1
|
Todd NPM, Govender S, Hochstrasser D, Keller PE, Colebatch JG. Extended source analysis of movement related potentials (MRPs) for self-paced hand and foot movements demonstrates opposing cerebral and cerebellar laterality: a preliminary study. Neurosci Lett 2023; 815:137476. [PMID: 37714289 DOI: 10.1016/j.neulet.2023.137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The cerebellum is known to have extensive reciprocal connectivity with the cerebral cortex, including with prefrontal and posterior parietal cortex, which play an important role on the planning and execution of voluntary movement. In the present article we report an exploratory non-invasive electrophysiological study of the activity of the cerebellum and cerebrum during voluntary finger and foot movements. In a sample of five healthy adult subjects, we recorded EEG and the electro-cerebellogram (ECeG) with a 10% cerebellar extension montage during voluntary left and right index finger and foot movements. EMG was recorded from finger extensors and flexors and from the tibialis anterior and soleus muscles and was used to generate triggers for movement related averaging (-2000 to +2000 ms). Source analysis was conducted over five epochs defined relative to EMG onset: whole epoch (-1000 to +1000 ms), pre-move 1000 (-1000 to 0 ms), pre-move 500 (-500 to 0 ms), post-move 500 (0 to +500 ms) and post-move 1000 (0 to +1000 ms). This yielded a total of 123 cerebral and 65 cerebellar dipole clusters from across all epochs, including the pre-movement epochs, which were then subject to statistical analysis. These demonstrated predominantly contralateral dominance for the cerebral clusters, but predominantly ipsilateral dominance for the cerebellar clusters. In addition, both cerebral and cerebellar clusters showed evidence of a somatotopic gradient, medially (X-axis) for the cerebral clusters, and medially and dorso-ventrally (Z-axis) for the cerebellar clusters. These findings support the value of recording cerebellar ECeG and demonstrate its potential to contribute to understanding cerebellar function.
Collapse
Affiliation(s)
- Neil P M Todd
- Department of Psychology, University of Exeter, Exeter EX4 4QC, UK; UNSW Clinical School, Randwick Campus, Sydney, NSW 2052, Australia.
| | - Sendhil Govender
- UNSW Clinical School, Randwick Campus, Sydney, NSW 2052, Australia; Neuroscience Research Australia, UNSW, Sydney, NSW 2052, Australia
| | - Daniel Hochstrasser
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University Penrith, NSW 2751, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University Penrith, NSW 2751, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - James G Colebatch
- UNSW Clinical School, Randwick Campus, Sydney, NSW 2052, Australia; Neuroscience Research Australia, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NEUROIMAGE-CLINICAL 2021; 32:102846. [PMID: 34624639 PMCID: PMC8503569 DOI: 10.1016/j.nicl.2021.102846] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.
Collapse
|
3
|
Tacyildiz AE, Bilgin B, Gungor A, Ucer M, Karadag A, Tanriover N. Dentate Nucleus: Connectivity-Based Anatomic Parcellation Based on Superior Cerebellar Peduncle Projections. World Neurosurg 2021; 152:e408-e428. [PMID: 34062299 DOI: 10.1016/j.wneu.2021.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Projections from the dentate nucleus (DN) follow a certain organized course to upper levels. Crossing and noncrossing fibers of the dentatorubrothalamic (DRT) tract terminate in the red nucleus and thalamus and have various connections throughout the cerebral cortex. We aimed to establish the microsurgical anatomy of the DN in relation to its efferent connections to complement the increased recognition of its surgical importance and also to provide an insight into the network-associated symptoms related to lesions and microsurgery in and around the region. METHODS The cerebellum, DN, and superior cerebellar peduncle (SCP) en route to red nucleus were examined through fiber dissections from the anterior, posterior, and lateral sides to define the connections of the DN and its relationships with adjacent neural structures. RESULTS The DN was anatomically divided into 4 areas based on its relation to the SCP; the lateral major, lateral anterosuperior, posteromedial, and anteromedial compartments. Most of the fibers originating from the lateral compartments were involved in the decussation of the SCP. The ventral fibers originating from the lateral anterosuperior compartment were exclusively involved in the decussation. The fibers from the posteromedial compartment ascended ipsilaterally and decussated, whereas most anteromedial fibers ascended ipsilaterally and did not participate in the decussation. CONCLUSIONS Clarifying the anatomofunctional organization of the DN in relation to the SCP could improve microneurosurgical results by reducing the complication rates during infratentorial surgery in and around the nucleus. The proposed compartmentalization would be a major step forward in this effort.
Collapse
Affiliation(s)
- Abdullah Emre Tacyildiz
- Department of Neurosurgery, Karabuk Research and Training Hospital, Health Science University, Karabuk, Turkey; Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Berra Bilgin
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Neurosurgery, Tepecik Research and Training Hospital, Health Science University, Izmir, Turkey
| | - Abuzer Gungor
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Neurosurgery, Umraniye Research and Training Hospital, Health Science University, Istanbul, Turkey
| | - Melih Ucer
- Department of Neurosurgery, Kanuni Sultan Suleyman Research and Training Hospital, Health Science University, Istanbul, Turkey
| | - Ali Karadag
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Neurosurgery, Tepecik Research and Training Hospital, Health Science University, Izmir, Turkey
| | - Necmettin Tanriover
- Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
4
|
Petersen KJ, Reid JA, Chakravorti S, Juttukonda MR, Franco G, Trujillo P, Stark AJ, Dawant BM, Donahue MJ, Claassen DO. Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage 2018; 176:364-371. [PMID: 29733955 PMCID: PMC6002752 DOI: 10.1016/j.neuroimage.2018.04.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
The dentato-rubro-thalamic tract (DRTT) regulates motor control, connecting the cerebellum to the thalamus. This tract is modulated by deep-brain stimulation in the surgical treatment of medically refractory tremor, especially in essential tremor, where high-frequency stimulation of the thalamus can improve symptoms. The DRTT is classically described as a decussating pathway, ascending to the contralateral thalamus. However, the existence of a nondecussating (i.e. ipsilateral) DRTT in humans was recently demonstrated, and these tracts are arranged in distinct regions of the superior cerebellar peduncle. We hypothesized that the ipsilateral DRTT is connected to specific thalamic nuclei and therefore may have unique functional relevance. The goals of this study were to confirm the presence of the decussating and nondecussating DRTT pathways, identify thalamic termination zones of each tract, and compare whether structural connectivity findings agree with functional connectivity. Diffusion-weighted imaging was used to perform probabilistic tractography of the decussating and nondecussating DRTT in young healthy subjects from the Human Connectome Project (n = 91) scanned using multi-shell diffusion-weighted imaging (270 directions; TR/TE = 5500/89 ms; spatial resolution = 1.25 mm isotropic). To define thalamic anatomical landmarks, a segmentation procedure based on the Morel Atlas was employed, and DRTT targeting was quantified based on the proportion of streamlines arriving at each nucleus. In parallel, functional connectivity analysis was performed using resting-state functional MRI (TR/TE = 720/33 ms; spatial resolution = 2 mm isotropic). It was found that the decussating and nondecussating DRTTs have significantly different thalamic endpoints, with the former preferentially targeting relatively anterior and lateral thalamic nuclei, and the latter connected to more posterior and medial nuclei (p < 0.001). Functional and structural connectivity measures were found to be significantly correlated (r = 0.45, p = 0.031). These findings provide new insight into pathways through which unilateral cerebellum can exert bilateral influence on movement and raise questions about the functional implications of ipsilateral cerebellar efferents.
Collapse
Affiliation(s)
- Kalen J Petersen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giulia Franco
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam J Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Viaro R, Bonazzi L, Maggiolini E, Franchi G. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats. Cereb Cortex 2018; 27:3525-3541. [PMID: 27329134 DOI: 10.1093/cercor/bhw167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Laura Bonazzi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Ferrari C, Cattaneo Z, Oldrati V, Casiraghi L, Castelli F, D'Angelo E, Vecchi T. TMS Over the Cerebellum Interferes with Short-term Memory of Visual Sequences. Sci Rep 2018; 8:6722. [PMID: 29712981 PMCID: PMC5928079 DOI: 10.1038/s41598-018-25151-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/12/2018] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that the cerebellum is not only involved in motor functions, but it significantly contributes to sensory and cognitive processing as well. In particular, it has been hypothesized that the cerebellum identifies recurrent serial events and recognizes their violations. Here we used transcranial magnetic stimulation (TMS) to shed light on the role of the cerebellum in short-term memory of visual sequences. In two experiments, we found that TMS over the right cerebellar hemisphere impaired participants' ability to recognize the correct order of appearance of geometrical stimuli varying in shape and/or size. In turn, cerebellar TMS did not affect recognition of highly familiar short sequences of letters or numbers. Overall, our data suggest that the cerebellum is involved in memorizing the order in which (concatenated) stimuli appear, this process being important for sequence learning.
Collapse
Affiliation(s)
- C Ferrari
- Department of Psychology, University of Milano-Bicocca, Milan, 20126, Italy.
| | - Z Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, 20126, Italy.,IRCCS Mondino Foundation, Pavia, Pavia, 27100, Italy
| | - V Oldrati
- IRCCS Mondino Foundation, Pavia, Pavia, 27100, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - L Casiraghi
- IRCCS Mondino Foundation, Pavia, Pavia, 27100, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - F Castelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - E D'Angelo
- IRCCS Mondino Foundation, Pavia, Pavia, 27100, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - T Vecchi
- IRCCS Mondino Foundation, Pavia, Pavia, 27100, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
7
|
Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg 2015; 124:1406-12. [PMID: 26452117 DOI: 10.3171/2015.4.jns142741] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The dentatorubrothalamic tract (DRTT) is the major efferent cerebellar pathway arising from the dentate nucleus (DN) and decussating to the contralateral red nucleus (RN) and thalamus. Surprisingly, hemispheric cerebellar output influences bilateral limb movements. In animals, uncrossed projections from the DN to the ipsilateral RN and thalamus may explain this phenomenon. The aim of this study was to clarify the anatomy of the dentatorubrothalamic connections in humans. METHODS The authors applied advanced deterministic fiber tractography to a template of 488 subjects from the Human Connectome Project (Q1-Q3 release, WU-Minn HCP consortium) and validated the results with microsurgical dissection of cadaveric brains prepared according to Klingler's method. RESULTS The authors identified the "classic" decussating DRTT and a corresponding nondecussating path (the nondecussating DRTT, nd-DRTT). Within each of these 2 tracts some fibers stop at the level of the RN, forming the dentatorubro tract and the nondecussating dentatorubro tract. The left nd-DRTT encompasses 21.7% of the tracts and 24.9% of the volume of the left superior cerebellar peduncle, and the right nd-DRTT encompasses 20.2% of the tracts and 28.4% of the volume of the right superior cerebellar peduncle. CONCLUSIONS The connections of the DN with the RN and thalamus are bilateral, not ipsilateral only. This affords a potential anatomical substrate for bilateral limb motor effects originating in a single cerebellar hemisphere under physiological conditions, and for bilateral limb motor impairment in hemispheric cerebellar lesions such as ischemic stroke and hemorrhage, and after resection of hemispheric tumors and arteriovenous malformations. Furthermore, when a lesion is located on the course of the dentatorubrothalamic system, a careful preoperative tractographic analysis of the relationship of the DRTT, nd-DRTT, and the lesion should be performed in order to tailor the surgical approach properly and spare all bundles.
Collapse
Affiliation(s)
- Antonio Meola
- Department of Neurosurgery, University of Pittsburgh Medical Center;,Department of Neurosurgery, University of Pisa, Italy; and
| | - Ayhan Comert
- Department of Neurosurgery, University of Pittsburgh Medical Center;,Department of Anatomy, Ankara University School of Medicine, Ankara, Turkey
| | - Fang-Cheng Yeh
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
8
|
Impaired hemodynamic response in the ischemic brain assessed with BOLD fMRI. Neuroimage 2012; 61:579-90. [DOI: 10.1016/j.neuroimage.2012.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/29/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022] Open
|
9
|
Habas C. Functional Imaging and the Cerebellum: Recent Developments and Challenges. Editorial. THE CEREBELLUM 2012; 11:311-3. [DOI: 10.1007/s12311-012-0375-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Küper M, Thürling M, Stefanescu R, Maderwald S, Roths J, Elles HG, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor somatotopy in the cerebellar dentate nucleus--an FMRI study in humans. Hum Brain Mapp 2011; 33:2741-9. [PMID: 21938757 DOI: 10.1002/hbm.21400] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/02/2011] [Accepted: 06/09/2011] [Indexed: 12/21/2022] Open
Abstract
Previous anatomical studies in monkeys have shown that forelimb motor representation is located caudal to hindlimb representation within the dorso-rostral dentate nucleus. Here we investigate human dentate nucleus motor somatotopy by means of ultra-highfield (7 T) functional magnetic brain imaging (fMRI). Twenty five young healthy males participated in the study. Simple finger and foot movement tasks were performed to identify dentate nucleus motor areas. Recently developed normalization procedures for group analyses were used for the cerebellar cortex and the cerebellar dentate nucleus. Cortical activations were in good accordance with the known somatotopy of the human cerebellar cortex. Dentate nucleus activations following motor tasks were found in particular in the ipsilateral dorso-rostral nucleus. Activations were also present in other parts of the nucleus including the contralateral side, and there was some overlap between the body part representations. Within the ipsilateral dorso-rostral dentate, finger activations were located caudally compared to foot movement-related activations in fMRI group analysis. Likewise, the centre of gravity (COG) for the finger activation was more caudal than the COG of the foot activation across participants. A multivariate analysis of variance (MANOVA) on the x, y, and z coordinates of the COG indicated that this difference was significant (P = 0.043). These results indicate that in humans, the lower and upper limbs are arranged rostro-caudally in the dorsal aspect of the dentate nucleus, which is consistent with studies in non-human primates.
Collapse
Affiliation(s)
- Michael Küper
- Department of Neurology, University of Duisburg-Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Flament D, Ellermann JM, Kim SG, Ugurbil K, Ebner TJ. Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Mapp 2010; 4:210-26. [PMID: 20408199 DOI: 10.1002/hbm.460040302] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have used functional magnetic resonance imaging (fMRI) to study the changes in cerebellar activation that occur during the acquisition of motor skill in human subjects presented with a new task. The standard paradigm consisted of a center-out movement in which subjects used a joystick to superimposed a cursor onto viusual targets. Two variations of this paradigm were introduced: (1) a learning paradigm, where the relationship between movement of the joystick and cursor was reversed, requiring the learning of a visuomotor transformation to optimize performance and (2) a random paradigm, where the joystick/cursor relationship was changed randomly for each trial. Activation in the cerebellum was highest during the random paradigm and during the early stages of the learning paradigm. In the early stages of learning and during the random paradigm performance was poor with a decrease in the number of completed movements, and an increase in the time and length of movements. With repeated practice at the learning paradigm performance improbed and reached the same level of proficiency as in the standard task. Commensurate with the improbement in performance was a decrease in cerebellar activation, that is, activation in the cerebellum changed in a parallel, but inverse relationship with performance. Linear regression analysis demonstarated that the inverse correlation between cerebellar activation and motor performance was significant. Repeated practice at the random paradigm did not produce improvements in performance and cerebellar activity remained high. The data support the hypothesis that the cerebellum is strongly activated when motor performance is inaccurate, consistent with a role for the cerebellum in the detection of, and correction for visuomotor errors.
Collapse
Affiliation(s)
- D Flament
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Dimitrova A, de Greiff A, Schoch B, Gerwig M, Frings M, Gizewski ER, Timmann D. Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI. Brain Res Bull 2006; 71:233-41. [PMID: 17113951 DOI: 10.1016/j.brainresbull.2006.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 08/16/2006] [Accepted: 09/07/2006] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to compare possible activation of the interposed and dentate cerebellar nuclei during finger, foot and tongue movements using functional magnetic resonance imaging (fMRI). Nineteen healthy control subjects performed sequential finger and repetitive tongue and foot movement tasks. Thin slices (2.5mm) were acquired of the cerebellar region containing the cerebellar nuclei with high spatial resolution (matrix size 128 x 128 x 10) using a Siemens 1.5T Sonata system. Use of an eight channel head coil provided better signal-to-noise-ratio compared to standard head coils. Only data of those 12 subjects were included in final statistical analysis, who showed significant activation of the cerebellar nuclei at least in one task. Cortical activations of the superior cerebellum were found in accordance to the known somatotopy of the human cerebellar cortex. Nuclear activations were most significant in the sequential finger movement task. Both interposed nuclei and ipsilateral dentate nucleus were activated. Dentate activation was present in the more caudal parts of both the dorsal and ventral nucleus. Activation overlapped with motor and non-motor domains of the dentate nucleus described by Dum and Strick [R.P. Dum, P.L. Strick, An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex, J. Neurophysiol. 89 (2003) 634-639] based on anatomical data in monkey. Tongue movement related activations were less extensive and overlapped with activations of caudal parts of the dentate nucleus in the finger movement task. No nuclear activation was seen following foot movements. The present findings show that both interposed and dentate nuclei are involved in sequential finger movements in humans. Interposed nucleus likely contributes to movement performance. Although no direct conclusions could be drawn based on the present data, different parts of the dentate nucleus may contribute to movement performance, planning and possible non-motor parts of the task.
Collapse
Affiliation(s)
- A Dimitrova
- Department of Neurology, University of Duisburg-Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Fisher BE, Boyd L, Winstein CJ. Contralateral cerebellar damage impairs imperative planning but not updating of aimed arm movements in humans. Exp Brain Res 2006; 174:453-66. [PMID: 16741716 DOI: 10.1007/s00221-006-0482-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
The specific motor control processes supported by the cerebellum and impaired with cerebellar damage remain unclear. The cerebellum has been implicated in both planning and updating of accurate movements. Previously, we used a statistical model to parcel aiming performance that was constrained by a timed-response paradigm into contributions attributed to a specified plan and feedforward updating. Here, we apply this procedure to determine the putative role of the cerebellum in planning and updating goal-directed aiming by comparing the performance of subjects with unilateral cerebellar stroke to controls. Subjects rapidly moved to targets in predictable or unpredictable conditions and cerebellar subjects used the contralesional limb to control for ipsilesional motor execution deficits. Displacement-derived movement velocity was used in the statistical model to determine the effect of planning and updating on accuracy. Compared to controls, the cerebellar group demonstrated errors in final position that were primarily determined by planning deficits. This finding is manifest in four ways: Cerebellar subjects (1) were less accurate than controls in both predictable and unpredictable conditions; (2) they showed minimal benefit from increased preparation time for target amplitude specification; (3) with ample time to plan direction, wrong direction response frequency was greater; and (4) final position was minimally determined by the plan. Because these deficits were found contralesional to the moving limb, the cerebellum's role in planning is not lateralized to one hemisphere but rather our findings suggest that cerebellar output affects motor planning for both upper limbs. Indeed, a lesion analysis showed that the dentate nucleus, an area implicated in planning motor strategies and the primary cerebellar output nucleus, was the only common region affected by our patient group with contralateral cerebellar strokes.
Collapse
Affiliation(s)
- B E Fisher
- Department of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar St, CHP 155, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
15
|
Elsinger CL, Harrington DL, Rao SM. From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage 2006; 31:1177-87. [PMID: 16540347 DOI: 10.1016/j.neuroimage.2006.01.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/24/2006] [Accepted: 01/30/2006] [Indexed: 11/16/2022] Open
Abstract
Action plans internally generated (IG) from memory are thought to be regulated by the supplementary motor area (SMA), whereas plans externally guided (EG) online using sensory cues are believed to be controlled by the premotor cortex. This theory was investigated in an event-related fMRI study that separated the time course of activation before and during movement to distinguish advance planning from online control. In contrast to prevailing theory, the SMA was not more important for online control of IG actions. EG movement was distinguished from IG movement by greater activation in a more distributed right hemisphere parietal-frontal network than previously reported. Comparisons between premovement and movement periods showed that frontostriatal networks are central for preparing actions before movement onset. However, unlike cortical and cerebellar regions, the basal ganglia exhibited planning-related activity before, but not during, movement. These findings indicate that the basal ganglia mediate planning and online control processes in different ways and suggest a specific role for the striatum in internally planning sequences of actions before they are implemented.
Collapse
Affiliation(s)
- C L Elsinger
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
16
|
Habas C, Cabanis EA. Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements. Neuroradiology 2006; 48:273-9. [PMID: 16465531 DOI: 10.1007/s00234-005-0037-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
We used functional magnetic resonance imagery (fMRI) to study cortical activation during index finger-thumb opposition of both hands using in-phase and out-of-phase modes. In-phase movements activated the sensorimotor cortex. During out-of-phase movements, activations were also observed in the supplementary motor area (SMA), in the cingulate motor area (CMA) and, less frequently, in the anterior cingulate cortex (ACC). As we have previously shown and confirmed in the present study, the same out-of-phase bimanual movements specifically activate the cerebellar second homunculus, leading us to postulate that the cerebellar second homunculus and medial wall motor areas participate in a circuit specifically involved in timing complex movements.
Collapse
Affiliation(s)
- Christophe Habas
- Service de NeuroImagerie, Hôpital des Quinze-Vingts, Paris, France.
| | | |
Collapse
|
17
|
Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of Left and Right Cerebellar rTMS with Procedural Learning. J Cogn Neurosci 2004; 16:1605-11. [PMID: 15601522 DOI: 10.1162/0898929042568488] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Increasing evidence suggests cerebellar involvement in procedural learning. To further analyze its role and to assess whether it has a lateralized influence, in the present study we used a repetitive transcranial magnetic stimulation interference approach in a group of normal subjects performing a serial reaction time task.
We studied 36 normal volunteers: 13 subjects underwent repetitive transcranial magnetic stimulation on the left cerebellum and performed the task with the right (6 subjects) or left (7 subjects) hand; 10 subjects underwent repetitive transcranial magnetic stimulation on the right cerebellum and performed the task with the hand ipsilateral (5 subjects) or contralateral (5 subjects) to the stimulation; another 13 subjects served as controls and were not submitted to repetitive transcranial magnetic stimulation; 7 of them performed the task with the right hand and 6 with the left hand. The main results show that interference with the activity of the lateral cerebellum induces a significant decrease of procedural learning: Interference with the right cerebellar hemisphere activity induces a significant decrease in procedural learning regardless of the hand used to perform the serial reaction time task, whereas left cerebellar hemisphere activity seems more linked with procedural learning through the ipsilateral hand.
In conclusion, the present study shows for the first time that a transient interference with the functions of the cerebellar cortex results in an impairment of procedural learning in normal subjects and it provides new evidences for interhemispheric differences in the lateral cerebellum.
Collapse
|
18
|
Habas C, Axelrad H, Cabanis EA. The cerebellar second homunculus remains silent during passive bimanual movements. Neuroreport 2004; 15:1571-4. [PMID: 15232285 DOI: 10.1097/01.wnr.0000133970.53139.e3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a previous study, we showed that the second homunculus in lobule VIII of the cerebellum is activated during bilateral out-of-phase index finger-thumb opposition, implying a role in motor coordination. However, several recent studies indicate that the cerebellum could be more actively involved in sensory information processing during movement. Therefore, as lobule VIII activation could involve either a motor or a proprioceptive component, these two components must be distinguished and their relative contribution must be determined. Using functional imaging, we studied cerebellar activation of the same region during passively induced index finger-thumb opposition of both hands in in-phase and out-of-phase modes, thereby excluding the voluntary movement component. No significant activation was detected in lobule VIII. Intense activation of lobule VIII, obtained during active, out-of-phase bimanual movements, therefore does not involve a significant sensory component related to direct proprioceptive feedback. This result is strongly in favour of the specific recruitment of lobule VIII during out-of-phase movements related more to complex motor timing than to sensory function.
Collapse
Affiliation(s)
- C Habas
- Laboratoire de Neurobiologie du Cervelet, Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
19
|
Habas C, Axelrad H, Nguyen TH, Cabanis EA. Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport 2004; 15:595-9. [PMID: 15094459 DOI: 10.1097/00001756-200403220-00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used fMRI to study cerebellar activation during index finger-thumb opposition of the right hand and index finger-thumb opposition of both hands in in-phase and out-of-phase modes. The right hand movement activates the contralateral anterior lobe of the cerebellum. During bimanual in-phase movements, this activity pattern becomes bilateral. More interestingly, bilateral out-of-phase movements recruit the cerebellar posterior lobe VIII, which likely corresponds to the second homunculus. As out-of-phase movements differ from the in-phase movements only by their temporal complexity and their attentional awareness, this study demonstrates the preferential involvement of the cerebellar second homunculus in the control of complex movements.
Collapse
Affiliation(s)
- C Habas
- Laboratoire de Neurobiologie du Cervelet, Faculté de Médecine Pitié-Salpêtrière, 91 Bd. de l'Hôpital, 75013 Paris, France.
| | | | | | | |
Collapse
|
20
|
Lewis SM, Jerde TA, Tzagarakis C, Georgopoulos MA, Tsekos N, Amirikian B, Kim SG, Uğurbil K, Georgopoulos AP. Cerebellar activation during copying geometrical shapes. J Neurophysiol 2004; 90:3874-87. [PMID: 14665685 DOI: 10.1152/jn.00009.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied functional MRI activation in the cerebellum during copying 9 geometrical shapes (equilateral triangle, isosceles triangle, square, diamond, vertical trapezoid, pentagon, hexagon, circle, and vertical lemniscate). Twenty subjects were imaged during 3 consecutive 45-s periods (rest, visual presentation, and copying). First, there was a positive relation between cerebellar activation and the peak speed of individual movements. This effect was strongest in the lateral and posterior ipsilateral cerebellum but it was also present in the paramedian zones of both cerebellar hemispheres and in the vermis. A finer grain analysis of the relations between the time course of the blood oxygenation level-dependent activation and movement parameters revealed a significant relation to hand position and speed but not to acceleration. Second, there was a significant relation between the intensity of voxel activation during visual presentation and the speed of the upcoming movement. The spatial distribution of these voxels was very similar to that of the voxels activated during copying, indicating that the cerebellum might be involved in motor rehearsal, in addition to its role during movement execution. Finally, a factor analysis of the intensity of activated voxels in the ipsilateral cerebellum during copying (adjusted for the speed effect) extracted 3 shape factors. Factor 1 reflected "roundness," factor 2 "upward pointing," and factor 3 "pointing (up or down) and elongation." These results link cerebellar activation to more global, spatial aspects of copying.
Collapse
Affiliation(s)
- Scott M Lewis
- Brain Sciences Center, Minneapolis Veterans Affairs Medical Center, Minneapolis 55417, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kinomoto K, Takayama Y, Watanabe T, Kawasaki T, Onishi K, Yagi H, Akiguchi I, Kuriyama M. The mechanisms of recovery from cerebellar infarction: an fMRI study. Neuroreport 2004; 14:1671-5. [PMID: 14512835 DOI: 10.1097/00001756-200309150-00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with cerebellar infarction frequently make an excellent functional recovery. However, the mechanisms of functional recovery from cerebellar infarction remain unclear. Thus, functional MRI was used to investigate these mechanisms in six right-handed patients with complete recovery after cerebellar infarction, and nine right-handed normal subjects. The non-infarcted side of the cerebellum and the sensorimotor cortex contralateral to the non-infarcted side of the cerebellum were significantly activated during the infarcted-side hand movement. In the infarcted side of the cerebellum, intact regions were activated. Our results indicate that recovery from cerebellar infarction depends on reorganization in the infarcted side of the cerebellum, and recruitment of the cerebellocortical loop involving the cerebrum ipsilateral to the movement and the cerebellum contralateral to the movement.
Collapse
Affiliation(s)
- Keiko Kinomoto
- Department of Speech Physiology, Graduate School of medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hashimoto I, Kimura T, Tanosaki M, Iguchi Y, Sekihara K. Muscle afferent inputs from the hand activate human cerebellum sequentially through parallel and climbing fiber systems. Clin Neurophysiol 2003; 114:2107-17. [PMID: 14580608 DOI: 10.1016/s1388-2457(03)00233-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Spatio-temporal response characteristics of the human cerebellum to median nerve stimulation (MNS) were studied with the use of a whole-head magnetoencephalographic (MEG) system covering the cerebellum and upper cervical spine. METHODS Neuromagnetic responses from the cerebellum were recorded following electric stimulation of the right median nerve in 12 subjects. In 6 out of 12 subjects, the responses to the left median nerve and to the right index or middle finger stimulation were also recorded. RESULTS The medial part of the cerebellum (spinocerebellum) was activated by MNS. In contrast, there were no responses from the cerebellum to the finger stimulation, suggesting that muscle afferent inputs are the source of cerebellar activation for MNS. The cerebellar responses consisted of 3 or 4 components of alternating polarity within 90 ms post-stimulus: the current direction for the first component was from the depth to the surface of the anterior lobe. CONCLUSIONS From the timing and current direction, we speculate that the 4 components reflect, respectively, (1) excitatory postsynaptic potentials (EPSPs) of granule cells, (2) Purkinje cell EPSPs at the distal dendrites driven by parallel fibers, (3) Purkinje cell EPSPs at the soma and the proximal dendrites mediated by climbing fibers and (4) second Purkinje cell EPSPs at the distal dendrites driven by parallel fibers. SIGNIFICANCE We first visualized serial activation of the human spinocerebellum following MNS noninvasively with MEG.
Collapse
Affiliation(s)
- Isao Hashimoto
- Human Information Systems Laboratory, Tokyo Office, Kanazawa Institute of Technology, 6-8-7 Akasaka, Minato-ku, Tokyo 107-0052, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Limb ataxia is seen as a sign of ipsilateral cerebellar dysfunction. However, imaging studies have shown a bilateral cerebellar activation during unilateral hand movements. We questioned whether unilateral cerebellar lesions affect pointing movements not only of the ipsilateral hand but also of the contralateral hand. Horizontal saccadic pointing movements of 10 patients with unilateral cerebellar infarctions (infarctions of the posterior inferior or superior cerebellar artery) were compared with those of 19 controls. The movements were recorded with an infrared video motion analysis system. The peak velocity, time lag, and dysmetria of the ipsilateral and contralateral hands were calculated. Patients with cerebellar infarctions had significantly slower movements not only for the ipsilateral but also for the contralateral arm. The time lag of these movements in patients was also significantly larger for both arms. In contrast, there was no significant difference in dysmetria at the endpoints. These findings indicate that both ipsilateral and contra-lateral movements of patients with unilateral cerebellar lesions are slightly impaired.
Collapse
Affiliation(s)
- Ilka Immisch
- Department of Neurology, Technical University, Munich, Germany
| | | | | |
Collapse
|
24
|
Liu H, Hall WA, Truwit CL. The roles of functional MRI in MR-guided neurosurgery in a combined 1.5 Tesla MR-operating room. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 85:127-35. [PMID: 12570148 DOI: 10.1007/978-3-7091-6043-5_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE During MR-guided neurosurgical procedures performed in a combined 1.5 Tesla MR-operating room (MR-OR), we have successfully implemented and validated a functional MRI (fMRI) scheme for efficiently localizing eloquent functional areas and assessing their proximity to a lesion volume immediately prior to the craniotomy. METHODS The fMRI examination consists of a dynamical blood oxygenation level dependent (BOLD) MR imaging technique and a task paradigm that is designed to activate the brain area of interest. The functional imaging technique was based on gradient-echo (GE) echo-planar imaging (EPI) (TR/TE = 2000-3000/40-50 msec). The motor task paradigm involves a periodic movement task, such as alternating between thumb and the other four fingers as a finger-tapping task, while the language involved a covert repeat of a series of words given as a task stimulus. While patient is performing the task, a dynamical fMRI was performed concurrently covering the volume of interest every 2 or 3 sec. Also, we have used a temporal series averaging (TSA) method for correcting the background drift in the raw fMRI signal, and developed a scheme for presenting fMRI results to neurosurgeons in an intuitive 3-dimensional volume-rendered display format. RESULTS By using the fMRI scheme, we have successfully performed sixteen fMRI examinations immediately prior to neurosurgery in the combined MR-OR on the same surgical table to localize various eloquent functional areas of interests. TSA was successful in reducing the background drift in the fMRI time course data, and the 3-dimensional volume-rendered display was proven effective in presenting the resulting brain activations to neurosurgeons. More importantly, in three representative cases (one biopsy and two tumor resections) presented, the information provided by fMRI have indeed contributed significantly in making the optimal surgical decisions prior to craniotomy. CONCLUSIONS Intra-operative fMRI can be an indispensable tool for determining the location of a neighboring eloquent functional area of concern in reference to a targeted lesion. Information provided by fMRI has helped in improving the outcome and clinician confidence of all surgeries performed.
Collapse
Affiliation(s)
- H Liu
- Center for MR-guided Therapy, Department of Radiology, University of Minnesota, SE, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
25
|
Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS. Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 15:250-60. [PMID: 12527099 DOI: 10.1016/s0926-6410(02)00197-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neural (blood oxygenation level dependent) correlates of executed and imagined finger sequences, both unimanual and bimanual, were studied in adult right-handed volunteers using functional magnetic resonance imaging (fMRI) of the entire brain. The finger to thumb opposition tasks each consisted of three conditions, two unimanual and one bimanual. Each experimental condition consisted of overt movement of the fingers in a prescribed sequence and imagery of the same task. An intricate network consisting of sensorimotor cortex, supplementary motor area (SMA), superior parietal lobule and cerebellum was identified when the tasks involved both planning and execution. During imagery alone, however, cerebellar activity was largely absent. This apparent decoupling of sensorimotor cortical and cerebellar areas during imagined movement sequences, suggests that cortico-cerebellar loops are engaged only when action sequences are both intended and realized. In line with recent models of motor control, the cerebellum may monitor cortical output and feed back corrective information to the motor cortex primarily during actual, not imagined, movements. Although parietal cortex activation occurred during both execution and imagery tasks, it was most consistently present during bimanual action sequences. The engagement of the superior parietal lobule appears to be related to the increased attention and memory resources associated, in the present instance, with coordinating difficult bimanual sequences.
Collapse
Affiliation(s)
- Dinesh G Nair
- Center For Complex Systems and Brain Sciences, Florida Atlantic University, 777, Glades Road, Boca Raton, FL 33431, USA
| | | | | | | | | |
Collapse
|
26
|
Nitschke MF, Stavrou G, Melchert UH, Erdmann C, Petersen D, Wessel K, Heide W. Modulation of cerebellar activation by predictive and non-predictive sequential finger movements. CEREBELLUM (LONDON, ENGLAND) 2003; 2:233-40. [PMID: 14509573 DOI: 10.1080/14734220310005701] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated the modulation of cerebellar activation by predictive and non-predictive sequential finger movements. It is hypothesized that the prediction of desired movement sequences and adaptation to new movement parameters is mediated by the cerebellum. Using functional MRI at 1.5 T, seven normal subjects performed sequential finger to thumb opposition movements, either in predictive (repeatedly 2,3,4,5) or non-predictive (randomized) fashion at a constant frequency of 1 Hz. Performance and error rates were monitored by simultaneous recording of the finger movements. Predictive sequential finger opposition movements activated a cerebellar network including the lobuli IV-VI ipsilateral to the movements, the contralateral lobuli IV-VI, the vermis, and lobuli VIIB-VIII ipsilaterally. Non-predictive compared to predictive finger opposition movements activated a broader area within the ipsi- and contralateral anterior cerebellum, lobuli IV-VI, the vermis, and the ipsilateral lobuli VIIB-VIII. Additional activation foci were found in the contralateral lobuli VIIA and VIIB-VIII. Our study demonstrates a modulated information processing within the cerebellar network dependent on the predictability of movement sequences.
Collapse
|
27
|
Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser TK, Goldberg AP, Hanley DF. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp 2002; 17:131-40. [PMID: 12353246 PMCID: PMC6872124 DOI: 10.1002/hbm.10058] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It was shown recently that functional activation across brain motor areas during locomotion and foot movements are similar but differ substantially from activation related to upper extremity movement (Miyai [2001]: Neuroimage 14:1186-1192). The activation pattern may be a function of the behavioral context of the movement rather than of its mechanical properties. We compare motor system activation patterns associated with isolated single-joint movement of corresponding joints in arm and leg carried out in equal frequency and range. Eleven healthy volunteers underwent BOLD-weighted fMRI while performing repetitive elbow or knee extension/flexion. To relate elbow and knee activation to the well-described patterns of finger movement, serial finger-to-thumb opposition was assessed in addition. After identifying task-related voxels using statistical parametric mapping, activation was measured in five regions of interest (ROI; primary motor [M1] and somatosensory cortex [S1], premotor cortex, supplementary motor area [SMA] divided into preSMA and SMA-proper, and cerebellum). Differences in the degree of activation across ROIs were found between elbow and knee movement. SMA-proper activation was prominent for knee, but almost absent for elbow movement (P < 0.05); finger movement produced small but constant SMA-proper activation. Ipsilateral M1 activation was detected during knee and finger movement, but was absent for the elbow task (P < 0.05). Knee movement showed less lateralization in M1 and S1 than other tasks (P < 0.05). The data demonstrate that central motor structures contribute differently to isolated elbow and knee movement. Activation during knee movement shows similarities to gait-related activation patterns.
Collapse
Affiliation(s)
- Andreas R Luft
- Department of Neurology, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci 2002; 14:902-12. [PMID: 12191457 DOI: 10.1162/089892902760191126] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A variety of data indicate that the cerebellum participates in perceptual tasks requiring the precise representation of temporal information. Access to the word form of a lexical item requires, among other functions, the processing of durational parameters of verbal utterances. Therefore, cerebellar dysfunctions must be expected to impair word recognition. In order to specify the topography of the assumed cerebellar speech perception mechanism, a functional magnetic resonance imaging study was performed using the German lexical items "Boden" ([bodn], Engl. "floor") and "Boten" ([botn], "messengers") as test materials. The contrast in sound structure of these two lexical items can be signaled either by the length of the wordmedial pause (closure time, CLT; an exclusively temporal measure) or by the aspiration noise of wordmedial "d" or "t" (voice onset time, VOT; an intrasegmental cue). A previous study found bilateral cerebellar disorders to compromise word recognition based on CLT whereas the encoding of VOT remained unimpaired. In the present study, two series of "Boden - Boten" utterances were resynthesized, systematically varying either in CLT or VOT. Subjects had to identify both words "Boden" and "Boten" by analysis of either the durational parameter CLT or the VOT aspiration segment. In a subtraction design, CLT categorization as compared to VOT identification (CLT - VOT) yielded a significant hemodynamic response of the right cerebellar hemisphere (neocerebellum Crus I) and the frontal lobe (anterior to Broca's area). The reversed contrast ( VOT - CLT) resulted in a single activation cluster located at the level of the supratemporal plane of the dominant hemisphere. These findings provide first evidence for a distinct contribution of the right cerebellar hemisphere to speech perception in terms of encoding of durational parameters of verbal utterances. Verbal working memory tasks, lexical response selection, and auditory imagery of word strings have been reported to elicit activation clusters of a similar location. Conceivably, representation of the temporal structure of speech sound sequences represents the common denominator of cerebellar participation in cognitive tasks acting on a phonetic code.
Collapse
Affiliation(s)
- Klaus Mathiak
- MEG-Zentrum, University of Tübingen, Otfried-Müller-Strasse 47, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
29
|
Nitschke MF, Krüger G, Bruhn H, Klein C, Gehrking E, Wessel K, Frahm J, Vieregge P. Voluntary palatal tremor is associated with hyperactivation of the inferior olive: a functional magnetic resonance imaging study. Mov Disord 2001; 16:1193-5. [PMID: 11748763 DOI: 10.1002/mds.1202] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Voluntary palatal tremor in a patient with essential palatal tremor induced activation predominantly within regions corresponding to the inferior olive, adjacent brainstem, and dentate nuclei. Finger movements elicited only ipsilateral lobular cerebellar activation, suggesting a dysfunctional nuclear activation by palatal tremor.
Collapse
Affiliation(s)
- M F Nitschke
- Department of Neurology, Medical University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 2001; 13:55-73. [PMID: 11346886 PMCID: PMC6871814 DOI: 10.1002/hbm.1025] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Accepted: 12/19/2000] [Indexed: 11/12/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was employed to determine areas of activation in the cerebellar cortex in 46 human subjects during a series of motor tasks. To reduce the variance due to differences in individual anatomy, a specific transformational procedure for the cerebellum was introduced. The activation areas for movements of lips, tongue, hands, and feet were determined and found to be sharply confined to lobules and sublobules and their sagittal zones in the rostral and caudal spino-cerebellar cortex. There was a clear symmetry mirroring at the midline. The activation mapped as two distinct homunculoid representations. One, a more extended representation, was located upside down in the superior cerebellum, and a second one, doubled and smaller, in the inferior cerebellum. The two representations were remarkably similar to those proposed by Snider and Eldred [1951] five decades ago. In the upper representation, an intralimb somatotopy for the right elbow, wrist, and fingers was revealed. The maps seem to confirm earlier electrophysiological findings of sagittal zones in animals. They differ, however, from micromapping reports on fractured somatotopic maps in the cerebellar cortex of mammals. We assume that the representations that we observed are not solely the result of spatial integration of hemodynamic events underlying the fMRI method and may reflect integration of afferent peripheral and central information in the cerebellar cortex.
Collapse
Affiliation(s)
- W Grodd
- Section Experimental Magnetic Resonance of CNS, Department of Neuroradiology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
31
|
Miki A, Liu GT, Raz J, Englander SA, Bonhomme GR, Aleman DO, Modestino EJ, Liu CS, Haselgrove JC. Visual activation in functional magnetic resonance imaging at very high field (4 Tesla). J Neuroophthalmol 2001; 21:8-11. [PMID: 11315986 DOI: 10.1097/00041327-200103000-00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Functional magnetic resonance imaging (fMRI) at very high field strengths provides functional brain mapping with the enhanced signal to noise ratio and the larger blood oxygenation level-dependent (BOLD) effect. We report activated areas in the standard space detected by fMRI at 4 Tesla (T) during simple visual stimulation. MATERIALS AND METHODS Twelve healthy young subjects were scanned using a 4 T scanner during binocular flashing visual stimulation. Functional images were realigned to the first scan and then spatially normalized. Individual and group data analyses were performed to identify areas of visual activation. RESULTS Activation of the bilateral primary visual cortex (V1/V2) was observed along the entire calcarine fissure in all subjects. The activated area extended to the extrastriate cortex in all subjects. Activation of the bilateral lateral geniculate nucleus (LGN) was detected in all subjects. The group data showed activation of the bilateral primary visual cortex and the bilateral lateral geniculate nucleus. CONCLUSIONS Robust activation of the vision-related areas was successfully obtained in all subjects using a 4 T magnetic resonance scanner. These results suggest that fMRI at very high field strengths may be effective in showing visual system physiology, and that it can be a promising method to assess visual function of human subjects.
Collapse
Affiliation(s)
- A Miki
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Joliot M, Papathanassiou D, Mellet E, Quinton O, Mazoyer N, Courtheoux P, Mazoyer B. FMRI and PET of self-paced finger movement: comparison of intersubject stereotaxic averaged data. Neuroimage 1999; 10:430-47. [PMID: 10493901 DOI: 10.1006/nimg.1999.0483] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the intersubject-averaged functional anatomy of self-paced right index finger movement as revealed by (15)O water positron emission tomography (PET) and blood oxygen level-dependent functional magnetic resonance imaging (FMRI) at 1.5 T. Image data sets were acquired with both techniques on a group of eight subjects, spatially normalized in the stereotaxic space and subsequently processed in order to get identical smoothness and degrees of freedom. Intersubject-averaged PET and FMRI activation maps were found congruent in the left primary sensorimotor area (PSM), bilateral supplementary motor area, bilateral supra marginalis gyri, left operculum, left inferior parietal lobule, right middle frontal gyrus, and right cerebellum. In those regions the mean distance between PET and FMRI local maxima was 7.4 mm. FMRI detected additional activations in the right precentral gyrus, right rolandic operculum, right inferior parietal lobule, and bilateral insula, whereas PET demonstrated a higher detection sensitivity at the deep nuclei level. PET and FMRI percentage signal variations were found linearly related by a factor around 10, both within the PSM and across a set of distributed local extrema. However, in most cases, FMRI was more sensitive than PET, as assessed by t values. Finally the pattern of deactivations was markedly dissimilar between the two techniques, possibly due to differences in the "Rest" control task.
Collapse
Affiliation(s)
- M Joliot
- Groupe d'Imagerie Neurofonctionelle, UPRES EA 2127, Université de Caen & CEA LRC 13V, GIP Cyceron, 14074 Caen Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Peeters RR, Verhoye M, Vos BP, Van Dyck D, Van Der Linden A, De Schutter E. A patchy horizontal organization of the somatosensory activation of the rat cerebellum demonstrated by functional MRI. Eur J Neurosci 1999; 11:2720-30. [PMID: 10457168 DOI: 10.1046/j.1460-9568.1999.00687.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blood oxygenation level dependent contrast (BOLD) functional MRI (fMRI) responses, in a 7-T magnet, were observed in the cerebellum of alpha-chloralose anaesthetized rats in response to innocuous electrical stimulation of a forepaw or hindpaw. The responses were imaged in both coronal and sagittal slices which allowed for a clear delineation and localization of the observed activations. We demonstrate the validity of our fMRI protocol by imaging the responses in somatosensory cortex to the same stimuli and by showing reproducibility of the cerebellar responses. Widespread bilateral activations were found with mainly a patchy and mediolateral band organization, more pronounced ipsilaterally. Possible parasagittal bands were observed only in contralateral lobule VI. There was no overlap between the cerebellar activations caused by forepaw and hindpaw stimuli. The overall horizontal organization of these responses was quite remarkable. For both stimulation paradigms most of the activation patches were positioned in either a rostral or caudal broad plane running anteroposteriorly through both anterior and posterior cerebellum. The rostral planes were completely separated, with the forepaw activation closer to the surface, while the caudal plane was common to both stimulation protocols. We relate our findings to the known projection patterns of spinocerebellar and cuneocerebellar mossy fibres, and to human fMRI studies.
Collapse
Affiliation(s)
- R R Peeters
- Bio Imaging Lab, University of Antwerp, RUCA, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Uğurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A. Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 1999; 354:1195-213. [PMID: 10466146 PMCID: PMC1692632 DOI: 10.1098/rstb.1999.0474] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An avidly pursued new dimension in magnetic resonance imaging (MRI) research is the acquisition of physiological and biochemical information non-invasively using the nuclear spins of the water molecules in the human body. In this trial, a recent and unique accomplishment was the introduction of the ability to map human brain function non-invasively. Today, functional images with subcentimetre resolution of the entire human brain can be generated in single subjects and in data acquisition times of several minutes using 1.5 tesla (T) MRI scanners that are often used in hospitals for clinical purposes. However, there have been accomplishments beyond this type of imaging using significantly higher magnetic fields such as 4 T. Efforts for developing high magnetic field human brain imaging and functional mapping using MRI (fMRI) were undertaken at about the same time. It has been demonstrated that high magnetic fields result in improved contrast and, more importantly, in elevated sensitivity to capillary level changes coupled to neuronal activity in the blood oxygenation level dependent (BOLD) contrast mechanism used in fMRI. These advantages have been used to generate, for example, high resolution functional maps of ocular dominance columns, retinotopy within the small lateral geniculate nucleus, true single-trial fMRI and early negative signal changes in the temporal evolution of the BOLD signal. So far these have not been duplicated or have been observed as significantly weaker effects at much lower field strengths. Some of these high-field advantages and accomplishments are reviewed in this paper.
Collapse
Affiliation(s)
- K Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
35
|
Matthews PM, Clare S, Adcock J. Functional magnetic resonance imaging: clinical applications and potential. J Inherit Metab Dis 1999; 22:337-52. [PMID: 10407771 DOI: 10.1023/a:1005535102667] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Demonstration that contrast in magnetic resonance images can be generated based on differences in blood oxygenation has led to an explosion of interest in so-called functional magnetic resonance imaging (FMRI). FMRI can be used to map increases in blood flow that accompany local synaptic activity in the brain. The technique has proved remarkably sensitive and has been used to map a broad range of cognitive, motor and sensory processes in the brain entirely non-invasively. More recently, efforts have been made to extend this technique to the analysis of clinical problems. A major application is for presurgical localization of cerebral functions, e.g. in the surgical treatment of epilepsy. The technique also is beginning to provide information on functional consequences of abnormal brain development. Perhaps most exciting are applications to neurological impairments that are not associated with structural abnormalities, such as learning problems, dyslexia and movement disorders. It is possible that useful applications of FMRI may be found for directly mapping sites of action of CNS-active drugs. Although the extent of the potential clinical applications of this new brain mapping technique is not clear, the widespread availability of MRI scanners suggests that the technique should in some form soon become a routine tool in major neuroradiological centres.
Collapse
Affiliation(s)
- P M Matthews
- Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headington, UK.
| | | | | |
Collapse
|
36
|
Nitschke MF, Hahn C, Melchert UH, Handels H, Wessel K. Activation of the cerebellum by sensory finger stimulation and by finger opposition movements. A functional magnetic resonance imaging study. J Neuroimaging 1998; 8:127-31. [PMID: 9664846 DOI: 10.1111/jon199883127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of the ipsilateral anterior lobe of the cerebellum by means of hand movements by humans is a well-known phenomenon, but the cerebellar encoding of sensory information has not been well established. The authors delineated the representation of sensory stimulation of fingers in the anterior lobe of the cerebellum using functional magnetic resonance imaging sensitized to changes in blood oxygenation and compared these areas to the regions activated by means of finger opposition movements. Activation was determined by means of pixel-by-pixel correlation of the signal intensity time course with a reference waveform equivalent to the stimulus protocol. All subjects showed significant activation of the anterior lobe of the cerebellum, mainly located in the ipsilateral Larsell lobules IV-V and less consistent in the vermis in relation to sensory finger stimulation. Among some subjects the authors also found activation in the anterior lobe on the contralateral side. The finger movements activated regions that overlapped with the areas activated by sensory finger stimulation but showing a larger and more intense activation pattern.
Collapse
Affiliation(s)
- M F Nitschke
- Department of Neurology, Medical University of Lübeck, Germany
| | | | | | | | | |
Collapse
|
37
|
Jones RA, Schirmer T, Lipinski B, Elbel GK, Auer DP. Signal undershoots following visual stimulation: a comparison of gradient and spin-echo BOLD sequences. Magn Reson Med 1998; 40:112-8. [PMID: 9660561 DOI: 10.1002/mrm.1910400116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gradient-echo (GRE) and spin-echo (SE) EPI BOLD sequences were used to quantitate the effect of visual stimulation. Both sequences showed a positive BOLD response during stimulation and a negative BOLD response in the interstimulation intervals. The relaxation rate changes during stimulation were larger for the GRE sequence than for the SE sequence, whereas in the interstimulation intervals they were not significantly different. In both cases, the ratio of the GRE/SE relaxation rate changes were consistent with BOLD effects in larger vessels despite the well-known lower sensitivity of the SE sequence to the extravascular component of the BOLD effect in larger vessels. The most probable explanation of this result is that a significant fraction of the observed changes originated from the intravascular component of the BOLD effect. The SE sequence depicted smaller areas of activation than the GRE sequence with more than 85% of the pixels being depicted as significant by the SE sequence being also significant in the GRE activation maps. However, for the reverse comparison, an overlap of only 35% was observed, with many of the strongly correlated GRE pixels showing weak correlations in the corresponding SE activation image. Our results, together with the fact that signal undershoots have not been observed by groups using MR sequences that measure absolute flow changes for similar stimulation paradigms, suggest that the undershoot may be due to alterations in the blood volume and/or hematocrit during stimulation that normalize at a slower rate than the changes in blood flow after the cessation of the stimulation, leading to a poststimulation signal undershoot.
Collapse
Affiliation(s)
- R A Jones
- Max Planck Inst. für Psychiatrie, München, Germany
| | | | | | | | | |
Collapse
|
38
|
Perciavalle V, Bosco G, Poppele RE. Spatial organization of proprioception in the cat spinocerebellum. Purkinje cell responses to passive foot rotation. Eur J Neurosci 1998; 10:1975-85. [PMID: 9753085 DOI: 10.1046/j.1460-9568.1998.00212.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examines the spinocerebellar locations of Purkinje cells that responded to passive foot rotations at the ankle joint in anaesthetized cats. Using a novel approach for mapping the locations of recorded cells from several animals onto an unfolded two-dimensional representation of the cortex, we found that cells distributed throughout the anterior-posterior extent of the spinocerebellar cortex, except in the most medial parts corresponding to zones a and b, were responsive to ankle joint rotation. The cell distributions revealed a clustering according to their response amplitudes, which showed evidence for both parasagittal and transverse banding.
Collapse
Affiliation(s)
- V Perciavalle
- Department of Physiological Sciences, University of Catania, Italy
| | | | | |
Collapse
|
39
|
Reichenbach JR, Feiwell R, Kuppusamy K, Bahn M, Haacke EM. Functional magnetic resonance imaging of the basal ganglia and cerebellum using a simple motor paradigm. Magn Reson Imaging 1998; 16:281-7. [PMID: 9621969 DOI: 10.1016/s0730-725x(97)00276-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of cortical and subcortical motor areas of the brain, including primary motor cortex, supplementary motor area, basal ganglia and cerebellum, were successfully investigated in seven right-handed, normal volunteers during a simple, rapid, thumb flexion-extension task using functional magnetic resonance imaging. A multi-slice echo-planar imaging sequence was used to cover the entire brain. A signal increase varying from 2% to 6% was observed for the different regions involved in the motor task. Moving the non-dominant thumb was associated with a more bilateral activation pattern in both putamen and cerebellar regions. This study demonstrates the capability of functional magnetic resonance imaging to delineate simultaneously many activated brain areas that are commonly thought to be involved in the performance of motor tasks.
Collapse
Affiliation(s)
- J R Reichenbach
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
40
|
Van Oostende S, Van Hecke P, Sunaert S, Nuttin B, Marchal G. FMRI studies of the supplementary motor area and the premotor cortex. Neuroimage 1997; 6:181-90. [PMID: 9344822 DOI: 10.1006/nimg.1997.0287] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain activation patterns associated with three motor tasks, differing in the mode of movement selection, were studied in seven right-handed subjects, using functional magnetic resonance imaging (fMRI). The tasks consisted of sequences of finger movements in which the next finger was selected (i) according to a fixed sequence (FIX), (ii) in response to an external sensory cue (RAND), or (iii) on the basis of free, internal selection (SELF). Periods of hand relaxation (REST) alternating with the tasks served as a control. Functional maps resulting from comparison of the motor tasks with REST reveal activation in primary sensorimotor cortex, medial and lateral premotor areas, cingulate cortex, and parietal cortex. The task activation level, defined as the percentage MR signal increase for each task relative to REST, and the differential activation, defined as the percentage MR signal increase for RAND and SELF relative to FIX, were calculated in each area. All areas showed a higher activation level for RAND and SELF than for FIX. A significant difference in activation level or differential activation between SELF and RAND was found in the posterior part of the superior frontal sulcus, in a part of the premotor cortex on the lateral brain surface, in the anterior cingulate motor cortex, and in the posterior part of the superior parietal cortex. The high-resolution and single-subject approach, provided by fMRI, allowed the distinguishing of multiple foci in medial frontal areas, premotor cortex, and parietal cortex, reflecting the functional heterogeneity of these areas suggested by previous studies.
Collapse
Affiliation(s)
- S Van Oostende
- Department of Radiology, University Hospital Gasthuisberg, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
The current technical and methodological status of functional magnetic resonance imaging (fMRI) is reviewed. The mechanisms underlying the effects of deoxyhemoglobin concentration and cerebral blood flow changes are discussed, and methods for monitoring these changes are described and compared. Methods for post-processing fMRI data are outlined. Potential problems and solutions related to vessels and motion are discussed in detail.
Collapse
Affiliation(s)
- S G Kim
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | |
Collapse
|
43
|
Affiliation(s)
- E Courchesne
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
44
|
Abstract
Recent autopsy and/or quantitative magnetic resonance imaging studies of autistic patients have identified agenesis of the superior olive, dysgenesis of the facial nucleus, reduced numbers of Purkinje neurons, hypoplasia of the brainstem and posterior cerebellum, and increased neuron-packing density of the medial, cortical and central nuclei of the amygdala and the medial septum. As neurogenesis occurs for these different neuron types during approximately the fifth week of gestation, the possibility is raised that this may be a 'window of vulnerability' for autism; the likely etiologic heterogeneity of autism suggests that other windows of vulnerability are also possible.
Collapse
Affiliation(s)
- E Courchesne
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
45
|
Yang QX, Dardzinski BJ, Li S, Eslinger PJ, Smith MB. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med 1997; 37:331-5. [PMID: 9055220 DOI: 10.1002/mrm.1910370304] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Short image acquisition times and sensitivity to magnetic susceptibility favor the use of gradient echo imaging methods in functional MRI (fMRI). However, magnetic susceptibility effects attributed to air-tissue interfaces also lead to severe signal loss in images of the large inferior frontal and lateral temporal cortices of the human brain, which renders these regions inaccessible to fMRI. The signal loss is caused by the local field gradients in the silce selection direction. A multigradient echo with magnetic susceptibility inhomogeneity compensation method (MGESIC) is proposed to overcome this problem. The MGESIC method effectively corrects the susceptibility artifacts and maintains the advantages of gradient echo methods to both BOLD sensitivity and fast image acquisition. The effectiveness of the MGESIC method is demonstrated by fMRI experimental results within the olfactory cortex.
Collapse
Affiliation(s)
- Q X Yang
- Department of Radiology (Center for NMR Research), Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
46
|
Wessel K, Nitschke MF. Cerebellar somatotopic representation and cerebro-cerebellar interconnections in ataxic patients. PROGRESS IN BRAIN RESEARCH 1997; 114:577-88. [PMID: 9193168 DOI: 10.1016/s0079-6123(08)63388-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Different methods of functional neuroimaging were used for studying somatotopic encoding of function in the cerebellum and for investigating cerebro-cerebellar interconnections in patients with cerebellar degeneration. fMRI showed, that the center of activation for hand function was located in the intermediate hemispheric portion of Larsell lobules H IV-V. Foot movements activated areas medial and anterior to the corresponding hand areas within Larsell lobules II-III. Changed function in motor cortices could be demonstrated in patients with cerebellar degeneration as compared to normal controls by recording movement-related cortical potentials (BP). In patients the motor potential was almost lacking and transcranial magnetic stimulation demonstrated enhancement of inhibitory mechanisms (prolonged postexcitatory inhibition) in the motor cortex. PET-findings suggested, that both effects are correlated to increased activity of inhibitory interneurons. Cerebellar patients showed increased activation in relation to movements in the SMA and basal ganglia and reduced activation in the cerebellum and lateral premotor areas. It could be speculated, that compensatory mechanisms are the reason for a stronger activation of the medial premotor system, including SMA, in patients with cerebellar degeneration. On the basis of our results it appears, that the cerebellum facilitates the lateral premotor system areas much more than it does the medial areas.
Collapse
Affiliation(s)
- K Wessel
- Department of Neurology, Medical University, Lübeck, Germany.
| | | |
Collapse
|
47
|
Ebner TJ, Fu Q. What features of visually guided arm movements are encoded in the simple spike discharge of cerebellar Purkinje cells? PROGRESS IN BRAIN RESEARCH 1997; 114:431-47. [PMID: 9193159 DOI: 10.1016/s0079-6123(08)63379-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T J Ebner
- Department of Neurosurgery, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
48
|
|
49
|
Rostrup E, Larsson HB, Toft PB, Garde K, Ring PB, Henriksen O. Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain. Acta Radiol 1996; 37:813-22. [PMID: 8915299 DOI: 10.1177/02841851960373p276] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate changes in the regional cerebral blood volume (rCBV) in human subjects during rest and hypercapnia by MR imaging, and to compare the results from contrast-enhanced and noncontrast-enhanced susceptibility-weighted imaging. MATERIAL AND METHODS Five healthy volunteers (aged 24-29 years) were studied during inhalation of atmospheric air and 7% CO2. A bolus injection of Gd-DTPA was given during the acquisition of a series of susceptibility-weighted, fast gradient echo images (TR/TE = 27/22 ms). The images were converted to delta R2* maps, and CBV was calculated pixelwise by fitting a gamma-variate function to the data. The tissue concentration vs time curves were deconvoluted using an input function obtained by arterial sampling. RESULTS The ratio of gray to white matter CBV (1.9-2.5) as well as the fractional increase in rCBV during hypercapnia (about 30%) was found to be in accordance with results obtained by other methods. Noncontrast functional MR (fMR) imaging showed signal increases in gray matter, but also inconsistent changes in some white matter regions. CONCLUSION In this experiment, contrast-enhanced imaging seemed to show a somewhat higher sensitivity towards changes in cerebral hemodynamics than noncontrast-enhanced imaging. The results of the deconvolution analysis suggested that perfusion calculation by conventional tracer kinetic methods may be impracticable because of nonlinear effects in contrast-enhanced MR imaging.
Collapse
Affiliation(s)
- E Rostrup
- Danish Research Center of Magnetic Resonance, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
50
|
Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996; 272:545-7. [PMID: 8614803 DOI: 10.1126/science.272.5261.545] [Citation(s) in RCA: 530] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent evidence that the cerebellum is involved in perception and cognition challenges the prevailing view that its primary function is fine motor control. A new alternative hypothesis is that the lateral cerebellum is not activated by the control of movement per se, but is strongly engaged during the acquisition and discrimination of sensory information. Magnetic resonance imaging of the lateral cerebellar output (dentate) nucleus during passive and active sensory tasks confirmed this hypothesis. These findings suggest that the lateral cerebellum may be active during motor, perceptual, and cognitive performances specifically because of the requirement to process sensory data.
Collapse
Affiliation(s)
- J H Gao
- Research Imaging Center, Medical School, University of Texas Health Science Center, San Antonio, TX 78284-6240, USA
| | | | | | | | | | | |
Collapse
|