1
|
John NA, Solanky BS, De Angelis F, Parker RA, Weir CJ, Stutters J, Carrasco FP, Schneider T, Doshi A, Calvi A, Williams T, Plantone D, Monteverdi A, MacManus D, Marshall I, Barkhof F, Gandini Wheeler-Kingshott CAM, Chataway J. Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments. J Magn Reson Imaging 2024; 59:2192-2201. [PMID: 37787109 DOI: 10.1002/jmri.29017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND 1H-magnetic resonance spectroscopy (1H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). PURPOSE To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1H-MRS and their association with clinical disability in SPMS. STUDY-TYPE Longitudinal. POPULATION 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. FIELD STRENGTH/SEQUENCE 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. ASSESSMENT Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. STATISTICAL TESTS Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. RESULTS In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (β = -0.21); in the riluzole arm, GM Glx (β = -0.25) and Glx/tCr (β = -0.29) were reduced. Baseline tNAA(β = 0.22) and tNAA/tCr (β = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. DATA CONCLUSION 1H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Nevin A John
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Neurology, Monash Health, Melbourne, Australia
| | - Bhavana S Solanky
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados Carrasco
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Torben Schneider
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases (imaginEM), Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anita Monteverdi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - David MacManus
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
2
|
Nathoo N, Yong VW, Dunn JF. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NEUROIMAGE-CLINICAL 2014; 4:743-56. [PMID: 24936425 PMCID: PMC4053634 DOI: 10.1016/j.nicl.2014.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. MRI studies of pathology in various animal models of MS are reviewed. MRI phenotypes in animal models of MS and MS patients are compared. Animal MRI can increase understanding of links between MR and pathology in patients.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada
- Corresponding author at: Department of Radiology, University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
3
|
Wu WE, Kirov II, Zhang K, Babb JS, Joo CG, Ratai EM, González RG, Gonen O. Cross-sectional and longitudinal reproducibility of rhesus macaque brain metabolites: a proton MR spectroscopy study at 3 T. Magn Reson Med 2011; 65:1522-31. [PMID: 21337426 DOI: 10.1002/mrm.22867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/09/2022]
Abstract
Non-human primates are often used as preclinical model systems for (mostly diffuse or multi-focal) neurological disorders and their experimental treatment. Due to cost considerations, such studies frequently utilize non-destructive imaging modalities, MRI and proton MR spectroscopy ((1) H MRS). Cost may explain why the inter- and intra-animal reproducibility of the (1) H MRS observed brain metabolites, are not reported. To this end, we performed test-retest three-dimensional brain (1) H MRS in five healthy rhesus macaques at 3 T. Spectra were acquired from 224 isotropic (0.5 cm)(3) = 125 μL voxels, over 28 cm(3) (∼ 35%) of the brain, then individually phased, frequency aligned and summed into a spectrum representative of the entire volume of interest. This dramatically increases the metabolites' signal-to-noise ratios, while maintaining the (narrow) voxel linewidth. The results show that the average N-acetylaspartate, creatine, choline, and myo-inositol concentrations in the macaque brain are: 7.7 ± 0.5, 7.0 ± 0.5, 1.2 ± 0.1 and 4.0 ± 0.6 mM/g wet weight (mean ± standard deviation). Their inter-animal coefficients of variation (CV) are 4%, 4%, 6%, and 15%; and the longitudinal (intra-animal) CVs are lower still: 4%, 5%, 5%, and 4%, much better than the 22%, 33%, 36%, and 45% intra-voxel CVs, demonstrating the advantage of the approach and its utility for preclinical studies of diffuse neurological diseases in rhesus macaques.
Collapse
Affiliation(s)
- William E Wu
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Inflammation induced neurological handicap processes in multiple sclerosis: new insights from preclinical studies. J Neural Transm (Vienna) 2010; 117:907-17. [PMID: 20571836 DOI: 10.1007/s00702-010-0432-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/26/2010] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is described as originating from incompletely explained neuroinflammatory processes, dysfunction of neuronal repair mechanisms and chronicity of inflammation events. Blood-borne immune cell infiltration and microglia activation are causing both neuronal destruction and myelin loss, which are responsible for progressive motor deficiencies, organic and cognitive dysfunctions. MRI as a non-invasive imaging method offers various ways to visualise de- and remyelination, neuronal loss, leukocyte infiltration, blood-brain barrier modification and new sensors are emerging to detect inflammatory lesions at an early stage. We describe studies performed on experimental autoimmune encephalomyelitis (EAE) animal models of MS that shed new light on mechanisms of functional impairments to understand the neurological handicap in MS. We focus on examples of neuroinflammation-mediated inhibition of CNS repair involving adult neurogenesis in the sub-ventricular zone and hippocampus and such experimentally observed inhibitions could reflect deficient plasticity and activation of compensatory mechanisms in MS. In parallel with cognitive decline, organic deficits such as bladder dysfunction are described in most of MS patients. Neuropharmacological interventions, electrical stimulation of nerves, MRI and histopathology follow-up studies helped in understanding the operating events to remodel the neurological networks and to compensate the inflammatory lesions both in spinal cord and in cortical regions. At the molecular level, the local production of reactive products is a well-described phenomenon: oxidative species disturb cellular physiology and generate new molecular epitopes that could further promote immune reactions. The translational research from EAE animal models to MS patient cohorts helps in understanding the mechanisms of the neurological handicap and in development of new therapeutic concepts in MS.
Collapse
|
5
|
Pirko I, Johnson AJ. Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol 2008; 318:241-66. [PMID: 18219821 DOI: 10.1007/978-3-540-73677-6_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton density-weighted imaging, and we discuss the studies aimed at analyzing blood-brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.
Collapse
Affiliation(s)
- I Pirko
- Department of Neurology, Waddell Center for Multiple Sclerosis, University of Cincinnati, 260 Stetson St, Suite 2300, Cincinnati, OH 45267-0525, USA.
| | | |
Collapse
|
6
|
Abstract
The role of immune-mediated axonal injury in the induction of nonremitting functional deficits associated with multiple sclerosis is an area of active research that promises to substantially alter our understanding of the pathogenesis of this disease and modify or change our therapeutic focus. This review summarizes the current state of research regarding changes in axonal function during demyelination, provides evidence of axonal dysmorphia and degeneration associated with demyelination, and identifies the cellular and molecular effectors of immune-mediated axonal injury. Finally, a unifying hypothesis that links neuronal stress associated with demyelination-induced axonal dysfunction to immune recognition and immunopathology is provided in an effort to shape future experimentation.
Collapse
|
7
|
Broom KA, Anthony DC, Blamire AM, Waters S, Styles P, Perry VH, Sibson NR. MRI reveals that early changes in cerebral blood volume precede blood-brain barrier breakdown and overt pathology in MS-like lesions in rat brain. J Cereb Blood Flow Metab 2005; 25:204-16. [PMID: 15678123 DOI: 10.1038/sj.jcbfm.9600020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) is an established clinical tool for diagnosing multiple sclerosis (MS), the archetypal central nervous system neuroinflammatory disease. In this study, we have used a model of delayed-type hypersensitivity in the rat brain, which bears many of the hallmarks of an MS lesion, to investigate the development of MRI-detectable changes before the appearance of conventional indices of lesion development. In addition, we have correlated the MRI-detectable changes with the developing histopathology. Significant increases in regional cerebral blood volume (rCBV) preceded overt changes in blood-brain barrier (BBB) permeability, T2 relaxation and the diffusion properties of tissue water. Thus, changes in rCBV might be a more sensitive indicator of lesion onset than the conventional indices used clinically in MS patients, such as contrast enhancement. In addition, we show that BBB breakdown, and consequent edema formation, are more closely correlated with astrogliosis than any other histopathologic changes, while regions of T1 and T2 hypointensity appear to reflect hypercellularity.
Collapse
Affiliation(s)
- Kerry A Broom
- Experimental Neuroimaging Group, Department of Biochemistry, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Louise van der Weerd
- RCS Unit of Biophysics, Intitute of Child Health, University College London, United Kingdom
| | | | | | | |
Collapse
|
9
|
Abstract
The main aim of this review is to describe some of the many animal models that have proved to be valuable from a neuroimaging perspective. This paper complements other articles in this volume, with a focus on animal models of the pathology of human brain disorders for investigations with modern non-invasive neuroimaging techniques. The use of animal model systems forms a fundamental part of neuroscience research efforts to improve the prevention, diagnosis, understanding and treatment of neurological conditions. Without such models it would be impossible to investigate such topics as the underlying mechanisms of neuronal cell damage and death, or to screen compounds for possible anticonvulsant properties. The adequacy of any one particular model depends on the suitability of information gained during experimental conditions. It is important, therefore, to understand the various types of animal model available and choose an appropriate model for the research question.
Collapse
Affiliation(s)
- Mark F Lythgoe
- RCS Unit of Biophysics, Institute of Child Health, University College London, UK
| | | | | |
Collapse
|
10
|
Abstract
Transgenic and eugenic animals as small as 30 g can be studied non-invasively by radionuclides with resolutions of 1-2 mm, by MRI with resolution of 100 microns and by light fluorescence and bioluminescence with high sensitivities. The technologies of radionuclide emission, magnetic resonance imaging, magnetic resonance spectroscopy, optical tomography, optical fluorescence and optical bioluminescence are currently being applied to small-animal studies. These technologies and examples of their applications are reviewed in this chapter.
Collapse
Affiliation(s)
- T F Budinger
- Department of Bioengineering and Center for Functional Imaging, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
11
|
Helms G. Volume correction for edema in single-volume proton MR spectroscopy of contrast-enhancing multiple sclerosis lesions. Magn Reson Med 2001; 46:256-63. [PMID: 11477628 DOI: 10.1002/mrm.1186] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of edema on metabolic changes in contrast-enhancing multiple sclerosis lesions was studied by combining quantification of proton MR spectra with segmentation of the volume-of-interest, which was based on biexponential T(2) relaxation. All lesions showed a second component (s(long)) with a longer T(2) (185-450 ms), which was increased compared to healthy controls. Regression analysis indicated that s(long) replaces the short-T(2) component and total creatine. Since the water content was close to 100%, s(long) was used to correct for an increase in extracellular space. This compensated for the apparent loss of creatine and rendered cholines markedly increased, as observed in animals with experimental allergic encephalomyelitis. Total N-acetyl aspartate (NAA) concentration was inversely correlated with s(long) and between 34-70% of its average reduction was assigned to edema. Thus, NAA loss exceeded cellular loss. Assessment of varying degrees of edema may be especially beneficial for quantitative longitudinal studies.
Collapse
Affiliation(s)
- G Helms
- MR Research Center, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Chatham JC, Blackband SJ. Nuclear magnetic resonance spectroscopy and imaging in animal research. ILAR J 2001; 42:189-208. [PMID: 11406719 DOI: 10.1093/ilar.42.3.189] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and imaging can be used to investigate, noninvasively, a wide range of biological processes in systems as diverse as protein solutions, single cells, isolated perfused organs, and tissues in vivo. It is also possible to combine different NMR techniques enabling metabolic, anatomical, and physiological information to be obtained in the same experiment. This review provides a simple overview of the basic principles of NMR and outlines both the advantages and disadvantages of NMR spectroscopy and imaging. A few examples of potential applications of NMR spectroscopy and imaging are presented, which demonstrate the range of questions that can be asked using these techniques. The potential impact of using NMR techniques in a biomedical research program on the total number of animals required for specific investigations, as well as the number of animals used in research, are discussed. The article concludes with a personal perspective on the impact of continuing improvements in NMR technology for future applications in animal research.
Collapse
Affiliation(s)
- J C Chatham
- Center for NMR Research and Development, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
13
|
Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR. Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 2000; 11:586-95. [PMID: 10862056 DOI: 10.1002/1522-2586(200006)11:6<586::aid-jmri3>3.0.co;2-v] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetization transfer and multicomponent T2 imaging techniques were implemented to study guinea pig in vivo. A chronic-progressive model of experimental allergic encephalomyelitis (EAE) was produced, and the inflammatory component of the disease was manipulated using antibodies against integrin. The magnetization transfer ratio (MTR) and T2 relaxation properties were measured in normal-appearing white matter (NAWM) with histological comparisons. Significant reductions in both the mean MTR and the myelin water percentage were measured in NAWM of EAE guinea pig brain. However, the MTR and myelin water percentage appear to measure different aspects of pathology in NAWM in EAE. Reductions in the MTR were prevented or reversed with suppression of inflammation. However, modulation of inflammatory activity was not reflected in the measurement of the myelin water percentage. Since the amount of myelin is not expected to vary with inflammatory-related changes, these observations support our hypothesis that the MTR is sensitive to physiological changes to myelin induced by inflammation, while the short T2 component is a more specific indicator of myelin content in tissue. Pathologic features other than demyelination may be important in the determination of the MTR.
Collapse
Affiliation(s)
- P J Gareau
- John P. Robarts Research Institute, London Health Sciences Center, University Campus, London, Ontario, Canada N6A 5K8.
| | | | | | | |
Collapse
|
14
|
Ahrens ET, Laidlaw DH, Readhead C, Brosnan CF, Fraser SE, Jacobs RE. MR microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn Reson Med 1998; 40:119-32. [PMID: 9660562 DOI: 10.1002/mrm.1910400117] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pathology of fixed spinal cords from transgenic mice with a myelin basic protein (MBP) specific T cell receptor was investigated. These mice spontaneously acquire the demyelinating disease experimental allergic encephalomyelitis (EAE). Several complementary imaging modalities, all on the same tissues, were used to visualize lesions; these included high-field (11.7-T) microscopic diffusion tensor imaging (DTI), T2*-weighted imaging, and optical microscopy on histological sections. Lesions were predominantly in white matter around meninges and vasculature and appeared hyperintense in anatomical images. DTIs showed reduced diffusion anisotropy in the same hyperintense regions, consistent with inflammation and edema. Histology in the same tissues exhibited the characteristic pathology of EAE. Two techniques for visualizing the effective diffusion tensor fields are presented, which display direction, organization, and integrity of neuronal fibers. It is shown that DTI offers intriguing possibilities for visualizing axonal organization and lesions within white matter.
Collapse
Affiliation(s)
- E T Ahrens
- Beckman Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Richards TL, Alvord EC, He Y, Petersen K, Peterson J, Cosgrove S, Heide AC, Marro K, Rose LM. Experimental allergic encephalomyelitis in non-human primates: diffusion imaging of acute and chronic brain lesions. Mult Scler 1995; 1:109-17. [PMID: 9345461 DOI: 10.1177/135245859500100209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diffusion imaging and T2-weighted magnetic resonance imaging were performed on 16 monkeys with experimental allergic encephalomyelitis (EAE), a model of the human demyelinating disease MS. The purpose of this study was to determine whether local changes in diffusion image intensity could be correlated with the formation of acute and chronic demyelinating lesions. Diffusion image analysis was restricted to the internal capsule of the brain because of its anatomic orientation of fiber pathways. Acute inflammatory EAE lesions were large and monophasic, as visualized by T2-weighted MRI, and were accompanied by a decrease in the diffusion MR image signal with the diffusion-sensitizing gradient in all three orthogonal directions (n = 27 brain regions, P < 0.005). Chronic demyelinating lesions were preceded by multiple inflammatory attacks, as visualized by MRI, and by a decrease in diffusion MR image signal with the diffusion-sensitizing gradient in the two orthogonal directions perpendicular to the fibers of the internal capsule (n = 18 brain regions, P < 0.005). However, for the chronic group, there was no significant change in the diffusion MR image signal with diffusion-sensitizing gradient parallel to the fibers of the internal capsule at the terminal scan, suggesting little change in the water diffusion within the nerve fibers. These results suggest that diffusion imaging holds promise for measuring subtle changes in water diffusion due to different types of brain damage.
Collapse
Affiliation(s)
- T L Richards
- Department of Radiology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|