ 3 × 10-6 cm2 s-1 at concentrations comparable with that of the GAG chains inside the aggrecan molecule. In CS solutions D is a weakly decreasing function of calcium ion concentration, while in aggrecan and its complexes with HA, the relaxation rate is insensitive to the presence of calcium.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA.
| | - Erik Geissler
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| |
Collapse
|
6
|
Zbýň Š, Ludwig KD, Watkins LE, Lagore RL, Nowacki A, Tóth F, Tompkins MA, Zhang L, Adriany G, Gold GE, Shea KG, Nagel AM, Carlson CS, Metzger GJ, Ellermann JM. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: Ex vivo 23 Na MRI study at 10.5 T. Magn Reson Med 2024; 91:1099-1114. [PMID: 37997011 PMCID: PMC10751033 DOI: 10.1002/mrm.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponentialT 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The shortT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated withT 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850),fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.
Collapse
Affiliation(s)
- Štefan Zbýň
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH
| | - Kai D. Ludwig
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Lauren E. Watkins
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
- Steadman Philippon Research Institute, Vail, CO
| | - Russell L. Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Amanda Nowacki
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- University of Texas, Austin, TX
| | - Ferenc Tóth
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Marc A. Tompkins
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Garry E. Gold
- Department of Radiology, Department of Bioengineering, Stanford University, Palo Alto, CA
| | - Kevin G. Shea
- Lucile Packard Children’s Hospital, Stanford University School of Medicine, Palo Alto, CA
| | - Armin M. Nagel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Jutta M. Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Yang F, Ju X, Zeng Y, Tian X, Zhang X, Wang J, Huang H. In situ observation of cartilage matrix based on two-photon fluorescence microscopy. Biochem Biophys Res Commun 2023; 682:64-70. [PMID: 37801991 DOI: 10.1016/j.bbrc.2023.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Articular cartilage lesions remain a major challenge for clinicians and researchers. Several techniques, such as histological scoring, magnetic resonance imaging, and tissue section staining, are available for detecting cartilage degeneration and lesions and evaluating cartilage repairs. Nevertheless, these methods are complex and have numerous influencing factors, which may present obstacles to efficient communication between studies. In this study, we developed a fluorescence observation system that integrated a two-photon laser scanning confocal microscope (TPLSCM) with the second-harmonic generation (SHG) of a cartilage matrix. The observation system enabled the detection of autofluorescence emitted by the cartilage matrix without species specificity, facilitating both qualitative and quantitative analyses of the cartilage matrix. Notably, this observation could be applied three-dimensionally to a fresh specimen in situ up to a depth of 300 μm, obviating the need for traditional histological fixation, slicing, or staining. Furthermore, using this observation system, we reconstructed a three-dimensional (3D) image and a 3D model of the cartilage matrix. The utilization of the 3D fluorescence model may serve as a dependable option for the fabrication of cartilage matrix biomimetic scaffolds in future studies.
Collapse
Affiliation(s)
- Fan Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaodong Ju
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | - Yanhong Zeng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoke Tian
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | - Xin Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China.
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Sports Injuries, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, 49 North Garden Rd, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
8
|
Watkins LE, Goyal A, Gatti AA, Kogan F. Imaging of joint response to exercise with MRI and PET. Skeletal Radiol 2023; 52:2159-2183. [PMID: 36646851 PMCID: PMC10350475 DOI: 10.1007/s00256-022-04271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
Imaging of the joint in response to loading stress may provide additional measures of joint structure and function beyond conventional, static imaging studies. Exercise such as running, stair climbing, and squatting allows evaluation of the joint response to larger loading forces than during weight bearing. Quantitative MRI (qMRI) may assess properties of cartilage and meniscus hydration and organization in vivo that have been investigated to assess the functional response of these tissues to physiological stress. [18F]sodium fluoride ([18F]NaF) interrogates areas of newly mineralizing bone and provides an opportunity to study bone physiology, including perfusion and mineralization rate, as a measure of joint loading stress. In this review article, methods utilizing quantitative MRI, PET, and hybrid PET-MRI systems for assessment of the joint response to loading from exercise in vivo are examined. Both methodology and results of various studies performed are outlined and discussed. Lastly, the technical considerations, challenges, and future opportunities for these approaches are addressed.
Collapse
Affiliation(s)
| | - Ananya Goyal
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Anthony A Gatti
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid Whole-Knee Quantification of Cartilage Using T 1, T 2*, and T RAFF2 Mapping With Magnetic Resonance Fingerprinting. IEEE Trans Biomed Eng 2023; 70:3197-3205. [PMID: 37227911 DOI: 10.1109/tbme.2023.3280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Quantitative Magnetic Resonance Imaging (MRI) holds great promise for the early detection of cartilage deterioration. Here, a Magnetic Resonance Fingerprinting (MRF) framework is proposed for comprehensive and rapid quantification of T1, T2*, and TRAFF2 with whole-knee coverage. METHODS A MRF framework was developed to achieve quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame of reference ( TRAFF2) along with T1 and T2*. The proposed sequence acquires 65 measurements of 25 high-resolution slices, interleaved with 7 inversion pulses and 40 RAFF2 trains, for whole-knee quantification in a total acquisition time of 3:25 min. Comparison with reference T1, T2*, and TRAFF2 methods was performed in phantom and in seven healthy subjects at 3 T. Repeatability (test-retest) with and without repositioning was also assessed. RESULTS Phantom measurements resulted in good agreement between MRF and the reference with mean biases of -54, 2, and 5 ms for T1, T2*, and TRAFF2, respectively. Complete characterization of the whole-knee cartilage was achieved for all subjects, and, for the femoral and tibial compartments, a good agreement between MRF and reference measurements was obtained. Across all subjects, the proposed MRF method yielded acceptable repeatability without repositioning ( R2 ≥ 0.94) and with repositioning ( R2 ≥ 0.57) for T1, T2*, and TRAFF2. SIGNIFICANCE The short scan time combined with the whole-knee coverage makes the proposed MRF framework a promising candidate for the early assessment of cartilage degeneration with quantitative MRI, but further research may be warranted to improve repeatability after repositioning and assess clinical value in patients.
Collapse
|
10
|
Frenken M, Radke KL, Schäfer ELE, Valentin B, Wilms LM, Abrar DB, Nebelung S, Martirosian P, Wittsack HJ, Müller-Lutz A. Insights into the Age Dependency of Compositional MR Biomarkers Quantifying the Health Status of Cartilage in Metacarpophalangeal Joints. Diagnostics (Basel) 2023; 13:diagnostics13101746. [PMID: 37238230 DOI: 10.3390/diagnostics13101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.
Collapse
Affiliation(s)
- Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Emilia Louisa Ernestine Schäfer
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Lena Marie Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Tübingen, D-72076 Tübingen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| |
Collapse
|
11
|
Wang P. Adiabatically prepared spin-lock could reduce the R 1ρ dispersion. Quant Imaging Med Surg 2023; 13:763-775. [PMID: 36819267 PMCID: PMC9929376 DOI: 10.21037/qims-21-959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Background R1ρ (or spin-lock) imaging is prone to artifacts arising from field inhomogeneities that may impact the R1ρ quantification. Previous research has proposed two types of method to manage the artifacts in continuous-wave constant amplitude spin-lock, one is based on the composite block pulses to compensate for the field imperfections, another category uses adiabatic pulses in the R1ρ pre-pulse to excite and reverse the magnetization (named adiabatic prepared approach). Although both methods have proved their efficiency in alleviating artifacts, we observed that the adiabatic pulse approach could produce much lower R1ρ dispersion in human knee cartilage than the block pulse method (characterized by the R1ρ difference ∆R1ρ =11.4 Hz (from spin-lock field 50 to 500 Hz) for the block pulse method vs. ∆R1ρ =4.5 Hz for the adiabatic pulse approach). Prompted by this observation, the purpose of this study was to investigate the underlying factors that may affect the R1ρ dispersion through numerical simulations based on the two-pool exchanging Bloch-McConnell equations. Methods The effects of free water pool size Pa (from 0.80 to 0.95), chemical exchange rate kb (from the bound to free water pool, ranged from 500 to 3,000 Hz), adiabatic pulse duration Tp (from 5.0 to 25 ms), and the chemical shift of the bound pool ppmb (from 1.0 to 5.0 ppm) were examined on the degree of the R1ρ dispersion for the two R1ρ imaging methods. Results In general, the greater the ppmb, kb, Tp, and the smaller Pa, the more significant difference in R1ρ dispersion between the block and adiabatic approaches, with the dispersion curve of the adiabatic method becoming flatter. Conclusions The adiabatic prepared approach may compromise the R1ρ dispersion, the effect is determined by the combination of the tissue and radiofrequency (RF) pulse properties. It is suggested that care should be taken when using the adiabatically prepared approach to study R1ρ dispersion.
Collapse
|
12
|
Pala S, Hänninen NE, Nykänen O, Liimatainen T, Nissi MJ. New methods for robust continuous wave T 1ρ relaxation preparation. NMR IN BIOMEDICINE 2023; 36:e4834. [PMID: 36115012 PMCID: PMC10078184 DOI: 10.1002/nbm.4834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Measurement of the longitudinal relaxation time in the rotating frame of reference (T1ρ ) is sensitive to the fidelity of the main imaging magnetic field (B0 ) and that of the RF pulse (B1 ). The purpose of this study was to introduce methods for producing continuous wave (CW) T1ρ contrast with improved robustness against field inhomogeneities and to compare the sensitivities of several existing and the novel T1ρ contrast generation methods with the B0 and B1 field inhomogeneities. Four hard-pulse and four adiabatic CW-T1ρ magnetization preparations were investigated. Bloch simulations and experimental measurements at different spin-lock amplitudes under ideal and non-ideal conditions, as well as theoretical analysis of the hard-pulse preparations, were conducted to assess the sensitivity of the methods to field inhomogeneities, at low (ω1 << ΔB0 ) and high (ω1 >> ΔB0 ) spin-locking field strengths. In simulations, previously reported single-refocus and new triple-refocus hard-pulse and double-refocus adiabatic preparation schemes were found to be the most robust. The mean normalized absolute deviation between the experimentally measured relaxation times under ideal and non-ideal conditions was found to be smallest for the refocused preparation schemes and broadly in agreement with the sensitivities observed in simulations. Experimentally, all refocused preparations performed better than those that were non-refocused. The findings promote the use of the previously reported hard-pulse single-refocus ΔB0 and B1 insensitive T1ρ as a robust method with minimal RF energy deposition. The double-refocus adiabatic B1 insensitive rotation-4 CW-T1ρ preparation offers further improved insensitivity to field variations, but because of the extra RF deposition, may be preferred for ex vivo applications.
Collapse
Affiliation(s)
- Swetha Pala
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Nina E. Hänninen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| | - Olli Nykänen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
- Department of RadiologyOulu University HospitalOuluFinland
| | - Mikko J. Nissi
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Research Unit of Medical Imaging, Physics and TechnologyUniversity of OuluOuluFinland
| |
Collapse
|
13
|
Comparison of meniscal T1rho- and T2*-relaxation times in professional female volleyball players and healthy controls using 3T MRI: A pilot study. Eur J Radiol 2022; 155:110503. [DOI: 10.1016/j.ejrad.2022.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
14
|
Pang Y. A self-compensated spin-locking scheme for quantitative R 1ρ dispersion MR imaging in ordered tissues. Magn Reson Imaging 2022; 94:112-118. [PMID: 36181969 DOI: 10.1016/j.mri.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To propose a self-compensated spin-locking (SL) method for quantitative R1ρ dispersion imaging in ordered tissues. METHODS Two pairs of antiphase rotary-echo SL pulses were proposed in a new scheme with each pairs sandwiching one refocusing RF pulse. This proposed SL method was evaluated by Bloch simulations and experimental studies relative to three prior schemes. Quantitative R1ρR dispersion imaging studies with constant SL duration (TSL = 40 ms) were carried out on an agarose (1-4% w/v) phantom and one in vivo human knee at 3 T, using six SL RF strengths ranging from 50 to 1000 Hz. The performances of these SL schemes were characterized with an average coefficient of variation (CV) of the signal intensities in agarose gels and the sum of squared errors (SSE) for quantifying in vivo R1ρ dispersion of the femoral and tibial cartilage. RESULTS The simulations demonstrate that the proposed SL scheme was less prone to B0 and B1 field inhomogeneities. This theoretical prediction was supported by fewer image banding artifacts and less signal fluctuation signified by a reduced CV (%) on the phantom without R1ρ dispersion (i.e., 4.04 ± 1.36 vs. 18.87 ± 4.46 or 6.66 ± 2.92 or 5.71 ± 2.05 for others), and further by mostly decreased SSE (*10-3) for characterizing R1ρ dispersion of the femoral (i.e., 0.3 vs. 1.2 or 0.4 or 0.1) and tibial (i.e., 0.4 vs. 7.2 or 3.2 or 2.8) cartilage. CONCLUSION The proposed SL scheme is less sensitive to B0 and B1 field artifacts for a wide range of SL RF strengths and thus more suitable for quantitative R1ρ dispersion imaging in ordered tissues.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Çavuşoğlu M, Pazahr S, Ciritsis AP, Rossi C. Quantitative 23 Na-MRI of the intervertebral disk at 3 T. NMR IN BIOMEDICINE 2022; 35:e4733. [PMID: 35307881 PMCID: PMC9540256 DOI: 10.1002/nbm.4733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Monitoring the tissue sodium content (TSC) in the intervertebral disk geometry noninvasively by MRI is a sensitive measure to estimate changes in the proteoglycan content of the intervertebral disk, which is a biomarker of degenerative disk disease (DDD) and of lumbar back pain (LBP). However, application of quantitative sodium concentration measurements in 23 Na-MRI is highly challenging due to the lower in vivo concentrations and smaller gyromagnetic ratio, ultimately yielding much smaller signal relative to 1 H-MRI. Moreover, imaging the intervertebral disk geometry imposes higher demands, mainly because the necessary RF volume coils produce highly inhomogeneous transmit field patterns. For an accurate absolute quantification of TSC in the intervertebral disks, the B1 field variations have to be mitigated. In this study, we report for the first time quantitative sodium concentration in the intervertebral disks at clinical field strengths (3 T) by deploying 23 Na-MRI in healthy human subjects. The sodium B1 maps were calculated by using the double-angle method and a double-tuned (1 H/23 Na) transceive chest coil, and the individual effects of the variation in the B1 field patterns in tissue sodium quantification were calculated. Phantom measurements were conducted to evaluate the quality of the Na-weighted images and B1 mapping. Depending on the disk position, the sodium concentration was calculated as 161.6 mmol/L-347 mmol/L, and the mean sodium concentration of the intervertebral disks varies between 254.6 ± 54 mmol/L and 290.1 ± 39 mmol/L. A smoothing effect of the B1 correction on the sodium concentration maps was observed, such that the standard deviation of the mean sodium concentration was significantly reduced with B1 mitigation. The results of this work provide an improved integration of quantitative 23 Na-MRI into clinical studies in intervertebral disks such as degenerative disk disease and establish alternative scoring schemes to existing morphological scoring such as the Pfirrmann score.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Institute of Diagnostic and Interventional Radiology, University Hospital ZurichUniversity of ZurichSwitzerland
| | | | - Alexander P. Ciritsis
- Institute of Diagnostic and Interventional Radiology, University Hospital ZurichUniversity of ZurichSwitzerland
| | - Cristina Rossi
- Institute of Diagnostic and Interventional Radiology, University Hospital ZurichUniversity of ZurichSwitzerland
| |
Collapse
|
16
|
Saberianpour S, Abolbashari S, Modaghegh MHS, Karimian MS, Eid AH, Sathyapalan T, Sahebkar A. Therapeutic effects of statins on osteoarthritis: A review. J Cell Biochem 2022; 123:1285-1297. [PMID: 35894149 DOI: 10.1002/jcb.30309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease. The etiology of OA is considered to be multifactorial. Currently, there is no definitive treatment for OA, and the existing treatments are not very effective. Hypercholesterolemia is considered a novel risk factor for the development of OA. Statins act as a competitive inhibitor of the β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase and are widely used to manage hypercholesterolemia. Inhibition of HMG-CoA reductase results in reduced synthesis of a metabolite named mevalonate, thereby reducing cholesterol biosynthesis in subsequent steps. By this mechanism, statins such as atorvastatin and simvastatin could potentially have a preventive impact on joint cartilage experiencing osteoarthritic deterioration by reducing serum cholesterol levels. Atorvastatin can protect cartilage degradation following interleukin-1β-stimulation. Atorvastatin stimulates the STAT1-caspase-3 signaling pathway that was shown to be responsible for its anti-inflammatory effects on the knee joint. Simvastatin had chondroprotective effects on OA in vitro by reducing matrix metalloproteinases expression patterns. In this study, we tried to review the therapeutic effects of statins on OA.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Abolbashari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad H S Modaghegh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam S Karimian
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Embedded Quantitative MRI T1ρ Mapping Using Non-Linear Primal-Dual Proximal Splitting. J Imaging 2022; 8:jimaging8060157. [PMID: 35735956 PMCID: PMC9225115 DOI: 10.3390/jimaging8060157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To reduce the scanning time, undersampled data may be combined with compressed sensing (CS) reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain the parameter maps. We propose a direct, embedded reconstruction method for T1ρ mapping. The proposed method capitalizes on a known signal model to directly reconstruct the desired parameter map using a non-linear optimization model. The proposed reconstruction method also allows directly regularizing the parameter map of interest and greatly reduces the number of unknowns in the reconstruction, which are key factors in the performance of the reconstruction method. We test the proposed model using simulated radially sampled data from a 2D phantom and 2D cartesian ex vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model to two CS reconstruction models and in the cartesian test case also the direct inverse fast Fourier transform. The T1ρ RMSE of the embedded reconstructions was reduced by 37–76% compared to the CS reconstructions when using undersampled simulated data with the reduction growing with larger acceleration factors. The proposed, embedded model outperformed the reference methods on the experimental test case as well, especially providing robustness with higher acceleration factors.
Collapse
|
18
|
Kamp B, Frenken M, Henke JM, Abrar DB, Nagel AM, Gast LV, Oeltzschner G, Wilms LM, Nebelung S, Antoch G, Wittsack HJ, Müller-Lutz A. Quantification of Sodium Relaxation Times and Concentrations as Surrogates of Proteoglycan Content of Patellar CARTILAGE at 3T MRI. Diagnostics (Basel) 2021; 11:diagnostics11122301. [PMID: 34943538 PMCID: PMC8700247 DOI: 10.3390/diagnostics11122301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sodium MRI has the potential to depict cartilage health accurately, but synovial fluid can influence the estimation of sodium parameters of cartilage. Therefore, this study aimed to reduce the impact of synovial fluid to render the quantitative compositional analyses of cartilage tissue technically more robust. Two dedicated protocols were applied for determining sodium T1 and T2* relaxation times. For each protocol, data were acquired from 10 healthy volunteers and one patient with patellar cartilage damage. Data recorded with multiple repetition times for T1 measurement and multi-echo data acquired with an additional inversion recovery pulse for T2* measurement were analysed using biexponential models to differentiate longitudinal relaxation components of cartilage (T1,car) and synovial fluid (T1,syn), and short (T2s*) from long (T2l*) transversal relaxation components. Sodium relaxation times and concentration estimates in patellar cartilage were successfully determined: T1,car = 14.5 ± 0.7 ms; T1,syn = 37.9 ± 2.9 ms; c(T1-protocol) = 200 ± 48 mmol/L; T2s* = 0.4 ± 0.1 ms; T2l* = 12.6 ± 0.7 ms; c(T2*-protocol) = 215 ± 44 mmol/L for healthy volunteers. In conclusion, a robust determination of sodium relaxation times is possible at a clinical field strength of 3T to quantify sodium concentrations, which might be a valuable tool to determine cartilage health.
Collapse
Affiliation(s)
- Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
- Correspondence:
| | - Jan M. Henke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
- Clinic of Nuclear Medicine, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Daniel B. Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (A.M.N.); (L.V.G.)
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, D-69120 Heidelberg, Germany
| | - Lena V. Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany; (A.M.N.); (L.V.G.)
| | - Georg Oeltzschner
- Russell H. Morgan Department for Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA;
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205-2196, USA
| | - Lena M. Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (B.K.); (J.M.H.); (D.B.A.); (L.M.W.); (S.N.); (G.A.); (H.-J.W.); (A.M.-L.)
| |
Collapse
|
19
|
Han M, Tibrewala R, Bahroos E, Pedoia V, Majumdar S. Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R 2 -R 1ρ in knee cartilage. Magn Reson Med 2021; 87:733-745. [PMID: 34590728 DOI: 10.1002/mrm.29024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To validate the potential of quantifying R2 -R1ρ using one pair of signals with T1ρ preparation and T2 preparation incorporated to magnetization-prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots (MAPSS) acquisition and to find an optimal preparation time (Tprep ) for in vivo knee MRI. METHODS Bloch equation simulations were first performed to assess the accuracy of quantifying R2 -R1ρ using T1ρ - and T2 -prepared signals with an equivalent Tprep . For validation of this technique in comparison to the conventional approach that calculates R2 -R1ρ after estimating both T2 and T1ρ , phantom experiments and in vivo validation with five healthy subjects and five osteoarthritis patients were performed at a clinical 3T scanner. RESULTS Bloch equation simulations demonstrated that the accuracy of this efficient R2 -R1ρ quantification method and the optimal Tprep can be affected by image signal-to-noise ratio (SNR) and tissue relaxation times, but quantification can be closest to the reference with an around 25 ms Tprep for knee cartilage. Phantom experiments demonstrated that the proposed method can depict R2 -R1ρ changes with agarose gel concentration. With in vivo data, significant correlation was observed between cartilage R2 -R1ρ measured from the conventional and the proposed methods, and a Tprep of 25.6 ms provided the most agreement by Bland-Altman analysis. R2 -R1ρ was significantly lower in patients than in healthy subjects for most cartilage compartments. CONCLUSION As a potential biomarker to indicate cartilage degeneration, R2 -R1ρ can be efficiently measured using one pair of T1ρ -prepared and T2 -prepared signals with an optimal Tprep considering cartilage relaxation times and image SNR.
Collapse
Affiliation(s)
- Misung Han
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Radhika Tibrewala
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Emma Bahroos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Center for Digital Health Innovation, University of California, San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Center for Digital Health Innovation, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Cheng KY, Lombardi AF, Chang EY, Chung CB. Knee Cartilage Imaging. Clin Sports Med 2021; 40:677-692. [PMID: 34509205 DOI: 10.1016/j.csm.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Articular cartilage injury and degeneration represent common causes of knee pain, which can be evaluated accurately and noninvasively using MRI. This review describes the structure of cartilage focusing on its histologic appearance to emphasize that structure will dictate patterns of tissue failure as well as MR appearance. In addition to identifying cartilage loss, MRI can demonstrate signal changes that correspond to intrinsic structural abnormalities which place the cartilage at risk for subsequent more serious injury or premature degeneration, allowing for earlier intervention and treatment of important causes of pain and morbidity.
Collapse
Affiliation(s)
- Karen Y Cheng
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA
| | - Alecio F Lombardi
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA
| | - Eric Y Chang
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA
| | - Christine B Chung
- Department of Radiology, UC San Diego Health, 200 W. Arbor Drive MC 8226, San Diego, CA 92103, USA; VA San Diego Healthcare System, Radiology Service, 3350 La Jolla Village Drive, MC 114, San Diego, CA 92161, USA.
| |
Collapse
|
21
|
Crețu A, Mattea C, Stapf S. Low-field and variable-field NMR relaxation studies of H2O and D2O molecular dynamics in articular cartilage. PLoS One 2021; 16:e0256177. [PMID: 34432832 PMCID: PMC8386884 DOI: 10.1371/journal.pone.0256177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) as the main degenerative disease of articular cartilage in joints is accompanied by structural and compositional changes in the tissue. Degeneration is a consequence of a reduction of the amount of macromolecules, the so-called proteoglycans, and of a corresponding increase in water content, both leading to structural weakening of cartilage. NMR investigations of cartilage generally address only the relaxation properties of water. In this study, two-dimensional (T1-T2) measurements of bovine articular cartilage samples were carried out for different stages of hydration, complemented by molecular exchange with D2O and treatment by trypsin which simulates degeneration by OA. Two signal components were identified in all measurements, characterized by very different T2 which suggests liquid-like and solid-like dynamics. These measurements allow the quantification of separate hydrogen components and their assignment to defined physical pools which had been discussed repeatedly in the literature, i.e. bulk-like water and a combination of protein hydrogens and strongly bound water. The first determination of 2H relaxation dispersion in comparison to 1H dispersion suggests intramolecular interactions as the dominating source for the pronounced magnetic field dependence of the longitudinal relaxation time T1.
Collapse
Affiliation(s)
- Andrea Crețu
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| | - Carlos Mattea
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| | - Siegfried Stapf
- Fachgebiet Technische Physik II/Polymerphysik, Institute of Physics, Technische Universität Ilmenau, Germany
| |
Collapse
|
22
|
Pang Y, Palmieri-Smith RM, Maerz T. An efficient R 1ρ dispersion imaging method for human knee cartilage using constant magnetization prepared turbo-FLASH. NMR IN BIOMEDICINE 2021; 34:e4500. [PMID: 33675138 PMCID: PMC8122047 DOI: 10.1002/nbm.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
This work aimed to develop an efficient R1ρ dispersion imaging method for clinical studies of human knee cartilage at 3 T. Eight constant magnetizations (Mprep ) were prepared by tailoring both the duration and amplitude (ω1 ) of a fully refocused spin-lock preparation pulse. The limited Mprep dynamic range was expanded by the measure, equivalent to that with ω1 = ∞, from the magic angle location in the deep femoral cartilage. The developed protocol with Mprep = 60% was demonstrated on one subject's bilateral and two subjects' unilateral asymptomatic knees. The repeatability of the proposed protocol was estimated by two repeated scans with a three-month gap for the last two subjects. The synthetic R1ρ and R2 derived from R1ρ dispersions were compared with the published references using state-of-the-art R1ρ and R2 mapping (MAPSS). The proposed protocol demonstrated good (<5%) repeatability quantified by the intra- and intersubject coefficients of variation in the femoral and tibial cartilage. The synthetic R1ρ (1/s) and the references were comparable in the femoral (23.0 ± 5.3 versus 24.1 ± 3.8, P = 0.67) and the tibial (29.1 ± 8.8 versus 27.1 ± 5.1, P = 0.62), but not the patellar (16.5 ± 4.9 versus 22.7 ± 1.6, P < 0.01) cartilage. The same trends were also observed for the current and the previous R2 . In conclusion, the developed R1ρ dispersion imaging scheme has been revealed to be not only efficient but also robust for clinical studies of human knee cartilage at 3 T.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Ikuta F, Takahashi K, Kiuchi S, Watanabe A, Okuaki T, Oshima Y, Watanabe H, Hashimoto S. Effects of repeated intra-articular hyaluronic acid on cartilage degeneration evaluated by T1ρ mapping in knee osteoarthritis. Mod Rheumatol 2020; 31:912-918. [PMID: 32990487 DOI: 10.1080/14397595.2020.1830483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Intra-articular injection of hyaluronic acid (IAHA) has been used for the treatment of knee osteoarthritis (OA), but its effectiveness remains controversial. This study analyzed knee OA over time by magnetic resonance imaging (MRI) T1ρ mapping to objectively evaluate whether long-term repeated administration of IAHA influences cartilage degeneration. METHODS Sixty knees of 60 patients [58.3 ± 12.5 years (mean ± standard deviation)] who had multiple T1ρ mapping images were retrospectively analyzed. We calculated the T1ρ values of the medial femorotibial cartilage and classified changes in degenerative areas over time into 3 groups: Improvement, No Change, and Deterioration. RESULTS Average time between 2 MRI scans was 7.6 ± 1.2 months. The number of IAHA administrations was 15.5 ± 21.3, 8.39 ± 7.19, and 5.80 ± 7.49 in the Improvement, No Change, and Deterioration groups, respectively. Body mass index and number of IAHA administrations were significant factors causing change in the area of degeneration (p < .05) independent of age, sex, Kellgren-Lawrence grade, and posterior horn meniscus tears. CONCLUSION Cartilage degeneration may be improved with a higher number of administrations of IAHA, based on T1ρ mapping results. This highlights the possibility of increased treatment effectiveness of IAHA for knee OA with repeated administrations.
Collapse
Affiliation(s)
- Futoshi Ikuta
- Department of Orthopaedic Surgery, Nippon Medical School, Tokyo, Japan.,Inanami Spine and Joint Hospital, Tokyo, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Atsuya Watanabe
- Department of General Medical Services, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Yasushi Oshima
- Department of Orthopaedic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Watanabe
- Department of Orthopaedic Surgery, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
24
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
25
|
Zelenski N, Falk DP, D'Aquilla K, Borthakur A, Bannister E, Kneeland B, Reddy R, Zgonis M. Zone- and layer-specific differences in proteoglycan content in patellofemoral pain syndrome are detectable on T1ρ MRI. Skeletal Radiol 2020; 49:1397-1402. [PMID: 32253471 DOI: 10.1007/s00256-020-03418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine if differences in T1ρ would be detected in specific regions or layers of patellofemoral cartilage between patients with symptomatic patellofemoral pain syndrome and asymptomatic control subjects. MATERIALS AND METHODS Ten subjects diagnosed with patellofemoral pain syndrome were compared with ten age-, gender-, and BMI-matched control subjects with no knee pain or prior trauma. Conventional turbo (fast) spin echo sequences and T1ρ-weighted imaging were performed on the symptomatic knee in each of the ten subjects. At the patella and distal femur, cartilage regions of interest were divided into medial and lateral sub-regions, each then further sub-divided by layer (superficial, middle, or deep). Two-tailed t test and chi-squared tests were used to analyze demographic data. A mixed effect model was run for each sub-region of T1ρ imaging. Statistical significance was determined using the likelihood ratio test against reduced models without patellofemoral pain syndrome symptomatic status as a fixed effect. RESULTS There was no difference in age, sex, or BMI between symptomatic and control patients. T1ρ values were significantly higher among patellofemoral pain syndrome patients when compared with controls in the superficial zone of the lateral patella (58.43 vs. 50.83, p = 0.03) and the middle zone of the lateral patella (52.67 vs. 43.60, p = 0.03). T1ρ was also higher in the superficial zone of the medial femur (50.94 vs. 46.70, p = 0.09) with a value approaching statistical significance. CONCLUSION We report statistically significant differences in the T1ρ value in the superficial and middle zones of the lateral patella in patients with patellofemoral pain syndrome who had no abnormalities seen on conventional MRI sequences, suggesting an alteration the macromolecular structure of the cartilage in this population.
Collapse
Affiliation(s)
- Nicole Zelenski
- Department of Orthopaedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David P Falk
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Arijitt Borthakur
- Center for Practice Transformation, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Donner Basement, 34000 Spruce Street, Philadelphia, PA, 19104, USA
| | - Evan Bannister
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Bruce Kneeland
- Department of Radiology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA, 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Wang Z, Ai S, Tian F, Liow MHL, Wang S, Zhao J, Tsai TY. Higher Body Mass Index Is Associated With Biochemical Changes in Knee Articular Cartilage After Marathon Running: A Quantitative T2-Relaxation MRI Study. Orthop J Sports Med 2020; 8:2325967120943874. [PMID: 32851106 PMCID: PMC7427140 DOI: 10.1177/2325967120943874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background: More than 30 million individuals participate in marathon running every year worldwide. As the popularity of marathon running continues to increase, it is essential for the purposes of injury prevention to understand the effects of marathon running on the knee cartilage. Purpose: To investigate the immediate effects of marathon running on knee articular cartilage and to determine the relationship between body mass index and cartilage biochemical composition. Study Design: Descriptive laboratory study. Methods: T2-relaxation magnetic resonance imaging (MRI) of knees in 18 nonprofessional marathoners (mean age, 35.6 ± 6.4 years) was performed before and after a full-length marathon. Three-dimensional models of the knee articular cartilage were reconstructed and divided into different regions of interest. The 3-dimensional models were then applied to corresponding T2-relaxation MRI maps to calculate T2 values in each region of interest. The mean values of the T2-relaxation times in each region of interest before and after the marathon were compared by use of the paired Student t test. The Pearson correlation coefficient between T2 change and runner body mass index (BMI) was calculated. Results: Postmarathon T2-relaxation times were significantly higher than premarathon values for patellofemoral cartilage (32.6 ± 12.1 vs 34.1 ± 10.9 ms; P < .01) and medial tibial cartilage (35.6 ± 11.7 vs 34.6 ± 12.0 ms; P = .01). The greatest increase was observed in the anterior part of the medial tibial cartilage. No statistically significant changes were seen in the T2-relaxation times of the lateral tibial and femoral cartilage. Postmarathon T2-relaxation elevation in the anteromedial knee tibiofemoral joint cartilage strongly correlated with body weight (R = 0.6746; P = .03) and BMI (R = 0.6989; P = .001). Changes in T2-relaxation times did not correlate with marathon time, height, age, or sex in any regions of interest. Conclusion: Marathon running leads to immediate postmarathon elevated T2-relaxation values within knee articular cartilage, suggesting biochemical content alteration. Additionally, runners with higher BMI may have greater changes in cartilage biochemical composition after a marathon. Further studies should investigate whether these changes are sustained over time to determine the relationship between immediate biochemical changes in cartilage composition and cartilage degeneration. Clinical Relevance: Runners with a higher BMI may carry a higher risk of anteromedial tibiofemoral cartilage degeneration compared with runners with lower BMI.
Collapse
Affiliation(s)
- Zhongzheng Wang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, China.,Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translation R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Ai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, China.,Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Tian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shaobai Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jinzhong Zhao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, China.,Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translation R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Müller-Lutz A, Kamp B, Nagel AM, Ljimani A, Abrar D, Schleich C, Wollschläger L, Nebelung S, Wittsack HJ. Sodium MRI of human articular cartilage of the wrist: a feasibility study on a clinical 3T MRI scanner. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:241-248. [PMID: 32500389 DOI: 10.1007/s10334-020-00856-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To measure sodium relaxation times and concentrations in human wrists on a clinical magnetic resonance imaging (MRI) scanner with a density-adapted radial sequence. MATERIALS AND METHODS Sodium MRI of human wrists was conducted on a 3T MR system using a dual-tuned 1H/23Na surface coil. We performed two studies with 10 volunteers each investigating either sodium T1 (study 1) or sodium T2* (study 2) relaxation times in the radiocarpal joint (RCJ) and midcarpal joint (MCJ). Sodium concentrations of both regions were determined. RESULTS No differences for transversal of longitudinal relaxation times were found between RCJ and MCJ (T2,s*(RCJ) = (0.9 ± 0.4) ms; T2,s*(MCJ) = (0.9 ± 0.3) ms; T2,l*(RCJ) = (14.9 ± 0.9) ms; T2,l*(MCJ) = (13.9 ± 1.1) ms; T1(RCJ) = (19.0 ± 2.4) ms; T1(MCJ) = (18.5 ± 2.1) ms). Sodium concentrations were (157.7 ± 28.4) mmol/l for study 1 and (159.8 ± 29.1) mmol/l for study 2 in the RCJ, and (172.7 ± 35.6) mmol/l for study 1 and (163.4 ± 26.3) mmol/l for study 2 in the MCJ. CONCLUSION We successfully determined sodium relaxation times and concentrations of the human wrist on a 3T MRI scanner.
Collapse
Affiliation(s)
- Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Daniel Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lena Wollschläger
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
28
|
Crescenzi R, Donahue PM, Petersen KJ, Garza M, Patel N, Lee C, Beckman JA, Donahue MJ. Upper and Lower Extremity Measurement of Tissue Sodium and Fat Content in Patients with Lipedema. Obesity (Silver Spring) 2020; 28:907-915. [PMID: 32270924 PMCID: PMC7180116 DOI: 10.1002/oby.22778] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study is to compare tissue sodium and fat content in the upper and lower extremities of participants with lipedema versus controls using magnetic resonance imaging (MRI). METHODS MRI was performed at 3.0 T in females with lipedema (n = 15, age = 43.2 ± 10.0 years, BMI = 30.3 ± 4.4 kg/m2 ) and controls without lipedema (n = 14, age = 42.8 ± 13.2 years, BMI = 28.8 ± 4.4 kg/m2 ). Participants were assessed for pain and disease stage. Sodium MRI was performed in the forearm and calf to quantify regional tissue sodium content (TSC, mmol/L). Chemical-shift-encoded water-fat MRI was performed in identical regions for measurement of fat/water (ratio). RESULTS In the calf, skin TSC (16.3 ± 2.6 vs. 14.4 ± 2.2 mmol/L, P = 0.04), muscle TSC (20.3 ± 3.0 vs. 18.3 ± 1.7 mmol/L, P = 0.03), and fat/water (1.03 ± 0.37 vs. 0.56 ± 0.21 ratio, P < 0.001) were significantly higher in participants with lipedema versus control participants. In the forearm, skin TSC (13.4 ± 3.3 vs. 12.0 ± 2.3 mmol/L, P = 0.2, Cohen's d = 0.50) and fat/water (0.65 ± 0.24 vs. 0.48 ± 0.24 ratio, P = 0.07, Cohen's d = 0.68) demonstrated moderate effect sizes in participants with lipedema versus control participants. Calf skin TSC was significantly correlated with pain (Spearman's rho = 0.55, P = 0.03) and disease stage (Spearman's rho = 0.82, P < 0.001) among participants with lipedema. CONCLUSIONS MRI-measured tissue sodium and fat content are significantly higher in the lower extremities, but not upper extremities, of patients with lipedema compared with BMI-matched controls.
Collapse
Affiliation(s)
- Rachelle Crescenzi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
- Corresponding author Rachelle Crescenzi, PhD, Assistant Professor, Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21 Avenue South, Medical Center North AA-1105B, Nashville, TN 37232, USA, Tel: +1 615.343.7182, Fax: +1 615.322.0734,
| | - Paula M.C. Donahue
- Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville, TN, USA
- Dayani Center for Health and Wellness, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kalen J. Petersen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria Garza
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niral Patel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chelsea Lee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manus J. Donahue
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, TN, USA
- Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
29
|
Fertuzinhos A, Teixeira MA, Ferreira MG, Fernandes R, Correia R, Malheiro AR, Flores P, Zille A, Dourado N. Thermo-Mechanical Behaviour of Human Nasal Cartilage. Polymers (Basel) 2020; 12:polym12010177. [PMID: 31936593 PMCID: PMC7023433 DOI: 10.3390/polym12010177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to undergo a comprehensive analysis of the thermo-mechanical properties of nasal cartilages for the future design of a composite polymeric material to be used in human nose reconstruction surgery. A thermal and dynamic mechanical analysis (DMA) in tension and compression modes within the ranges 1 to 20 Hz and 30 °C to 250 °C was performed on human nasal cartilage. Differential scanning calorimetry (DSC), as well as characterization of the nasal septum (NS), upper lateral cartilages (ULC), and lower lateral cartilages (LLC) reveals the different nature of the binding water inside the studied specimens. Three peaks at 60–80 °C, 100–130 °C, and 200 °C were attributed to melting of the crystalline region of collagen matrix, water evaporation, and the strongly bound non-interstitial water in the cartilage and composite specimens, respectively. Thermogravimetric analysis (TGA) showed that the degradation of cartilage, composite, and subcutaneous tissue of the NS, ULC, and LLC take place in three thermal events (~37 °C, ~189 °C, and ~290 °C) showing that cartilage releases more water and more rapidly than the subcutaneous tissue. The water content of nasal cartilage was estimated to be 42 wt %. The results of the DMA analyses demonstrated that tensile mode is ruled by flow-independent behaviour produced by the time-dependent deformability of the solid cartilage matrix that is strongly frequency-dependent, showing an unstable crystalline region between 80–180 °C, an amorphous region at around 120 °C, and a clear glass transition point at 200 °C (780 kJ/mol). Instead, the unconfined compressive mode is clearly ruled by a flow-dependent process caused by the frictional force of the interstitial fluid that flows within the cartilage matrix resulting in higher stiffness (from 12 MPa at 1 Hz to 16 MPa at 20 Hz in storage modulus). The outcomes of this study will support the development of an artificial material to mimic the thermo-mechanical behaviour of the natural cartilage of the human nose.
Collapse
Affiliation(s)
- Aureliano Fertuzinhos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
| | - Marta A. Teixeira
- 2C2T—Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (M.A.T.); (A.Z.)
| | - Miguel Goncalves Ferreira
- Department of Otolaryngology, Head and Neck Surgery, Santo António Hospital, 4099-001 Porto, Portugal;
| | - Rui Fernandes
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Rossana Correia
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Ana Rita Malheiro
- HEMS—Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (R.F.); (R.C.); (A.R.M.)
- IBMC—Instituto de Biologia Molecular e Celular, University of Porto, 4200-135 Porto, Portugal
| | - Paulo Flores
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
| | - Andrea Zille
- 2C2T—Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (M.A.T.); (A.Z.)
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4804-533 Guimarães, Portugal; (A.F.); (P.F.)
- Correspondence:
| |
Collapse
|
30
|
Shaffer JJ, Mani M, Schmitz SL, Xu J, Owusu N, Wu D, Magnotta VA, Wemmie JA. Proton Exchange Magnetic Resonance Imaging: Current and Future Applications in Psychiatric Research. Front Psychiatry 2020; 11:532606. [PMID: 33192650 PMCID: PMC7542226 DOI: 10.3389/fpsyt.2020.532606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Proton exchange provides a powerful contrast mechanism for magnetic resonance imaging (MRI). MRI techniques sensitive to proton exchange provide new opportunities to map, with high spatial and temporal resolution, compounds important for brain metabolism and function. Two such techniques, chemical exchange saturation transfer (CEST) and T1 relaxation in the rotating frame (T1ρ), are emerging as promising tools in the study of neurological and psychiatric illnesses to study brain metabolism. This review describes proton exchange for non-experts, highlights the current status of proton-exchange MRI, and presents advantages and drawbacks of these techniques compared to more traditional methods of imaging brain metabolism, including positron emission tomography (PET) and MR spectroscopy (MRS). Finally, this review highlights new frontiers for the use of CEST and T1ρ in brain research.
Collapse
Affiliation(s)
- Joseph J Shaffer
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Samantha L Schmitz
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Nana Owusu
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Dee Wu
- Department of Radiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
31
|
Zhu Y, Liu Y, Ying L, Liu X, Zheng H, Liang D. Bio-SCOPE: fast biexponential T 1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition. Magn Reson Med 2019; 83:2092-2106. [PMID: 31762102 DOI: 10.1002/mrm.28067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and evaluate a fast imaging method based on signal-compensated low-rank plus sparse matrix decomposition to accelerate data acquisition for biexponential brain T1ρ mapping (Bio-SCOPE). METHODS Two novel strategies were proposed to improve reconstruction performance. A variable-rate undersampling scheme was used with a varied acceleration factor for each k-space along the spin-lock time direction, and a modified nonlinear thresholding scheme combined with a feature descriptor was used for Bio-SCOPE reconstruction. In vivo brain T1ρ mappings were acquired from 4 volunteers. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled by net acceleration rates (R) of 4.6 and 6.1. Reference values were obtained from the fully sampled data. The agreement between the accelerated T1ρ measurements and reference values was assessed with Bland-Altman analyses. Prospectively undersampled data with R = 4.6 and R = 6.1 were acquired from 1 volunteer. RESULTS T1ρ -weighted images were successfully reconstructed using Bio-SCOPE for R = 4.6 and 6.1 with signal-to-noise ratio variations <1 dB and normalized root mean square errors <4%. Accelerated and reference T1ρ measurements were in good agreement for R = 4.6 (T1ρ s : 18.6651 ± 1.7786 ms; T1ρ l : 88.9603 ± 1.7331 ms) and R = 6.1 (T1ρ s : 17.8403 ± 3.3302 ms; T1ρ l : 88.0275 ± 4.9606 ms) in the Bland-Altman analyses. T1ρ parameter maps from prospectively undersampled data also show reasonable image quality using the Bio-SCOPE method. CONCLUSION Bio-SCOPE achieves a high net acceleration rate for biexponential T1ρ mapping and improves reconstruction quality by using a variable-rate undersampling data acquisition scheme and a modified soft-thresholding algorithm in image reconstruction.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
32
|
Pang Y. An order parameter without magic angle effect (OPTIMA) derived from R 1 ρ dispersion in ordered tissue. Magn Reson Med 2019; 83:1783-1795. [PMID: 31691348 DOI: 10.1002/mrm.28045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE MR R2 imaging of ordered tissue exhibits the magic angle effect, potentially masking subtle pathological changes in cartilage. This work aimed to develop an orientation-independent order parameter (S) exclusively sensitive to collagen degeneration. METHODS A theory was developed based on R 1 ρ dispersion coupled with a simplified molecular motion model in which anisotropic R 2 a ( θ ) became directly proportional to correlation time τ b θ and S could be derived. This new parameter was validated with ex vivo R 1 ρ dispersion reported on orientated (n = 4), enzymatically depleted bovine cartilage (n = 6), and osteoarthritic human knee specimens (n = 14) at 9.4 Tesla, which was further demonstrated on 1 healthy human knee in vivo at 3 Tesla. RESULTS τ b θ from orientation-dependent R 1 ρ dispersion revealed a significantly high average correlation (r = 0.89 ± 0.05, P < 0.05) with R 2 a (θ) on cartilage samples and a moderate correlation (r = 0.48, P < 0.001) for the human knee in vivo. The derived S (10-3 ) significantly decreased in advanced osteoarthritis (1.64 ± 0.03 vs. 2.30 ± 0.11, P < 0.001) and collagen-depleted samples (1.30 ± 0.11 vs. 2.12 ± 0.12, P < 0.001) when compared with early osteoarthritis and the control, respectively. CONCLUSION The proposed order parameter could be a potentially useful orientation-independent MR biomarker for collagen alterations in cartilage and other highly structured tissues.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S. Magnetic Resonance Imaging of the Musculoskeletal System at 7T: Morphological Imaging and Beyond. Top Magn Reson Imaging 2019; 28:125-135. [PMID: 30951006 PMCID: PMC6565434 DOI: 10.1097/rmr.0000000000000205] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2017, a whole-body 7T magnetic resonance imaging (MRI) device was given regulatory approval for clinical use in both the EU and United States for neuro and musculoskeletal applications. As 7 Tesla allows for higher signal-to-noise , which results in higher resolution images than those obtained on lower-field-strength scanners, it has attracted considerable attention from the musculoskeletal field, as evidenced by the increasing number of publications in the last decade. Besides morphological imaging, the quantitative MR methods, such as T2, T2∗, T1ρ mapping, sodium imaging, chemical-exchange saturation transfer, and spectroscopy, substantially benefit from ultrahigh field scanning. In this review, we provide technical considerations for the individual techniques and an overview of (mostly) clinical applications for the assessment of cartilage, tendon, meniscus, and muscle. The first part of the review is dedicated to morphological applications at 7T, and the second part describes the most recent developments in quantitative MRI at 7T.
Collapse
Affiliation(s)
- Vladimir Juras
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Mlynarik
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner Society, St. Pölten, Austria
| | - Pavol Szomolanyi
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovič
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Oxford Centre for Clinical Magnetic Resonance Research, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Siegfried Trattnig
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
34
|
Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Ann Biomed Eng 2019; 48:556-567. [PMID: 31576504 PMCID: PMC6949199 DOI: 10.1007/s10439-019-02362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact.
Collapse
|
35
|
Martín Noguerol T, Raya JG, Wessell DE, Vilanova JC, Rossi I, Luna A. Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach. Br J Radiol 2019; 92:20190443. [PMID: 31433668 DOI: 10.1259/bjr.20190443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MRI of articular cartilage (AC) integrity has potential to become a biomarker for osteoarthritis progression. Traditional MRI sequences evaluate AC morphology, allowing for the measurement of thickness and its change over time. In the last two decades, more advanced, dedicated MRI cartilage sequences have been developed aiming to assess AC matrix composition non-invasively and detect early changes in cartilage not captured on morphological sequences. T2-mapping and T1ρ sequences can be used to estimate the relaxation times of water inside the AC. These sequences have been introduced into clinical protocols and show promising results for cartilage assessment. Extracelullar matrix can also be assessed using diffusion-weighted imaging and diffusion tensor imaging as the movement of water is limited by the presence of extracellular matrix in AC. Specific techniques for glycosaminoglycans (GAG) evaluation, such as delayed gadolinium enhanced MRI of cartilage or Chemical Exchange Saturation Transfer imaging of GAG, as well as sodium imaging have also shown utility in the detection of AC damage. This manuscript provides an educational update on the physical principles behind advanced AC MRI techniques as well as a comprehensive review of the strengths and weaknesses of each approach. Current clinical applications and potential future applications of these techniques are also discussed.
Collapse
Affiliation(s)
| | - Jose G Raya
- Department of Radiology, NYU School of Medicine, NY, USA
| | | | - Joan C Vilanova
- Department of Radiology, Clínica Girona. Institute Diagnostic Imaging (IDI), University of Girona, Girona, Spain
| | | | - Antonio Luna
- MRI unit, Radiology department, Health Time, Jaén, Spain
| |
Collapse
|
36
|
Gersing AS, Schwaiger BJ, Wörtler K, Jungmann PM. [Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions]. Radiologe 2019; 58:422-432. [PMID: 29374314 DOI: 10.1007/s00117-017-0348-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteochondral defects represent a main risk factor for osteoarthritis of the ankle. OBJECTIVES The aim of this article is to provide an overview of current optimal clinical cartilage imaging techniques of the foot and ankle and to show typical osteochondral injuries on imaging. MATERIALS AND METHODS A thorough literature search was performed and was supported by personal experience. RESULTS Cartilage imaging of the foot and ankle remains challenging. However, advanced morphological and quantitative magnetic resonance (MR) imaging techniques may provide useful clinical information, for example, concerning cartilage repair surgery. Compared to MRI, MR arthrography (MR-A) and CT arthrography (CT-A) have higher sensitivity with respect to detection of osteochondral defects. Regarding smaller joints of the foot, mainly advanced osteoarthritic changes are detected on conventional radiography; only in rare cases, MR and CT imaging of these smaller joints is of relevance. CONCLUSIONS While at the smaller joints of the foot cartilage imaging only plays a minor role, at the ankle joint cross-sectional cartilage imaging using CT and MRI becomes more and more important for clinicians due to emerging therapeutic options, such as different osteochondral repair techniques.
Collapse
Affiliation(s)
- A S Gersing
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - B J Schwaiger
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - K Wörtler
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - P M Jungmann
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland. .,Klinik für Neuroradiologie, UniversitätsSpital Zürich, Universität Zürich, Frauenklinikstrasse 10, 8091, Zürich, Schweiz.
| |
Collapse
|
37
|
3D grating-based X-ray phase-contrast computed tomography for high-resolution quantitative assessment of cartilage: An experimental feasibility study with 3T MRI, 7T MRI and biomechanical correlation. PLoS One 2019; 14:e0212106. [PMID: 30763375 PMCID: PMC6375589 DOI: 10.1371/journal.pone.0212106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
Objective Aim of this study was, to demonstrate the feasibility of high-resolution grating-based X-ray phase-contrast computed tomography (PCCT) for quantitative assessment of cartilage. Materials and methods In an experimental setup, 12 osteochondral samples were harvested from n = 6 bovine knees (n = 2 each). From each knee, one cartilage sample was degraded using 2.5% Trypsin. In addition to PCCT and biomechanical cartilage stiffness measurements, 3T and 7T MRI was performed including MSME SE T2 and ME GE T2* mapping sequences for relaxationtime measurements. Paired t-tests and receiver operating characteristics (ROC) curves were used for statistical analyses. Results PCCT provided high-resolution images for improved morphological cartilage evaluation as compared to 3T and 7T MRI. Quantitative analyses revealed significant differences between the superficial and the deep cartilage layer for T2 mapping as well as for PCCT (P<0.05). No significant difference was detected for PCCT between healthy and degraded samples (P>0.05). MRI and stiffness measurements showed significant differences between healthy and degraded osteochondral samples. Accuracy in the prediction of cartilage degradation was excellent for MRI and biomechanical analyses. Conclusion In conclusion, high-resolution grating-based X-ray PCCT cartilage imaging is feasible. In addition to MRI and biomechanical analyses it provides complementary, water content independent, information for improved morphological and quantitative characterization of articular cartilage ultrastructure.
Collapse
|
38
|
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Compressed sensing acceleration of biexponential 3D-T 1ρ relaxation mapping of knee cartilage. Magn Reson Med 2018; 81:863-880. [PMID: 30230588 DOI: 10.1002/mrm.27416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Use compressed sensing (CS) for 3D biexponential spin-lattice relaxation time in the rotating frame (T1ρ ) mapping of knee cartilage, reducing the total scan time and maintaining the quality of estimated biexponential T1ρ parameters (short and long relaxation times and corresponding fractions) comparable to fully sampled scans. METHODS Fully sampled 3D-T1ρ -weighted data sets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared for biexponential T1ρ -mapping of knee cartilage, including temporal and spatial wavelets and finite differences, dictionary from principal component analysis (PCA), k-means singular value decomposition (K-SVD), exponential decay models, and also low rank and low rank plus sparse models. Synthetic phantom (N = 6) and in vivo human knee cartilage data sets (N = 7) were included in the experiments. Spatial filtering before biexponential T1ρ parameter estimation was also tested. RESULTS Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative median normalized absolute deviation (MNAD) around 10%. Some sparsifying transforms, such as low rank with spatial finite difference (L + S SFD), spatiotemporal finite difference (STFD), and exponential dictionaries (EXP) significantly improved this performance, reaching MNAD below 15% with AF up to 10, when spatial filtering was used. CONCLUSION Accelerating biexponential 3D-T1ρ mapping of knee cartilage with CS is feasible. The best results were obtained by STFD, EXP, and L + S SFD regularizers combined with spatial prefiltering. These 3 CS methods performed satisfactorily on synthetic phantom as well as in vivo knee cartilage for AFs up to 10, with median error below 15%.
Collapse
Affiliation(s)
- Marceo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ricardo Otazo
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
39
|
D'Este M, Eglin D, Alini M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater 2018; 78:13-22. [PMID: 30092378 DOI: 10.1016/j.actbio.2018.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials science has achieved significant advancements for the replacement, repair and regeneration of intervertebral disc tissues. However, the translation of this research to the clinic presents hurdles. The goal of this paper is to identify strategies to recapitulate the intrinsic complexities of the intervertebral disc, to highlight the unresolved issues in basic knowledge hindering the clinical translation, and finally to report on the emerging technologies in the biomaterials field. On this basis, we identify promising research directions, with the hope of stimulating further debate and advances for resolving clinical problems such as cervical and low back pain using biomaterial-based approaches. STATEMENT OF SIGNIFICANCE Although not life-threatening, intervertebral disc disorders have enormous impact on life quality and disability. Disc function within the human body is mainly mechanical, and therefore the use of biomaterials to rescue disc function and alleviate pain is logical. Despite intensive research, the clinical translation of biomaterial-based therapies is hampered by the intrinsic complexity of this organ. After decades of development, artificial discs or tissue replacements are still niche applications given their issues of integration and displacement with detrimental consequences. The struggles of biological therapies and tissue engineering are therefore understandable. However, recent advances in biomaterial science give new hope. In this paper we identify the most promising new directions for intervertebral disc biomaterials.
Collapse
|
40
|
Sveinsson B, Gold GE, Hargreaves BA, Yoon D. SNR-weighted regularization of ADC estimates from double-echo in steady-state (DESS). Magn Reson Med 2018; 81:711-718. [PMID: 30125389 DOI: 10.1002/mrm.27436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve the homogeneity and consistency of apparent diffusion coefficient (ADC) estimates in cartilage from the double-echo in steady-state (DESS) sequence by applying SNR-weighted regularization during post-processing. METHODS An estimation method that linearizes ADC estimates from DESS is used in conjunction with a smoothness constraint to suppress noise-induced variation in ADC estimates. Simulations, phantom scans, and in vivo scans are used to demonstrate how the method reduces ADC variability. Conventional diffusion-weighted echo-planar imaging (DW EPI) maps are acquired for comparison of mean and standard deviation (SD) of the ADC estimate. RESULTS Simulations and phantom scans demonstrated that the SNR-weighted regularization can produce homogenous ADC maps at varying levels of SNR, whereas non-regularized maps only estimate ADC accurately at high SNR levels. The in vivo maps showed that the SNR-weighted regularization produced ADC maps with similar heterogeneity to maps produced with standard DW EPI, but without the distortion of such reference scans. CONCLUSION A linear approximation of a simplified model of the relationship between DESS signals allows for fast SNR-weighted regularization of ADC maps that reduces estimation error in relatively short T2 tissue such as cartilage.
Collapse
Affiliation(s)
- Bragi Sveinsson
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts.,Department of Physics, Harvard University, Cambridge, Massachusetts
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California
| | | | - Daehyun Yoon
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
41
|
Sorce DJ, Michaeli S. RAFFn relaxation rate functions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:28-33. [PMID: 29852350 PMCID: PMC6047928 DOI: 10.1016/j.jmr.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
In the present study we derive expressions for relaxation rate functions due to dipolar interactions between identical spins in the rotating frames of rank greater than or equal to 3. The rotating frames are produced due to fictitious magnetic field as generated by amplitude and frequency modulated radiofrequency (RF) pulses operating in non-adiabatic regime. This solution provides a means for description of the relaxations during method entitled Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn), in which a fictitious field is created in a coordinate frame undergoing multi-fold rotation about n axes (i.e., rank n). We validate the proposed model by comparison with the accepted trigonometric relations for relaxation rates between tilted frames. The agreement between the proposed model for RAFF3 and the trigonometric model is excellent.
Collapse
Affiliation(s)
- Dennis J Sorce
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Foster RJ, Damion RA, Ries ME, Smye SW, McGonagle DG, Binks DA, Radjenovic A. Imaging of nuclear magnetic resonance spin-lattice relaxation activation energy in cartilage. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180221. [PMID: 30109078 PMCID: PMC6083713 DOI: 10.1098/rsos.180221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Samples of human and bovine cartilage have been examined using magnetic resonance imaging to determine the proton nuclear magnetic resonance spin-lattice relaxation time, T1, as a function of depth within through the cartilage tissue. T1 was measured at five to seven temperatures between 8 and 38°C. From this, it is shown that the T1 relaxation time is well described by Arrhenius-type behaviour and the activation energy of the relaxation process is quantified. The activation energy within the cartilage is approximately 11 ± 2 kJ mol-1 with this notably being less than that for both pure water (16.6 ± 0.4 kJ mol-1) and the phosphate-buffered solution in which the cartilage was immersed (14.7 ± 1.0 kJ mol-1). It is shown that this activation energy increases as a function of depth in the cartilage. It is known that cartilage composition varies with depth, and hence, these results have been interpreted in terms of the structure within the cartilage tissue and the association of the water with the macromolecular constituents of the cartilage.
Collapse
Affiliation(s)
- R. J. Foster
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - R. A. Damion
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. E. Ries
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - S. W. Smye
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - D. G. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - D. A. Binks
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - A. Radjenovic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| |
Collapse
|
43
|
Multiparametric MRI and Computational Modelling in the Assessment of Human Articular Cartilage Properties: A Comprehensive Approach. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9460456. [PMID: 29862300 PMCID: PMC5976938 DOI: 10.1155/2018/9460456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/08/2018] [Indexed: 12/26/2022]
Abstract
Quantitative magnetic resonance imaging (qMRI) is a promising approach to detect early cartilage degeneration. However, there is no consensus on which cartilage component contributes to the tissue's qMRI signal properties. T1, T1ρ, and T2⁎ maps of cartilage samples (n = 8) were generated on a clinical 3.0-T MRI system. All samples underwent histological assessment to ensure structural integrity. For cross-referencing, a discretized numerical model capturing distinct compositional and structural tissue properties, that is, fluid fraction (FF), proteoglycan (PG) and collagen (CO) content and collagen fiber orientation (CFO), was implemented. In a pixel-wise and region-specific manner (central versus peripheral region), qMRI parameter values and modelled tissue parameters were correlated and quantified in terms of Spearman's correlation coefficient ρs. Significant correlations were found between modelled compositional parameters and T1 and T2⁎, in particular in the central region (T1: ρs ≥ 0.7 [FF, CFO], ρs ≤ −0.8 [CO, PG]; T2⁎: ρs ≥ 0.67 [FF, CFO], ρs ≤ −0.71 [CO, PG]). For T1ρ, correlations were considerably weaker and fewer (0.16 ≤ ρs ≤ −0.15). QMRI parameters are characterized in their biophysical properties and their sensitivity and specificity profiles in a basic scientific context. Although none of these is specific towards any particular cartilage constituent, T1 and T2⁎ reflect actual tissue compositional features more closely than T1ρ.
Collapse
|
44
|
Hesper T, Neugroda C, Schleich C, Antoch G, Hosalkar H, Krauspe R, Zilkens C, Bittersohl B. T2*-Mapping of Acetabular Cartilage in Patients With Femoroacetabular Impingement at 3 Tesla: Comparative Analysis with Arthroscopic Findings. Cartilage 2018; 9:118-126. [PMID: 29126367 PMCID: PMC5871124 DOI: 10.1177/1947603517741168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the diagnostic accuracy of T2*-mapping for detecting acetabular cartilage damage in patients with symptomatic femoroacetabular impingement (FAI). Design A total of 29 patients (17 females, 12 males, mean age 35.6 ± 12.8 years, mean body mass index 25.1 ± 4.1 kg/m2, 16 right hips) with symptomatic FAI underwent T2* MRI and subsequent hip arthroscopy. T2* values were obtained by region of interest analysis in seven radially reformatted planes around the femoral neck (anterior, anterior-superior, superior-anterior, superior, superior-posterior, posterior-superior, posterior). Intraoperatively, a modified Outerbridge classification was used for assessment of the cartilage status in each region. T2* values and intraoperative data were compared, and sensitivity, specificity, negative predictive values (NPV) and positive predictive values (PPV) as well as the correlation between T2*-mapping and intraoperative findings, were determined. The mean time interval between MRI and arthroscopy was 65.7 ± 48.0 days. Results Significantly higher T2* values were noted in arthroscopically normal evaluated cartilage than in regions with cartilage degeneration (mean T2* 25.6 ± 4.7 ms vs. 19.9 ± 4.5 ms; P < 0.001). With the intraoperative findings as a reference, sensitivity, specificity, NPV and PPV were 83.5%, 67.7%, 78.4% and 74.4%, respectively. The correlation between T2*-mapping and intraoperative cartilage status was moderate (ρ = -0.557; P < 0.001). Conclusions T2*-mapping enabled analysis of acetabular cartilage with appropriate correlation with intraoperative findings and promising results for sensitivity, specificity, PPV, and NPV in this cohort. Our results emphasize the value of T2*-mapping for the diagnosis of hip joint cartilage pathologies in symptomatic FAI.
Collapse
Affiliation(s)
- Tobias Hesper
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany,Tobias Hesper, Department of Orthopedics, Heinrich-Heine University, Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Christina Neugroda
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Harish Hosalkar
- Joint Preservation and Deformity Correction, Paradise Valley Hospital, San Diego, CA, USA,Hip Preservation, Tri-city Medical Center, San Diego, CA, USA
| | - Rüdiger Krauspe
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
45
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
46
|
Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerating 3D-T 1ρ mapping of cartilage using compressed sensing with different sparse and low rank models. Magn Reson Med 2018; 80:1475-1491. [PMID: 29479738 DOI: 10.1002/mrm.27138] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T1ρ mapping of cartilage and to reduce total scan times without degrading the estimation of T1ρ relaxation times. METHODS Fully sampled 3D-T1ρ datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T1ρ parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included. RESULTS Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T1ρ error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T1ρ error below 6.5% on T1ρ relaxation times with AF up to 10, when spatial filtering was used before T1ρ fitting, at the expense of smoothing the T1ρ maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T1ρ fitting. CONCLUSION Accelerating 3D-T1ρ mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T1ρ error of 6.5%.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Azadeh Sharafi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ricardo Otazo
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
47
|
Haraguchi N, Ota K, Nishida N, Ozeki T, Yoshida T, Tsutaya A. T1ρ mapping of articular cartilage grafts after autologous osteochondral transplantation for osteochondral lesions of the talus: A longitudinal evaluation. J Magn Reson Imaging 2018; 48:398-403. [PMID: 29457299 DOI: 10.1002/jmri.25962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/19/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Clinical results of autologous osteochondral transplantation (AOT) for treatment of osteochondral lesions of the talus have been mixed. T1ρ imaging can be used to noninvasively detect early cartilage degeneration. PURPOSE OR HYPOTHESIS To quantitatively assess, by means of T1ρ imaging, changes over time in the biochemical health of grafted cartilage after AOT for osteochondral lesions of the talus. STUDY TYPE Retrosepctive case series. POPULATION The study group comprised nine patients who underwent AOT for an osteochondral lesion of the talus and in whom T1ρ mapping was performed 1 and 2 years postoperatively. FIELD STRENGTH/SEQUENCE 3 Tesla. T1ρ-weighted turbo field echo. ASSESSMENT The mean T1ρ value of full-thickness cartilage at the repair site and that of full-thickness cartilage elsewhere in the same image (far-field cartilage) were determined. Clinical assessment was based on the American Orthopaedic Foot & Ankle Society (AOFAS) scale. Correlation between the T1ρ ratios (grafted-to-far-field cartilage T1ρ values) and clinical outcomes was examined. STATISTICAL TESTS Mixed effects model. Pearson correlation analysis. RESULTS At 1 year, a significant difference existed between the mean T1ρ value of the grafted cartilage (57.0 ± 7.7 ms) and that of the far-field cartilage (41.8 ± 4.6 ms) (P < 0.001). At 2 years, the mean T1ρ value of the grafted cartilage (49.1 ± 6.4 ms) was significantly lower than that at 1 year (P = 0.011). Moderate negative correlation was found between the 1-year T1ρ ratio and 1-year AOFAS score (r = -0.60) and between the 2-year T1ρ ratio and 2-year AOFAS score (r = -0.50). DATA CONCLUSION Our observation of substantial restoration of the proteoglycan content of the grafted cartilage approximately 2 years after AOT for osteochondral lesions of the talus indicates that the content changes gradually and that the cartilage reparation process is slower than previously believed. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2018;48:398-403.
Collapse
Affiliation(s)
- Naoki Haraguchi
- Department of Orthopaedic Surgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Koki Ota
- Department of Orthopaedic Surgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Naoki Nishida
- Department of Orthopaedic Surgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Takuma Ozeki
- Department of Orthopaedic Surgery, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Takashige Yoshida
- Department of Radiology, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Atsushi Tsutaya
- Department of Radiology, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| |
Collapse
|
48
|
Nebelung S, Sondern B, Jahr H, Tingart M, Knobe M, Thüring J, Kuhl C, Truhn D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthritis Cartilage 2018; 26:236-244. [PMID: 29175373 DOI: 10.1016/j.joca.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To define the physiological response to sequential loading and unloading in histologically intact human articular cartilage using serial T1ρ mapping, as T1ρ is considered to indicate the tissue's macromolecular content. METHOD 18 macroscopically intact cartilage-bone samples were obtained from the central lateral femoral condyles of 18 patients undergoing total knee replacement. Serial T1ρ mapping was performed on a clinical 3.0-T MRI system using a modified prostate coil. Spin-lock multiple gradient-echo sequences prior to, during and after standardized indentation loading (displacement controlled, strain 20%) were used to obtain seven serial T1ρ maps: unloaded (δ0), quasi-statically loaded (indentation1-indentation3) and under subsequent relaxation (relaxation1-relaxation3). After manual segmentation, zonal and regional regions-of-interest were defined. ROI-specific relative changes were calculated and statistically assessed using paired t-tests. Histological (Mankin classification) and biomechanical (unconfined compression) evaluations served as references. RESULTS All samples were histologically and biomechanically grossly intact (Mankin sum: 1.8 ± 1.2; Young's Modulus: 0.7 ± 0.4 MPa). Upon loading, T1ρ consistently increased throughout the entire sample thickness, primarily subpistonally (indentation1 [M ± SD]: 9.5 ± 7.8% [sub-pistonal area, SPA] vs 4.2 ± 5.8% [peri-pistonal area, PPA]; P < 0.001). T1ρ further increased with ongoing loading (indentation3: 14.1 ± 8.1 [SPA] vs 7.7 ± 5.9% [PPA]; P < 0.001). Even upon unloading (i.e., relaxation), T1ρ persistently increased in time. CONCLUSION Serial T1ρ-mapping reveals distinct and complex zonal and regional changes in articular cartilage as a function of loading and unloading. Thereby, longitudinal adaptive processes in hyaline cartilage become evident, which may be used for the tissue's non-invasive functional characterization by T1ρ.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - B Sondern
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - H Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
49
|
Hesper T, Schleich C, Buchwald A, Hosalkar HS, Antoch G, Krauspe R, Zilkens C, Bittersohl B. T2* Mapping of the Hip in Asymptomatic Volunteers with Normal Cartilage Morphology: An Analysis of Regional and Age-Dependent Distribution. Cartilage 2018; 9:30-37. [PMID: 28466651 PMCID: PMC5724674 DOI: 10.1177/1947603516684591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To assess age-dependent and regional differences in T2* relaxation measurements in hip joint cartilage of asymptomatic volunteers at 3 T. Design Three age cohorts (cohort 1: age 20-30 years, 15 individuals; cohort 2: age 30-40 years, 17 individuals; cohort 3: age 40-50 years, 15 individuals) were enrolled. T2* values were obtained in the central and peripheral cartilage of the acetabulum and the femoral head in 7 regions (anterior to superior and posterior). Results T2* did not differ among age cohorts in acetabular cartilage (cohort 1: 24.65 ± 6.56 ms, cohort 2: 24.70 ± 4.83 ms, cohort 3: 25.81 ± 5.10 ms, P = 0.10) and femoral head cartilage (cohort 1: 27.08 ± 8.24 ms, cohort 2: 25.90 ± 7.82 ms, cohort 3: 26.50 ± 5.61 ms, P = 0.34). Analysis of the regional T2* distribution pattern indicates increased T2* values in the anterior, anterior-superior, superior-anterior, and the posterior-superior aspects of acetabular and femoral head cartilage. For acetabular cartilage, higher values were observed in the central region (25.90 ± 4.80 ms vs. 24.21 ± 4.05 ms, P < 0.0001) whereas femoral head cartilage did not reveal such differences (26.62 ± 5.74 ms vs. 26.37 ± 5.89 ms, P = 0.44). Conclusions The T2* analysis of presumably healthy hip joint cartilage does not seem to be stratified according to age in this population. Regional T2* variation throughout hip joint cartilage is apparent in this modality.
Collapse
Affiliation(s)
- Tobias Hesper
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Alexander Buchwald
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Harish S. Hosalkar
- Paradise Valley Hospital, National City, CA, USA,Tri-city Medical Center, San Diego, CA, USA
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Rüdiger Krauspe
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Bernd Bittersohl
- Department of Orthopedics, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany,Bernd Bittersohl, Department of Orthopedics, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Xia D, Lee JS, Regatte RR. Quadrupolar jump-and-return pulse sequence for fluid-suppressed sodium MRI of the knee joint at 7T. Magn Reson Med 2017; 80:641-647. [PMID: 29266468 DOI: 10.1002/mrm.27047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate the feasibility of the so-called quadrupolar jump-and-return (QJR) pulse sequence by assessing its performance on the contrast modification to knee cartilage and quality of fluid suppression in the knee joint in vivo at 7T. METHODS The right knee joints of five healthy volunteers (3 males: mean age = 32.4 ± 1.3 years; 2 females: mean age = 27.9 ± 1.0 years; mean age = 30.6 ± 2.7 years) were scanned on a 7T scanner with variation of the delay in the QJR sequence from 1 ms to 5 ms. For one healthy volunteer, the QJR scan with the delay of 3 ms and the inversion-recovery (IR) scan were performed. Numerical simulations were conducted to evaluate the effects of B0 - and B1 -field inhomogeneities and residual quadrupolar couplings on fluid suppression and tissue contrast, respectively. RESULTS The QJR sequence suppressed the fluid signal from the artery and produced the contrast of knee cartilage in vivo. Its performance was comparable to that of the conventional IR sequence. Numerical simulations suggested that the fluid suppression may not be affected much by field inhomogeneities but that a distribution of residual quadrupolar couplings and weak RF pulses may interfere with the clear interpretation of cartilage contrast. CONCLUSION This preliminary work demonstrated that the QJR pulse sequence produces contrast for knee cartilage while suppressing the fluid signal from the artery. The knee cartilage contrast and quality of fluid suppression obtained from the QJR sequence were comparable to those of the IR sequence. Magn Reson Med 80:641-647, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ding Xia
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Jae-Seung Lee
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|