1
|
Serés Roig E. Toward structure and metabolism of glycogen C 1-C 6 in humans at 7 T by localized 13C MRS using low-power bilevel broadband 1H decoupling. NMR IN BIOMEDICINE 2024; 37:e5241. [PMID: 39166302 DOI: 10.1002/nbm.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
This work aims to develop and implement a pulse-acquire sequence for three-dimensional (3D) single-voxel localized 13C MRS in humans at 7 T, in conjunction with bilevel broadband 1H decoupling, and to test its feasibility in vitro and in vivo in human calf muscle with emphasis on the detection of glycogen C1-C6. A localization scheme suitable for measuring fast-relaxing 13C signals in humans at 7 T was developed and implemented using the outer volume suppression (OVS) and one-dimensional image selected in vivo spectroscopy (ISIS-1D) schemes, similar to that which was previously reported in humans at 4 T. The 3D 13C localization scheme was followed by uniform 13C adiabatic excitation, all complemented with an option for bilevel broadband 1H decoupling to improve both 13C sensitivity and spectral resolution at 7 T. The performance of the pulse-acquire sequence was investigated in vitro on phantoms and in vivo in the human calf muscle of three healthy volunteers, while measuring glycogen C1-C6. In addition, T1 and T2 of glycogen C1-C6 were measured in vitro at 7 T, as well as T1 of glycogen C1 in vivo. The glycerol C2 and C1,3 lipid resonances were efficiently suppressed in vitro at 7 T using the OVS and ISIS-1D schemes, allowing distinct detection of glycogen C2-C6. While some glycerol remained in calf muscle in vivo, the intense lipid at 130 ppm was efficiently suppressed. The 13C sensitivity and spectral resolution of glycogen C1-C6 in vitro and glycogen C1 in vivo were improved at 7 T using bilevel broadband 1H decoupling. The T1 and T2 of glycogen C1-C6 in vitro at 7 T were consistent compared with those at 8.5 T, while the T1 of glycogen C1 in vivo at 7 T resulted similar to that in vitro. Localized 13C MRS is feasible in human calf muscle in vivo at 7 T, and this will allow further extension of this method for 13C MRS measurements such as in the brain.
Collapse
Affiliation(s)
- Eulalia Serés Roig
- Laboratory of Functional and Metabolic Imaging (LIFMET), Institute of Physics (IPHYS), School of Basic Sciences (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Zeng Q, Machado M, Bie C, van Zijl PCM, Malvar S, Li Y, D’souza V, Poon KA, Grimm A, Yadav NN. In vivo characterization of glycogen storage disease type III in a mouse model using glycoNOE MRI. Magn Reson Med 2024; 91:1115-1121. [PMID: 38009988 PMCID: PMC10842402 DOI: 10.1002/mrm.29923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Glycogen storage disease type III (GSD III) is a rare inherited metabolic disease characterized by excessive accumulation of glycogen in liver, skeletal muscle, and heart. Currently, there are no widely available noninvasive methods to assess tissue glycogen levels and disease load. Here, we use glycogen nuclear Overhauser effect (glycoNOE) MRI to quantify hepatic glycogen levels in a mouse model of GSD III. METHODS Agl knockout mice (n = 13) and wild-type controls (n = 10) were scanned for liver glycogen content using glycoNOE MRI. All mice were fasted for 12 to 16 h before MRI scans. GlycoNOE signal was quantified by fitting the Z-spectrum using a four-pool Voigt lineshape model. Next, the fitted direct water saturation pool was removed and glycoNOE signal was estimated from the integral of the residual Z spectrum within -0.6 to -1.4 ppm. Glycogen concentration was also measured ex vivo using a biochemical assay. RESULTS GlycoNOE MRI clearly distinguished Agl knockout mice from wild-type controls, showing a statistically significant difference in glycoNOE signals in the livers across genotypes. There was a linear correlation between glycoNOE signal and glycogen concentration determined by the biochemical assay. The obtained glycoNOE maps of mouse livers also showed higher glycogen levels in Agl knockout mice compared to wild-type mice. CONCLUSION GlycoNOE MRI was used successfully as a noninvasive method to detect liver glycogen levels in mice, suggesting the potential of this method to be applied to assess glycogen storage diseases.
Collapse
Affiliation(s)
- Qing Zeng
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Chongxue Bie
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Sofi Malvar
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| | - Yuguo Li
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Valentina D’souza
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Andrew Grimm
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| | - Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
3
|
Zhang G, Zhu W, Li X, Zhu XH, Chen W. Dual-frequency resonant coil design for low-γ X-nuclear and proton magnetic resonance imaging at ultrahigh fields. NMR IN BIOMEDICINE 2023; 36:e4930. [PMID: 36939997 PMCID: PMC11089849 DOI: 10.1002/nbm.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
Low-γ X-nuclear MRS and imaging have played a key role in studying metabolism and physiopathology, especially at ultrahigh fields. We design and demonstrate a novel and simple dual-frequency RF resonant coil that can operate at both low-γ X-nuclear and proton frequencies. The dual-frequency resonant coil comprises an LC coil loop and a tuning-matching circuit bridged by two short wires of the desired length to generate two resonant modes: one for proton MRI and the other for low-γ X-nuclear MRS imaging with a large difference in their Larmor frequencies at ultrahigh fields. The coil parameters for the desired coil size and resonant frequencies can be determined via numerical simulations based on LC circuit theory. We designed, constructed, and evaluated several prototype surface coils and quadrature array coils for 1 H and 2 H or 17 O imaging, with small-sized (diameter ≤ 5 cm) coils evaluated using a 16.4 T animal scanner, and a large-sized (15 cm diameter) coil on a 7 T human scanner. All coils could be tuned/matched and driven in the single coil or array coil mode to the resonant frequencies of 1 H (698 and 298 MHz), 2 H (107 and 45.8 MHz), or 17 O (94.7 and 40.4 MHz) for imaging measurements and evaluation at 16.4 and 7 T, respectively. The dual-frequency resonant coil or array provides adequate detection sensitivity for 1 H MRI and excellent performance for low-γ X-nuclear MRS imaging applications, and excellent coil decoupling efficiency between the array coils at both resonant frequencies with an optimal geometric overlap. It provides a simple, cost-effective dual-frequency RF coil solution to perform low-γ X-nuclear MRS imaging for preclinical and human applications, especially at ultrahigh fields.
Collapse
Affiliation(s)
- Guangle Zhang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Wei Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Xin Li
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| |
Collapse
|
4
|
Chen S, Jiang M, Yuan Y, Wang B, Li Y, Zhang L, Jiang ZX, Ye C, Zhou X. Using endogenous glycogen as relaxation agent for imaging liver metabolism by MRI. FUNDAMENTAL RESEARCH 2023; 3:481-487. [PMID: 38933551 PMCID: PMC11197538 DOI: 10.1016/j.fmre.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Glycogen plays essential roles in glucose metabolism. Imaging glycogen in the liver, the major glycogen reservoir in the body, may shed new light on many metabolic disorders. 13C magnetic resonance spectroscopy (MRS) has become the mainstream method for monitoring glycogen in the body. However, the equipment of special hardware to standard clinical magnetic resonance imaging (MRI) scanners limits its clinical applications. Herein, we utilized endogenous glycogen as a T 2-based relaxation contrast agent for imaging glycogen metabolism in the liver in vivo. The in vitro results demonstrated that the transverse relaxation rate of glycogen strongly correlates with the concentration, pH, and field strength. Based on the Swift-Connick theory, we characterized the exchange property of glycogen and measured the exchange rate of glycogen as 31,847 Hz at 37 °C. Besides, the viscosity and echo spacing showed no apparent effect on the transverse relaxation rate. This unique feature enables visualization of glycogen signaling in vivo through T 2-weighted MRI. Two hours-post intraperitoneal injection of glucagon, a clinical drug to promote glycogenolysis and gluconeogenesis, the signal intensity of the mice's liver increased by 1.8 times from the T 2-weighted imaging experiment due to the decomposition of glycogen. This study provides a convenient imaging strategy to non-invasively investigate glycogen metabolism in the liver, which may find clinical applications in metabolic diseases.
Collapse
Affiliation(s)
- Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhou Y, van Zijl PCM, Xu X, Xu J, Li Y, Chen L, Yadav NN. Magnetic resonance imaging of glycogen using its magnetic coupling with water. Proc Natl Acad Sci U S A 2020; 117:3144-3149. [PMID: 32001509 PMCID: PMC7022182 DOI: 10.1073/pnas.1909921117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycogen plays a central role in glucose homeostasis and is abundant in several types of tissue. We report an MRI method for imaging glycogen noninvasively with enhanced detection sensitivity and high specificity, using the magnetic coupling between glycogen and water protons through the nuclear Overhauser enhancement (NOE). We show in vitro that the glycogen NOE (glycoNOE) signal is correlated linearly with glycogen concentration, while pH and temperature have little effect on its intensity. For validation, we imaged glycoNOE signal changes in mouse liver, both before and after fasting and during glucagon infusion. The glycoNOE signal was reduced by 88 ± 16% (n = 5) after 24 h of fasting and by 76 ± 22% (n = 5) at 1 h after intraperitoneal (i.p.) injection of glucagon, which is known to rapidly deplete hepatic glycogen. The ability to noninvasively image glycogen should allow assessment of diseases in which glucose metabolism or storage is altered, for instance, diabetes, cardiac disease, muscular disorders, cancer, and glycogen storage diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Xiang Xu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Yuguo Li
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Lin Chen
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Nirbhay N Yadav
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| |
Collapse
|
6
|
Soares AF, Nissen JD, Garcia‐Serrano AM, Nussbaum SS, Waagepetersen HS, Duarte JMN. Glycogen metabolism is impaired in the brain of male type 2 diabetic Goto‐Kakizaki rats. J Neurosci Res 2019; 97:1004-1017. [DOI: 10.1002/jnr.24437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Jakob D. Nissen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - Alba M. Garcia‐Serrano
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| | - Sakura S. Nussbaum
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Helle S. Waagepetersen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology University of Copenhagen Copenhagen Denmark
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Faculty of Medicine, Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
7
|
Lu M, Zhu XH, Zhang Y, Mateescu G, Chen W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2017; 37:3518-3530. [PMID: 28503999 PMCID: PMC5669347 DOI: 10.1177/0271678x17706444] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quantitative assessment of cerebral glucose consumption rate (CMRglc) and tricarboxylic acid cycle flux (VTCA) is crucial for understanding neuroenergetics under physiopathological conditions. In this study, we report a novel in vivo Deuterium (2H) MRS (DMRS) approach for simultaneously measuring and quantifying CMRglc and VTCA in rat brains at 16.4 Tesla. Following a brief infusion of deuterated glucose, dynamic changes of isotope-labeled glucose, glutamate/glutamine (Glx) and water contents in the brain can be robustly monitored from their well-resolved 2H resonances. Dynamic DMRS glucose and Glx data were employed to determine CMRglc and VTCA concurrently. To test the sensitivity of this method in response to altered glucose metabolism, two brain conditions with different anesthetics were investigated. Increased CMRglc (0.46 vs. 0.28 µmol/g/min) and VTCA (0.96 vs. 0.6 µmol/g/min) were found in rats under morphine as compared to deeper anesthesia using 2% isoflurane. This study demonstrates the feasibility and new utility of the in vivo DMRS approach to assess cerebral glucose metabolic rates at high/ultrahigh field. It provides an alternative MRS tool for in vivo study of metabolic coupling relationship between aerobic and anaerobic glucose metabolisms in brain under physiopathological states.
Collapse
Affiliation(s)
- Ming Lu
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Xiao-Hong Zhu
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Yi Zhang
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Gheorghe Mateescu
- 2 Case Center for Imaging Research, Departments of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Chen
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| |
Collapse
|
8
|
Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism. Anal Biochem 2017; 529:117-126. [DOI: 10.1016/j.ab.2016.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/31/2016] [Accepted: 12/23/2016] [Indexed: 01/20/2023]
|
9
|
Valette J, Tiret B, Boumezbeur F. Experimental strategies for in vivo 13C NMR spectroscopy. Anal Biochem 2016; 529:216-228. [PMID: 27515993 DOI: 10.1016/j.ab.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
In vivo carbon-13 (13C) MRS opens unique insights into the metabolism of intact organisms, and has led to major advancements in the understanding of cellular metabolism under normal and pathological conditions in various organs such as skeletal muscles, the heart, the liver and the brain. However, the technique comes at the expense of significant experimental difficulties. In this review we focus on the experimental aspects of non-hyperpolarized 13C MRS in vivo. Some of the enrichment strategies which have been proposed so far are described; the various MRS acquisition paradigms to measure 13C labeling are then presented. Finally, practical aspects of 13C spectral quantification are discussed.
Collapse
Affiliation(s)
- Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France.
| | - Brice Tiret
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Fawzi Boumezbeur
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), NeuroSpin, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.
Collapse
Affiliation(s)
- Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St. S.E., Minneapolis, MN, 55455, USA.
| | - Mauro DiNuzzo
- Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Rome, Italy
| | - Anjali Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
12
|
Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 2015; 30:281-98. [PMID: 24515302 PMCID: PMC4130810 DOI: 10.1007/s11011-014-9493-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Slot 500, 4301 W. Markham St., Little Rock, AR, 72205, USA,
| | | |
Collapse
|
13
|
Khowaja A, Choi IY, Seaquist ER, Öz G. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans. Metab Brain Dis 2015; 30:255-61. [PMID: 24676563 PMCID: PMC4392006 DOI: 10.1007/s11011-014-9530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 01/31/2023]
Abstract
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ameer Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Sickmann HM, Waagepetersen HS. Effects of diabetes on brain metabolism--is brain glycogen a significant player? Metab Brain Dis 2015; 30:335-43. [PMID: 24771109 DOI: 10.1007/s11011-014-9546-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Helle M Sickmann
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark,
| | | |
Collapse
|
15
|
Hirrlinger J, Nave KA. Adapting brain metabolism to myelination and long-range signal transduction. Glia 2014; 62:1749-61. [DOI: 10.1002/glia.22737] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes Hirrlinger
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig; Leipzig Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
| |
Collapse
|
16
|
Lanz B, Gruetter R, Duarte JMN. Metabolic Flux and Compartmentation Analysis in the Brain In vivo. Front Endocrinol (Lausanne) 2013; 4:156. [PMID: 24194729 PMCID: PMC3809570 DOI: 10.3389/fendo.2013.00156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: João M. N. Duarte, Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Bâtiment CH, Station 6, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
17
|
Hertz L. Isotope-based quantitation of uptake, release, and metabolism of glutamate and glucose in cultured astrocytes. Methods Mol Biol 2012; 814:305-323. [PMID: 22144315 DOI: 10.1007/978-1-61779-452-0_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protocols are described for measurement in primary cultures of astrocytes of unidirectional fluxes of glutamate (influx and efflux), glutamate metabolism to glutamine or CO(2), glucose influx, glycolysis, pyruvate dehydrogenation, oxidative metabolism of glucose, pyruvate carboxylation, glycogen synthesis, and glycogenolysis. References are made to the in vivo situation, and the importance of using metabolically competent cultures is emphasized.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
18
|
van Heeswijk RB, Pilloud Y, Morgenthaler FD, Gruetter R. A comparison of in vivo 13
C MR brain glycogen quantification at 9.4 and 14.1 T. Magn Reson Med 2011; 67:1523-7. [DOI: 10.1002/mrm.23192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/05/2022]
|
19
|
Tesfaye N, Seaquist ER, Oz G. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 2011; 89:1905-12. [PMID: 21732401 DOI: 10.1002/jnr.22703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/19/2011] [Accepted: 05/02/2011] [Indexed: 11/11/2022]
Abstract
Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors, including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen noninvasively, but, in the past several years, the development of a noninvasive localized (13) C nuclear magnetic resonance (NMR) spectroscopy method has allowed the study of glycogen metabolism in the conscious human. With this technique, (13) C-glucose is administered intravenously, and its incorporation into and washout from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia, and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest that glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, (13) C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|