1
|
Emeliyanova P, Parkes LM, Williams SR, Lea-Carnall C. Evidence for biexponential glutamate T 2 relaxation in human visual cortex at 3T: A functional MRS study. NMR IN BIOMEDICINE 2024; 37:e5240. [PMID: 39188210 DOI: 10.1002/nbm.5240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T2 relaxation times. Previous studies reporting glutamate (Glu) T2 values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T2 (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T2 components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T2 relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T2-component with T2 = 10 ms and volume fraction of 0.35, a short tCr T2-component with T2 = 26 ms and volume fraction of 0.25 and a short tNAA T2-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T2 component between rest and active conditions were not statistically different. This study provides evidence for a short T2-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T2 compartments.
Collapse
Affiliation(s)
- Polina Emeliyanova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Laura M Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Stephen R Williams
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Caroline Lea-Carnall
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Wang S, Sun Y, Zeng T, Wu Y, Ding L, Zhang X, Zhang L, Huang X, Li H, Yang X, Ni Y, Hu Q. Impact of preanalytical freezing delay time on the stability of metabolites in oral squamous cell carcinoma tissue samples. Metabolomics 2022; 18:82. [PMID: 36282338 DOI: 10.1007/s11306-022-01943-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Metabolite stability is critical for tissue metabolomics. However, changes in metabolites in tissues over time from the operating room to the laboratory remain underexplored. OBJECTIVES In this study, we evaluated the effect of postoperative freezing delay time on the stability of metabolites in normal and oral squamous cell carcinoma (OSCC) tissues. METHODS Tumor and paired normal tissues from five OSCC patients were collected after surgical resection, and samples was sequentially quenched in liquid nitrogen at 30, 40, 50, 60, 70, 80, 90 and 120 min (80 samples). Untargeted metabolic analysis by liquid chromatography-mass spectrometry/mass spectrometry in positive and negative ion modes was used to identify metabolic changes associated with delayed freezing time. The trends of metabolite changes at 30-120 and 30-60 min of delayed freezing were analyzed. RESULTS 190 metabolites in 36 chemical classes were detected. After delayed freezing for 120 min, approximately 20% of the metabolites changed significantly in normal and tumor tissues, and differences in the metabolites were found in normal and tumor tissues. After a delay of 60 min, 29 metabolites had changed significantly in normal tissues, and 84 metabolites had changed significantly in tumor tissues. In addition, we constructed three tissue freezing schemes based on the observed variation trends in the metabolites. CONCLUSION Delayed freezing of tissue samples has a certain impact on the stability of metabolites. For metabolites with significant changes, we suggest that the freezing time of tissues be reasonably selected according to the freezing schemes and the actual clinical situation.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yawei Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yan Wu
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Lei Zhang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Huiling Li
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China.
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Hsu CH, Lin S, Ho AC, Johnson TD, Wang PC, Scafidi J, Tu TW. Comparison of in vivo and in situ detection of hippocampal metabolites in mouse brain using 1 H-MRS. NMR IN BIOMEDICINE 2021; 34:e4451. [PMID: 33258202 PMCID: PMC8214416 DOI: 10.1002/nbm.4451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
The study of cerebral metabolites relies heavily on detection methods and sample preparation. Animal experiments in vivo require anesthetic agents that can alter brain metabolism, whereas ex vivo experiments demand appropriate fixation methods to preserve the tissue from rapid postmortem degradation. In this study, the metabolic profiles of mouse hippocampi using proton magnetic resonance spectroscopy (1 H-MRS) were compared in vivo and in situ with or without focused beam microwave irradiation (FBMI) fixation. Ten major brain metabolites, including lactate (Lac), N-acetylaspartate (NAA), total choline (tCho), myo-inositol (mIns), glutamine (Gln), glutamate (Glu), aminobutyric acid (GABA), glutathione (GSH), total creatine (tCr) and taurine (Tau), were analyzed using LCModel. After FBMI fixation, the concentrations of Lac, tCho and mIns were comparable with those obtained in vivo under isoflurane, whereas other metabolites were significantly lower. Except for a decrease in NAA and an increase in Tau, all the other metabolites remained stable over 41 hours in FBMI-fixed brains. Without FBMI, the concentrations of mIns (before 2 hours), tCho and GABA were close to those measured in vivo. However, higher Lac (P < .01) and lower NAA, Gln, Glu, GSH, tCr and Tau were observed (P < .01). NAA, Gln, Glu, GSH, tCr and Tau exhibited good temporal stability for at least 20 hours in the unfixed brain, whereas a linear increase of tCho, mIns and GABA was observed. Possible mechanisms of postmortem degradation are discussed. Our results indicate that a proper fixation method is required for in situ detection depending on the targeted metabolites of specific interests in the brain.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Ai-Chen Ho
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - T. Derek Johnson
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph Scafidi
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| |
Collapse
|
5
|
Häni A, Diserens G, Oevermann A, Vermathen P, Precht C. Sampling Method Affects HR-MAS NMR Spectra of Healthy Caprine Brain Biopsies. Metabolites 2021; 11:metabo11010038. [PMID: 33419191 PMCID: PMC7825498 DOI: 10.3390/metabo11010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of tissue biopsies using high-resolution–magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy may be influenced by experimental factors such as the sampling method. Therefore, we compared the effects of two different sampling methods on the metabolome of brain tissue obtained from the brainstem and thalamus of healthy goats by 1H HR-MAS NMR spectroscopy—in vivo-harvested biopsy by a minimally invasive stereotactic approach compared with postmortem-harvested sample by dissection with a scalpel. Lactate and creatine were elevated, and choline-containing compounds were altered in the postmortem compared to the in vivo-harvested samples, demonstrating rapid changes most likely due to sample ischemia. In addition, in the brainstem samples acetate and inositols, and in the thalamus samples ƴ-aminobutyric acid, were relatively increased postmortem, demonstrating regional differences in tissue degradation. In conclusion, in vivo-harvested brain biopsies show different metabolic alterations compared to postmortem-harvested samples, reflecting less tissue degradation. Sampling method and brain region should be taken into account in the analysis of metabolic profiles. To be as close as possible to the actual situation in the living individual, it is desirable to use brain samples obtained by stereotactic biopsy whenever possible.
Collapse
Affiliation(s)
- Annakatrin Häni
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
| | - Gaëlle Diserens
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Anna Oevermann
- NeuroCenter, Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3012 Bern, Switzerland;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-2918
| |
Collapse
|
6
|
Patassini S, Begley P, Xu J, Church SJ, Kureishy N, Reid SJ, Waldvogel HJ, Faull RLM, Snell RG, Unwin RD, Cooper GJS. Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington's Disease. Metabolites 2019; 9:E113. [PMID: 31212603 PMCID: PMC6630497 DOI: 10.3390/metabo9060113] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the HTT gene. HD usually manifests in mid-life with loss of GABAergic projection neurons from the striatum accompanied by progressive atrophy of the putamen followed by other brain regions, but linkages between the genetics and neurodegeneration are not understood. We measured metabolic perturbations in HD-human brain in a case-control study, identifying pervasive lowering of vitamin B5, the obligatory precursor of coenzyme A (CoA) that is essential for normal intermediary metabolism. Cerebral pantothenate deficiency is a newly-identified metabolic defect in human HD that could potentially: (i) impair neuronal CoA biosynthesis; (ii) stimulate polyol-pathway activity; (iii) impair glycolysis and tricarboxylic acid cycle activity; and (iv) modify brain-urea metabolism. Pantothenate deficiency could lead to neurodegeneration/dementia in HD that might be preventable by treatment with vitamin B5.
Collapse
Affiliation(s)
- Stefano Patassini
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Owlstone Medical, Cambridge Science Park, Cambridge CB4 0GJ, UK.
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Jingshu Xu
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- Manchester Cancer Research Centre Building, The University of Manchester, Manchester M20 4GJ, UK.
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Nina Kureishy
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Suzanne J Reid
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Russell G Snell
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
| | - Garth J S Cooper
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M19 9NT, UK.
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand.
- Manchester Cancer Research Centre Building, The University of Manchester, Manchester M20 4GJ, UK.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Precht C, Diserens G, Vermathen M, Oevermann A, Lauper J, Vermathen P. Metabolic profiling of listeria rhombencephalitis in small ruminants by 1 H high-resolution magic angle spinning NMR spectroscopy. NMR IN BIOMEDICINE 2018; 31:e4023. [PMID: 30328643 DOI: 10.1002/nbm.4023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Listeria rhombencephalitis is caused by infection with Listeria monocytogenes and is associated with a high mortality rate in humans and ruminants. Little is known about the metabolic changes associated with neurolisteriosis in particular and infectious central nervous system (CNS) diseases in general. The purpose of our study was to investigate the metabolic changes associated with listeria rhombencephalitis in small ruminants (goats and sheep) as a model for inflammatory CNS disease by 1 H high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) spectroscopy of brain biopsies obtained from the brainstem and thalamus. Statistical analysis revealed distinct differences in the metabolic profile of brainstem biopsies, the primary location of listeria rhombencephalitis with moderate or severe inflammatory changes. N-Acetylaspartate (NAA), N-acetylaspartylglutamate, choline, myo-inositol and scyllo-inositol were decreased, and glycine, phosphocholine, taurine and lactate were increased, in the diseased group (n = 13) in comparison with the control group (n = 12). In the thalamus, which showed no or only mild inflammatory changes in the majority of animals, no statistically significant metabolic changes were observed. However, trends for metabolic alterations were partly the same as those found in the brainstem, including NAA, choline and lactate. This may be an indicator of metabolic changes occurring in the early stages of the disease. Therefore, further research with a larger number of animals is needed to evaluate the presence of subtle metabolic changes associated with mild inflammatory changes in the thalamus. In conclusion, 1 H HR-MAS NMR investigation of listeria rhombencephalitis identified brain metabolite changes, offering new insights into the disease pathophysiology.
Collapse
Affiliation(s)
- Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Gaëlle Diserens
- AMSM, Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Josiane Lauper
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- AMSM, Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ma L, Zhang B, Zhou C, Li Y, Li B, Yu M, Luo Y, Gao L, Zhang D, Xue Q, Qiu Q, Lin B, Zou J, Yang H. The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions. Colloids Surf B Biointerfaces 2018; 172:665-673. [PMID: 30243220 DOI: 10.1016/j.colsurfb.2018.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
GBM, the most common and aggressive malignant primary brain tumors which needs new research approach to reveal the underline molecular mechanism of tumor progression. The 3D in vitro tumor model can be a simple and effective way to study tumor characteristics with ability to replicate of the tumor milieu. In the current study, we adopted the DNA microarray to analyze the gene expression of GBM tumor cells cultured under 2D cell culture flasks and 3D PLA porous scaffolds for 4,7 and 14 days. For 14 day old cultures, 8117 and 3060 genes expression were upregulated and downregulated respectively. Further KEGG pathway analysis revealed, the upregulated genes were mainly enriched/involved in PPAR and PI3K-Akt signaling pathways whereas the downregulated genes were mainly contributed in metabolism, ECM related and TGF-beta pathways. Thus, our approach of establishing 3D in vitro tumor model provides realistic results and proves itself a powerful tool for understanding the inner nature of GBM and can be considered as potential platform for drug screening.
Collapse
Affiliation(s)
- Liang Ma
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Bin Zhang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuting Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Binjie Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yichen Luo
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Gao
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Qian Xue
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qingchong Qiu
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Biaoyang Lin
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Jun Zou
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
9
|
Autry A, Phillips JJ, Maleschlijski S, Roy R, Molinaro AM, Chang SM, Cha S, Lupo JM, Nelson SJ. Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor. Transl Oncol 2017; 10:895-903. [PMID: 28942218 PMCID: PMC5612804 DOI: 10.1016/j.tranon.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although the contrast-enhancing (CE) lesion on T1-weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T2-weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden. METHODS Fifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy. RESULTS The Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data. CONCLUSIONS The similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM.
Collapse
Affiliation(s)
- Adam Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Stojan Maleschlijski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center (HDFCC) Biostatistical Core Facility, University of California, San Francisco, San Francisco, CA, USA; Computational Biology Core, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Biostatistics and Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Wu HC, Dachet F, Ghoddoussi F, Bagla S, Fuerst D, Stanley JA, Galloway MP, Loeb JA. Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy. Epilepsia 2017; 58:1626-1636. [PMID: 28714074 DOI: 10.1111/epi.13848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. METHODS We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. RESULTS We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. SIGNIFICANCE Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy.
Collapse
Affiliation(s)
- Helen C Wu
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, U.S.A
| | - Fabien Dachet
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, Illinois, U.S.A
| | - Farhad Ghoddoussi
- Department of Anesthesiology and Neuroimaging Center, Wayne State University, Detroit, Michigan, U.S.A
| | - Shruti Bagla
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, U.S.A
| | - Darren Fuerst
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, Illinois, U.S.A
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, U.S.A
| | - Matthew P Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, U.S.A.,Department of Anesthesiology and Neuroimaging Center, Wayne State University, Detroit, Michigan, U.S.A
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, Illinois, U.S.A
| |
Collapse
|
11
|
Kaebisch E, Fuss TL, Vandergrift L, Toews K, Habbel P, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies I-cell line and animal models. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3700. [PMID: 28301071 PMCID: PMC5501085 DOI: 10.1002/nbm.3700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 12/31/2016] [Indexed: 05/09/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS allows for direct measurements of non-liquid tissue and cell specimens to present valuable insights into the cellular metabolisms of physiological and pathological processes. HRMAS produces high-resolution spectra comparable to those obtained from solutions of specimen extracts but without complex metabolite extraction processes, and preserves the tissue cellular structure in a form suitable for pathological examinations following spectroscopic analysis. The technique has been applied in a wide variety of biomedical and biochemical studies and become one of the major platforms of metabolomic studies. By quantifying single metabolites, metabolite ratios, or metabolic profiles in their entirety, HRMAS presents promising possibilities for diagnosis and prediction of clinical outcomes for various diseases, as well as deciphering of metabolic changes resulting from drug therapies or xenobiotic interactions. In this review, we evaluate HRMAS MRS results on animal models and cell lines reported in the literature, and present the diverse applications of the method for the understanding of pathological processes and the effectiveness of therapies, development of disease animal models, and new progress in HRMAS methodology.
Collapse
Affiliation(s)
- Eva Kaebisch
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Taylor L. Fuss
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Lindsey Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Karin Toews
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding Author: Leo L. Cheng, PhD, 149 13 Street, CNY-6, Charlestown, MA 02129, Ph.617-724-6593, Fax.617-726-5684,
| |
Collapse
|
12
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
13
|
Chae EY, Shin HJ, Kim S, Baek HM, Yoon D, Kim S, Shim YE, Kim HH, Cha JH, Choi WJ, Lee JH, Shin JH, Lee HJ, Gong G. The Role of High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy for Predicting the Invasive Component in Patients with Ductal Carcinoma In Situ Diagnosed on Preoperative Biopsy. PLoS One 2016; 11:e0161038. [PMID: 27560937 PMCID: PMC4999265 DOI: 10.1371/journal.pone.0161038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate the role of high-resolution magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy in patients with ductal carcinoma in situ (DCIS) diagnosed on preoperative biopsy. We investigated whether the metabolic profiling of tissue samples using HR-MAS 1H NMR spectroscopy could be used to distinguish between DCIS lesions with or without an invasive component. Our institutional review board approved this combined retrospective and prospective study. Tissue samples were collected from 30 patients with pure DCIS and from 30 with DCIS accompanying invasive carcinoma. All patients were diagnosed with DCIS by preoperative core-needle biopsy and underwent surgical resection. The metabolic profiling of tissue samples was performed by HR-MAS 1H NMR spectroscopy. All observable metabolite signals were identified and quantified in all tissue samples. Metabolite intensity normalized by total spectral intensities was compared according to the tumor type using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). By univariate analysis, the metabolite concentrations of choline-containing compounds obtained with HR-MAS 1H NMR spectroscopy did not differ significantly between the pure DCIS and DCIS accompanying invasive carcinoma groups. However, the GPC/PC ratio was higher in the pure DCIS group than in the DCIS accompanying invasive carcinoma group (p = 0.004, Bonferroni-corrected p = 0.064), as well as the concentration of myo-inositol and succinate. By multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles could clearly discriminate between pure DCIS and DCIS accompanying invasive carcinoma. Our preliminary results suggest that HR-MAS MR metabolomics on breast tissue may be able to distinguish between DCIS lesions with or without an invasive component.
Collapse
Affiliation(s)
- Eun Young Chae
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee Jung Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Hyeon-Man Baek
- Center for Magnetic Resonance Research, Korea Basic Science Institute, Chungbuk, South Korea.,Department of Bio-Analytical Science, Korea University of Science and Technology, Daejeon, South Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Siwon Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Ye Eun Shim
- University of Ulsan, College of Medicine, Seoul, South Korea
| | - Hak Hee Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joo Hee Cha
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Jung Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Hoon Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Chen W, Lu S, Ou J, Wang G, Zu Y, Chen F, Bai C. Metabonomic characteristics and biomarker research of human lung cancer tissues by HR1H NMR spectroscopy. Cancer Biomark 2016; 16:653-64. [PMID: 27002768 DOI: 10.3233/cbm-160607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Wenxue Chen
- Department of Chemistry, Fudan University, Shanghai, China
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxian Ou
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guifang Wang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fener Chen
- Department of Chemistry, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Haukaas TH, Moestue SA, Vettukattil R, Sitter B, Lamichhane S, Segura R, Giskeødegård GF, Bathen TF. Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies. Front Oncol 2016; 6:17. [PMID: 26858940 PMCID: PMC4730796 DOI: 10.3389/fonc.2016.00017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/16/2016] [Indexed: 11/13/2022] Open
Abstract
Introduction Metabolic profiling of intact tumor tissue by high-resolution magic angle spinning (HR MAS) MR spectroscopy (MRS) provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of postsurgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue. Materials and methods Tumor tissue samples collected from two patient-derived breast cancer xenograft models (n = 3 for each model) were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 min after surgical removal. In addition, one sample was analyzed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patients (n = 14). All samples were analyzed by proton HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling. Results Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 min of resection. After this time point, levels of choline increased, whereas ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant effect on several metabolites but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and choline) were affected by prolonged HR MAS experiment time possibly caused by physical release of metabolites caused by spinning or due to structural degradation processes. Conclusion The MR metabolic profiles of tumor samples are reproducible and robust to variation in postsurgical freezing delay up to 30 min.
Collapse
Affiliation(s)
- Tonje H Haukaas
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, K. G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim , Norway
| | - Beathe Sitter
- Department of Health Science, Faculty of Health and Social Science, Sør-Trøndelag University College , Trondheim , Norway
| | - Santosh Lamichhane
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Food Science, Faculty of Science and Technology, Aarhus University, Årslev, Denmark
| | - Remedios Segura
- Metabolomic and Molecular Image Laboratory, Health Research Institute INCLIVA , Valencia , Spain
| | - Guro F Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Faculty of Medicine, K. G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Payne GS, deSouza NM, Messiou C, Leach MO. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter. NMR IN BIOMEDICINE 2015; 28:496-504. [PMID: 25802214 PMCID: PMC4737099 DOI: 10.1002/nbm.3276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 05/15/2023]
Abstract
Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as in measurements of tissue hypoxia.
Collapse
Affiliation(s)
- Geoffrey S Payne
- Cancer Research UK Cancer Imaging Centre, Royal Marsden Hospital and Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
17
|
André M, Dumez JN, Rezig L, Shintu L, Piotto M, Caldarelli S. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Anal Chem 2014; 86:10749-54. [PMID: 25286333 DOI: 10.1021/ac502792u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.
Collapse
Affiliation(s)
- Marion André
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Avenue de la Terrasse, 91190 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
18
|
Esteve V, Martínez-Granados B, Martínez-Bisbal MC. Pitfalls to be considered on the metabolomic analysis of biological samples by HR-MAS. Front Chem 2014; 2:33. [PMID: 24910850 PMCID: PMC4038765 DOI: 10.3389/fchem.2014.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Vicent Esteve
- Department of Physical Chemistry, University of Valencia Valencia, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valencia, Spain
| | - Beatriz Martínez-Granados
- Department of Physical Chemistry, University of Valencia Valencia, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valencia, Spain
| | - M Carmen Martínez-Bisbal
- Department of Physical Chemistry, University of Valencia Valencia, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Valencia, Spain
| |
Collapse
|
19
|
Elkhaled A, Jalbert L, Constantin A, Yoshihara HAI, Phillips JJ, Molinaro AM, Chang SM, Nelson SJ. Characterization of metabolites in infiltrating gliomas using ex vivo ¹H high-resolution magic angle spinning spectroscopy. NMR IN BIOMEDICINE 2014; 27:578-93. [PMID: 24596146 PMCID: PMC3983568 DOI: 10.1002/nbm.3097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 05/18/2023]
Abstract
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.
Collapse
Affiliation(s)
- Adam Elkhaled
- University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, University of CaliforniaBerkeley/San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco (UCSF), CA, USA
| | - Llewellyn Jalbert
- University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, University of CaliforniaBerkeley/San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco (UCSF), CA, USA
| | - Alexandra Constantin
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco (UCSF), CA, USA
- National Institutes of HealthBethesda, MD, USA
| | - Hikari A I Yoshihara
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco (UCSF), CA, USA
- Department of Cardiology, University Hospital of Lausanne (CHUV)Lausanne, Switzerland
| | - Joanna J Phillips
- Department of Pathology, University of CaliforniaSan Francisco (UCSF), CA, USA
- Department of Neurological Surgery, University of CaliforniaSan Francisco (UCSF), CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of CaliforniaSan Francisco (UCSF), CA, USA
- Department of Biostatistics and Epidemiology, University of CaliforniaSan Francisco (UCSF), CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of CaliforniaSan Francisco (UCSF), CA, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco (UCSF), CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of CaliforniaSan Francisco (UCSF), CA, USA
- *Correspondence to: S. J. Nelson, UCSF Mission Bay, 1700 4th St., San Francisco, CA 94158, USA. E-mail:
| |
Collapse
|
20
|
Darpolor MM, Basu SS, Worth A, Nelson DS, Clarke-Katzenberg RH, Glickson JD, Kaplan DE, Blair IA. The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and (13) C-isotope based metabolomics. NMR IN BIOMEDICINE 2014; 27:381-9. [PMID: 24497316 PMCID: PMC3962779 DOI: 10.1002/nbm.3072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/26/2013] [Accepted: 12/11/2013] [Indexed: 05/16/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than a year following diagnosis. Although bioinformatic analyses have indicated differentially expressed genes and cancer related mutations in HCC, integrated genetic and metabolic pathway analyses remain to be investigated. Herein, gene (i.e. messenger RNA, mRNA) enrichment analysis was performed to delineate significant alterations of metabolic pathways in HCC. The objective of this study was to investigate the pathway of aspartate metabolism in HCC of humans. Coupled with transcriptomic (i.e. mRNA) and NMR based metabolomics of human tissue extracts, we utilized liquid chromatography mass spectrometry based metabolomics analysis of stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine metabolism of HCC cell culture. Our results indicated that aspartate metabolism is a significant and differentiable metabolic pathway of HCC compared with non-tumor liver (p value < 0.0001). In addition, branched-chain amino acid metabolism (p value < 0.0001) and tricarboxylic acid metabolism (p value < 0.0001) are significant and differentiable. Statistical analysis of measurable NMR metabolites indicated that at least two of the group means were significantly different for the metabolites alanine (p value = 0.0013), succinate (p value = 0.0001), lactate (p value = 0.0114), glycerophosphoethanolamine (p value = 0.015), and inorganic phosphate (p value = 0.0001). However, (13) C isotopic enrichment analysis of these metabolites revealed less than 50% isotopic enrichment with either stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine. This may indicate the differential account of total metabolite pool versus de novo metabolites from a (13) C labeled substrate. The ultimate translation of these findings will be to determine putative enzyme activity via (13) C labeling, to investigate targeted therapeutics against these enzymes, and to optimize the in vivo performance of (13) C MRI techniques.
Collapse
Affiliation(s)
- Moses M. Darpolor
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Sankha S. Basu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Andrew Worth
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - David S. Nelson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Jerry D. Glickson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - David E. Kaplan
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Gastroenterology Section, Philadelphia Veterans Administration Medical Center, Philadelphia, PA, USA
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
21
|
Keun H. Metabolomic Studies of Patient Material by High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Methods Enzymol 2014; 543:297-313. [DOI: 10.1016/b978-0-12-801329-8.00015-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
23
|
Yang Y, Wang L, Wang S, Liang S, Chen A, Tang H, Chen L, Deng F. Study of metabonomic profiles of human esophageal carcinoma by use of high-resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Anal Bioanal Chem 2013; 405:3381-9. [PMID: 23455688 DOI: 10.1007/s00216-013-6774-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/20/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022]
Abstract
Esophageal carcinoma (EC) is one of the most common malignant tumors. EC survival has remained disappointingly low because of the high malignancy of esophageal cancer and the lack of obvious clinical symptoms at an early stage. Early diagnosis is often difficult because the small tumor nodules are frequently missed. Metabonomics based on high-resolution magic-angle spinning (HRMAS) NMR has been popular for tumor detection because it is highly sensitive, provides rich biochemical information and requires no sample pretreatment. (1)H HRMAS spectra of non-involved adjacent esophageal tissues and of well differentiated and moderately differentiated esophageal carcinoma tumors were recorded and analyzed by use of multivariate and statistical analysis techniques. Moderately differentiated EC tumors were found to have increased total choline, alanine, and glutamate and reduced creatine, myo-inositol, and taurine compared with non-involved adjacent tissues. Moreover, clear differences between the metabonomic profiles of EC tissues enabled tumor differentiation. Furthermore, the integral Gly/MI ratio for samples of different tissue types were statistically significantly different; this was sufficient both for distinguishing non-involved tissues from esophageal carcinoma and for classification of well differentiated and moderately differentiated EC tumors.
Collapse
Affiliation(s)
- Yongxia Yang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Davila M, Candiota AP, Pumarola M, Arus C. Minimization of spectral pattern changes during HRMAS experiments at 37 degrees celsius by prior focused microwave irradiation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 25:401-10. [PMID: 22286777 DOI: 10.1007/s10334-012-0303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/21/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
OBJECT High-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy provides detailed metabolomic information from intact tissue. However, long acquisition times and high rotation speed may lead to timedependent spectral pattern changes, which may affect proper interpretation of results. We report a strategy to minimize those changes, even at physiological recording temperature. MATERIALS AND METHODS Glioblastoma(Gbm) tumours were induced in 12 mice by stereotactic injection of GL261 cells. Animals were sacrificed and tumours were removed and stored in liquid N2. Half of the samples were exposed to focused microwave (FMW) irradiation prior to HRMAS while the other half was not. Time-course experiments (374 min at 37°C, 9.4T, 3,000 Hz spinning rate) were carried out to monitor spectral pattern changes. Differences were assessed with Unianova test while post-HRMAS histopathology analysis was performed to assess tissue integrity. RESULTS Significant changes (up to 1.7 fold) were observed in samples without FMW irradiation in several spectral regions e.g. mobile lipids/lactate (0.90-1.30 ppm), acetate (1.90 ppm), N-acetyl aspartate (2.00 ppm), and Choline-containing compounds (3.19-3.25 ppm). No significant changes in the spectral pattern of FMW-irradiated samples were recorded. CONCLUSION We describe here a successful strategy to minimize spectral pattern changes in mouse Gbm samples using a FMW irradiation system.
Collapse
Affiliation(s)
- Myriam Davila
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valle`s, Spain
| | | | | | | |
Collapse
|
25
|
Benahmed MA, Elbayed K, Daubeuf F, Santelmo N, Frossard N, Namer IJ. NMR HRMAS spectroscopy of lung biopsy samples: Comparison study between human, pig, rat, and mouse metabolomics. Magn Reson Med 2013; 71:35-43. [PMID: 23412987 DOI: 10.1002/mrm.24658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE Using the metabolomics by NMR high-resolution magic angle spinning spectroscopy, we assessed the lung metabolome of various animal species in order to identify the animal model that could be substituted to human lung in studies on fresh lung biopsies. METHODS The experiments were conducted on intact lung biopsy samples of pig, rat, mouse, and human using a Bruker Advance III 500 spectrometer. Thirty-five to 39 metabolites were identified and 23 metabolites were quantified. Principal component analysis, partial least-squares discriminant analysis, and analysis of variance tests were performed in order to compare the metabolic profiles of each animal lung biopsies to those of the human lung. RESULTS The metabolic composition between human and pig lung was similar. However, human lung was distinguishable from mouse and rat regarding: Trimethylamine N-oxide and betaïne which were present in rodents but not in human lung, carnitine, and glycerophosphocholine which were present in mouse but not in human lung. Conversely, succinic acid was undetected in rat lung. Furthermore, fatty acids concentration was significantly higher in rodent lungs compared to human lung. CONCLUSION Using the metabolomics by NMR high-resolution magic angle spinning spectroscopy on lung biopsy, samples allowed to highlight that pig lung seems to be close to human lung as regarding its metabolite composition with more similarities than dissimilarities.
Collapse
Affiliation(s)
- Malika A Benahmed
- Faculté de Médecine, Laboratoire d'Imagerie et de Neurosciences Cognitives (LINC), Institut de Physique Biologique, Université de Strasbourg/CNRS UMR7237, Strasbourg Cedex, France; Laboratoire de RMN et Biophysique des membranes, Institut de Chimie, Université de Strasbourg/CNRS UMR7177, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
26
|
Sasada S, Miyata Y, Tsutani Y, Tsuyama N, Masujima T, Hihara J, Okada M. Metabolomic analysis of dynamic response and drug resistance of gastric cancer cells to 5-fluorouracil. Oncol Rep 2012; 29:925-31. [PMID: 23232983 PMCID: PMC3597557 DOI: 10.3892/or.2012.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/23/2012] [Indexed: 01/19/2023] Open
Abstract
Metabolomics has developed as an important new tool in cancer research. It is expected to lead to the discovery of biomarker candidates for cancer diagnosis and treatment. The current study aimed to perform a comprehensive metabolomic analysis of the intracellular dynamic responses of human gastric cancer cells to 5-fluorouracil (5-FU), referencing the mechanisms of drug action and drug resistance. Small metabolites in gastric cancer cells and 5-FU-resistant cells were measured by liquid chromatography-mass spectrometry. Candidates for drug targets were selected according to the presence or absence of resistance, before and after 5-FU treatment. In addition, the gene expression of each candidate was assessed by reverse transcription-polymerase chain reaction. The number of metabolites in cancer cells dramatically changed during short-term treatment with 5-FU. Particularly, proline was reduced to one-third of its original level and glutamate was increased by a factor of 3 after 3 h of treatment. The metabolic production of glutamate from proline proceeds by proline dehydrogenase (PRODH), producing superoxide. After 5-FU treatment, PRODH mRNA expression was upregulated 2-fold and production of superoxide was increased by a factor of 3. In 5-FU-resistant cells, proline and glutamate levels were less affected than in non-resistant cells, and PRODH mRNA expression and superoxide generation were not increased following treatment. In conclusion, the authors identified a candidate biomarker, PRODH, for drug effects using a meta-bolomic approach, a result that was confirmed by conventional methods. In the future, metabolomics will play an important role in the field of cancer research.
Collapse
Affiliation(s)
- Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck, and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric, and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker.
Collapse
Affiliation(s)
- Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC 27695-7115, USA.
| | | | | | | |
Collapse
|
28
|
Martín-Sitjar J, Delgado-Goñi T, Cabañas ME, Tzen J, Arús C. Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:487-96. [DOI: 10.1007/s10334-012-0327-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/27/2022]
|
29
|
Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 2012; 4:321-41. [PMID: 22303835 DOI: 10.4155/bio.11.320] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy (called NMR for ex vivo techniques and MRS for in vivo techniques) has become a useful analytical and diagnostic tool in biomedicine. In the past two decades, an MR-based spectroscopic approach for translational and clinical research has emerged that allows for biochemical characterization of the tissue of interest either ex vivo (NMR-based metabolomics) or in vivo (localized MRS-single voxel or multivoxel-spectroscopic imaging). The greatest advantages of MRS techniques are their ability to detect multiple tissue-specific metabolites in a single experiment, their quantitative nature and translational component (in vitro/ex vivo-discovered metabolic biomarkers can be translated into noninvasive spectroscopic imaging protocols). Disadvantages of MRS include low sensitivity and spectral resolution and, in case of NMR-metabolomics, metabolite degradation and incomplete recovery in processed samples. In vivo MRS has worse spectral resolution than ex vivo high-resolution NMR due to the inherently wider lines of metabolites in vivo and the difficulty of using traditional line-narrowing methods (e.g., sample spinning). It also suffers from poor time-resolution, therefore offering fewer metabolic biomarkers to be followed in vivo. In the present review article, we provide considerations for establishing reliable protocols (both in vivo and ex vivo) for metabolite detection, recovery and quantification from in vivo and ex vivo MR spectra.
Collapse
|
30
|
In Vivo Magnetic Resonance Spectroscopic Imaging and Ex Vivo Quantitative Neuropathology by High Resolution Magic Angle Spinning Proton Magnetic Resonance Spectroscopy. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/7657_2011_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
31
|
Somashekar BS, Kamarajan P, Danciu T, Kapila YL, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 2011; 10:5232-41. [PMID: 21961579 DOI: 10.1021/pr200800w] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-resolution magic-angle spinning (HR-MAS) proton NMR spectroscopy is used to explore the metabolic signatures of head and neck squamous cell carcinoma (HNSCC) which included matched normal adjacent tissue (NAT) and tumor originating from tongue, lip, larynx and oral cavity, and associated lymph-node metastatic (LN-Met) tissues. A total of 43 tissues (18 NAT, 18 Tumor and 7 LN-Met) from 22 HNSCC patients were analyzed. Principal Component Analysis of NMR data showed a clear classification between NAT and tumor tissues, however, LN-Met tissues were classified among tumor. A partial least-squares discriminant analysis model generated from NMR metabolic profiles was used to differentiate normal from tumor samples (Q(2) > 0.80, Receiver Operator Characteristic area under the curve >0.86, using 7-fold cross validation). HNSCC and LN-Met tissues showed elevated levels of lactate, amino acids including leucine, isoleucine, valine, alanine, glutamine, glutamate, aspartate, glycine, phenylalanine and tyrosine, choline containing compounds, creatine, taurine, glutathione, and decreased levels of triglycerides. These elevated metabolites were associated with highly active glycolysis, increased amino acids influx (anaplerosis) into the TCA cycle, altered energy metabolism, membrane choline phospholipid metabolism, and oxidative and osmotic defense mechanisms. Moreover, decreased levels of triglycerides may indicate lipolysis followed by β-oxidation of fatty acids that may exist to deliver bioenergy for rapid tumor cell proliferation and growth.
Collapse
|
32
|
Detour J, Elbayed K, Piotto M, Moussallieh F, Nehlig A, Namer I. Ultra fast in vivo microwave irradiation for enhanced metabolic stability of brain biopsy samples during HRMAS NMR analysis. J Neurosci Methods 2011; 201:89-97. [DOI: 10.1016/j.jneumeth.2011.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
|
33
|
Chen W, Zu Y, Huang Q, Chen F, Wang G, Lan W, Bai C, Lu S, Yue Y, Deng F. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Magn Reson Med 2011; 66:1531-40. [PMID: 21523825 DOI: 10.1002/mrm.22957] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/07/2011] [Accepted: 03/16/2011] [Indexed: 12/16/2022]
Abstract
Lung cancer causes serious health problems. Clinical diagnosis of lung cancer relies on histopathological evalution of tissue specimen. However, extensive knowledge of the metabolic biochemistry of tumors can potentially provide important information for accurate diagnosis of lung cancer. High resolution magic-angle spinning NMR spectroscopy has emerged and be widely acknowledged as an excellent tool in investigating tissue metabolism. Moreover, the combination of high resolution magic-angle spinning NMR technique and multivariate data analysis has become an important metabonomics platform for studying the intact biological tissues. This study reported the metabonomic characteristics of 51 lung tissues from 17 patients with lung cancer using the high resolution magic-angle spinning 1H NMR spectroscopy and the multivariate data analysis methods including principal component analysis and orthogonal partial least squares-discriminant analysis. Clear differences among the metabonomic characteristics of lung cancer tissues at various sites were disclosed. Compared with the adjacent noninvolved tissues, the lung cancer tissues had significantly high levels of aspartate, phosphocholine, glycerophosphocholine and lactate but significantly low levels of glucose and valine. Furthermore, significantly positive (or negative) correlations were observed between the levels of some metabolites such as lactate, fatty acids, valine, phosphocholine, and glycerophosphocholine.
Collapse
Affiliation(s)
- Wenxue Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular and Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Human evolution is characterized by the rapid expansion of brain size and drastic increase in cognitive capabilities. It has long been suggested that these changes were accompanied by modifications of brain metabolism. Indeed, human-specific changes on gene expression or amino acid sequence were reported for a number of metabolic genes, but actual metabolite measurements in humans and apes have remained scarce. Here, we investigate concentrations of more than 100 metabolites in the prefrontal and cerebellar cortex in 49 humans, 11 chimpanzees, and 45 rhesus macaques of different ages using gas chromatography-mass spectrometry (GC-MS). We show that the brain metabolome undergoes substantial changes, both ontogenetically and evolutionarily: 88% of detected metabolites show significant concentration changes with age, whereas 77% of these metabolic changes differ significantly among species. Although overall metabolic divergence reflects phylogenetic relationships among species, we found a fourfold acceleration of metabolic changes in prefrontal cortex compared with cerebellum in the human lineage. These human-specific metabolic changes are paralleled by changes in expression patterns of the corresponding enzymes, and affect pathways involved in synaptic transmission, memory, and learning.
Collapse
|
35
|
Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M. pH optimization for a reliable quantification of brain tumor cell and tissue extracts with (1)H NMR: focus on choline-containing compounds and taurine. Anal Bioanal Chem 2010; 399:987-99. [PMID: 21069302 DOI: 10.1007/s00216-010-4321-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 12/23/2022]
Abstract
The aim of this study was to define the optimal pH for (1)H nuclear magnetic resonance (NMR) spectroscopy analysis of perchloric acid or methanol-chloroform-water extracts from brain tumor cells and tissues. The systematic study of the proton chemical shift variations as a function of pH of 13 brain metabolites in model solutions demonstrated that recording (1)H NMR spectra at pH 10 allowed resolving resonances that are overlapped at pH 7, especially in the 3.2-3.3 ppm choline-containing-compounds region. (1)H NMR analysis of extracts at pH 7 or 10 showed that quantitative measurements of lactate, alanine, glutamate, glutamine (Gln), creatine + phosphocreatine and myo-inositol (m-Ino) can be readily performed at both pHs. The concentrations of glycerophosphocholine, phosphocholine and choline that are crucial metabolites for tumor brain malignancy grading were accurately measured at pH 10 only. Indeed, the resonances of their trimethylammonium moieties are cleared of any overlapping signal, especially those of taurine (Tau) and phosphoethanolamine. The four non-ionizable Tau protons resonating as a singlet in a non-congested spectral region permits an easier and more accurate quantitation of this apoptosis marker at pH 10 than at pH 7 where the triplet at 3.43 ppm can be overlapped with the signals of glucose or have an intensity too low to be measured. Glycine concentration was determined indirectly at both pHs after subtracting the contribution of the overlapped signals of m-Ino at pH 7 or Gln at pH 10.
Collapse
Affiliation(s)
- O Robert
- UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Groupe de RMN Biomédicale, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Magnetic resonance microscopy contribution to interpret high-resolution magic angle spinning metabolomic data of human tumor tissue. J Biomed Biotechnol 2010; 2011. [PMID: 20871822 PMCID: PMC2943122 DOI: 10.1155/2011/763684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/16/2010] [Accepted: 08/03/2010] [Indexed: 11/17/2022] Open
Abstract
HRMAS NMR is considered a valuable technique to obtain detailed metabolic profile of unprocessed tissues. To properly interpret the HRMAS metabolomic results, detailed information of the actual state of the sample inside the rotor is needed. MRM (Magnetic Resonance Microscopy) was applied for obtaining structural and spatially localized metabolic information of the samples inside the HRMAS rotors. The tissue was observed stuck to the rotor wall under the effect of HRMAS spinning. MRM spectroscopy showed a transference of metabolites from the tissue to the medium. The sample shape and the metabolite transfer after HRMAS indicated that tissue had undergone alterations and it can not be strictly considered as intact. This must be considered when HRMAS is used for metabolic tissue characterization, and it is expected to be highly dependent on the manipulation of the sample. The localized spectroscopic information of MRM reveals the biochemical compartmentalization on tissue samples hidden in the HRMAS spectrum.
Collapse
|
37
|
Valverde-Saubí D, Candiota AP, Molins MA, Feliz M, Godino O, Dávila M, Acebes JJ, Arús C. Short-term temperature effect on the HRMAS spectra of human brain tumor biopsies and their pattern recognition analysis. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2010; 23:203-15. [PMID: 20549297 DOI: 10.1007/s10334-010-0218-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 12/15/2022]
Abstract
OBJECT To investigate the effect of temperature (0 versus 37 degrees C) in the high-resolution magic angle spinning spectroscopy (HRMAS) pattern of human brain tumor biopsies and its influence in recognition-based tumor type prediction. This proof-of-principle study addressed the bilateral discrimination between meningioma (MM) and glioblastoma multiforme (GBM) cases. MATERIALS AND METHODS Forty-three tumor biopsy samples were collected (20 MM and 23 GBM), kept frozen and later analyzed at 0 degrees C and 37 degrees C by HRMAS. Post-HRMAS histopathology was used to validate the tumor type. Time-course experiments (100 min) at both temperatures were carried out to monitor HRMAS pattern changes. Principal component analysis and linear discriminant analysis were used for classifier development with a training set of 20 biopsies. RESULTS Temperature-dependent, spectral pattern changes mostly affected mobile lipids and choline-containing compounds resonances and were essentially reversible. Incubation of 3 MM and 3 GBM at 37 degrees C during 100 minutes produced irreversible pattern changes below 13% in a few resonances. Classification performance of an independent test set of 7 biopsies was 100% for the pulse-and-acquire, CPMG at echo times (TE) of 30 ms and 144 ms and Hahn Echo at TE 30 ms at 0 degrees C and 37 degrees C. The performance for Hahn Echo spectra at 136 ms was 83.3% at 0 degrees C and 100% at 37 degrees C. CONCLUSION The spectral pattern of mobile lipids changes reversibly with temperature. HRMAS demonstrated potential for automated brain tumor biopsy classification. No advantage was obtained when acquiring spectra at 37 degrees C with respect to 0 degrees C in most of the conditions used for the discrimination addressed.
Collapse
Affiliation(s)
- Daniel Valverde-Saubí
- Departament de Bioquímica i Biologia Molecular, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, Carreira IM, Melo JB, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 2010; 9:319-32. [PMID: 19908917 DOI: 10.1021/pr9006574] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work aims at characterizing the metabolic profile of human lung cancer, to gain new insights into tumor metabolism and to identify possible biomarkers with potential diagnostic value in the future. Paired samples of tumor and noninvolved adjacent tissues from 12 lung tumors have been directly analyzed by (1)H HRMAS NMR (500/600 MHz) enabling, for the first time to our knowledge, the identification of over 50 compounds. The effect of temperature on tissue stability during acquisition time has also been investigated, demonstrating that analysis should be performed within less than two hours at low temperature (277 K), to minimize glycerophosphocholine (GPC) and phosphocholine (PC) conversion to choline and reduce variations in some amino acids. The application of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to the standard 1D (1)H spectra resulted in good separation between tumor and control samples, showing that inherently different metabolic signatures characterize the two tissue types. On the basis of spectral integration measurements, lactate, PC, and GPC were found to be elevated in tumors, while glucose, myo-inositol, inosine/adenosine, and acetate were reduced. These results show the valuable potential of HRMAS NMR-metabonomics for investigating the metabolic phenotype of lung cancer.
Collapse
Affiliation(s)
- Cláudia M Rocha
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 2010; 9:66. [PMID: 20331867 PMCID: PMC2858738 DOI: 10.1186/1476-4598-9-66] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/23/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High-resolution magic angle spinning (HRMAS) NMR spectroscopy allows detailed metabolic analysis of whole biopsy samples for investigating tumour biology and tumour classification. Accurate biochemical assignment of small molecule metabolites that are "NMR visible" will improve our interpretation of HRMAS data and the translation of NMR tumour biomarkers to in-vivo studies. RESULTS 1D and 2D 1H HRMAS NMR was used to determine that 29 small molecule metabolites, along with 8 macromolecule signals, account for the majority of the HRMAS spectrum of the main types of brain tumour (astrocytoma grade II, grade III gliomas, glioblastomas, metastases, meningiomas and also lymphomas). Differences in concentration of 20 of these metabolites were statistically significant between these brain tumour types. During the course of an extended 2D data acquisition the HRMAS technique itself affects sample analysis: glycine, glutathione and glycerophosphocholine all showed small concentration changes; analysis of the sample after HRMAS indicated structural damage that may affect subsequent histopathological analysis. CONCLUSIONS A number of small molecule metabolites have been identified as potential biomarkers of tumour type that may enable development of more selective in-vivo 1H NMR acquisition methods for diagnosis and prognosis of brain tumours.
Collapse
Affiliation(s)
- Alan J Wright
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| | - Greg A Fellows
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | | | - M Wilson
- Cancer Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - B Anthony Bell
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | - Franklyn A Howe
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| |
Collapse
|
40
|
Opstad KS, Wright AJ, Bell BA, Griffiths JR, Howe FA. Correlations between in vivo (1)H MRS and ex vivo (1)H HRMAS metabolite measurements in adult human gliomas. J Magn Reson Imaging 2010; 31:289-97. [PMID: 20099340 DOI: 10.1002/jmri.22039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To assess how accurately ex vivo high-resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy ((1)H MRS) from small biopsy tissues relate to in vivo (1)H MRS (from larger tumor volumes) in human astrocytomas. MATERIALS AND METHODS In vivo (PRESS, TE = 30 msec) and ex vivo (presaturation) (1)H spectra of 17 human astrocytomas (4 grade II, 1 grade III and 12 glioblastomas) were quantified using LCModel. Concentrations of 11 metabolites and 2 lipid/macromolecules were retrospectively compared, with histogram analysis of the in vivo MRI data used to evaluate tumor heterogeneity. RESULTS For homogeneous-appearing tumors, significant correlations were found between in vivo and ex vivo (1)H MRS concentrations of those metabolites known to be metabolically stable in postmortem tissues (eg, creatine, myo-inositol, total cholines, and the approximately 1.3 and 0.9 ppm lipids). Anaerobic glycolysis during biopsy surgical removal depletes the tissue of glucose, increasing alanine and lactate, and resulted in no correlation between these in vivo and ex vivo metabolite concentrations. CONCLUSION Within defined limitations, ex vivo astrocytoma biopsy HRMAS (1)H spectra have similar metabolic profiles to that obtained in vivo and therefore detailed ex vivo characterization of glioma biopsies can directly relate to the original tumor.
Collapse
Affiliation(s)
- Kirstie S Opstad
- Division of Cardiac and Vascular Sciences, St George's, University of London, London, UK.
| | | | | | | | | |
Collapse
|
41
|
Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T. Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Cancer Res 2009; 69:4918-25. [DOI: 10.1158/0008-5472.can-08-4806] [Citation(s) in RCA: 717] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Abstract
New cancer therapies are being developed that trigger tumour apoptosis and an in vivo method of apoptotic detection and early treatment response would be of great value. Magnetic resonance spectroscopy (MRS) can determine the tumour biochemical profile in vivo, and we have investigated whether a specific spectroscopic signature exists for apoptosis in human astrocytomas. High-resolution magic angle spinning (HRMAS) 1H MRS provided detailed 1H spectra of brain tumour biopsies for direct correlation with histopathology. Metabolites, mobile lipids and macromolecules were quantified from presaturation HRMAS 1H spectra acquired from 41 biopsies of grades II (n=8), III (n=3) and IV (n=30) astrocytomas. Subsequently, TUNEL and H&E staining provided quantification of apoptosis, cell density and necrosis. Taurine was found to significantly correlate with apoptotic cell density (TUNEL) in both non-necrotic (R=0.727, P=0.003) and necrotic (R=0.626, P=0.0005) biopsies. However, the ca 2.8 p.p.m. polyunsaturated fatty acid peak, observed in other studies as a marker of apoptosis, correlated only in non-necrotic biopsies (R=0.705, P<0.005). We suggest that the taurine 1H MRS signal in astrocytomas may be a robust apoptotic biomarker that is independent of tumour necrotic status.
Collapse
|