1
|
Esmaeilizadshali H, Lehmkuhl S, Korvink J, Jouda M. Localized Shims Enable Low-Field Simultaneous Multinuclear NMR Spectroscopy. Anal Chem 2024; 96:17201-17208. [PMID: 39419494 DOI: 10.1021/acs.analchem.4c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This Article introduces a smart localized shimset, integrated with a radiofrequency (RF) microsolenoid and optimized as a single unit to locally achieve high-resolution NMR spectroscopy, as a significant advancement toward achieving parallel NMR spectroscopy. The shimset, consisting exclusively of linear shims, demonstrates the capability to improve NMR line width from 84 to 4 Hz in a 1.05 T preclinical MRI scanner. This enhancement enables the resolution of j-couplings in the sample while requiring a total power of 545 mW. Furthermore, a novel method is presented for concurrently obtaining multinuclear NMR spectra using a single RF channel. This approach allows for the utilization of high-sensitivity NMR signals as a reference to correct field drift, facilitating signal averaging in a permanent magnet NMR scanner that is prone to significant temperature-dependent drift.
Collapse
Affiliation(s)
- Hossein Esmaeilizadshali
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Jan Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Shang Y, Simegn GL, Gillen K, Yang HJ, Han H. Advancements in MR hardware systems and magnetic field control: B 0 shimming, RF coils, and gradient techniques for enhancing magnetic resonance imaging and spectroscopy. PSYCHORADIOLOGY 2024; 4:kkae013. [PMID: 39258223 PMCID: PMC11384915 DOI: 10.1093/psyrad/kkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.
Collapse
Affiliation(s)
- Yun Shang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, United States
| | - Kelly Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Hsin-Jung Yang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
| | - Hui Han
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| |
Collapse
|
4
|
Chowdhury GMI, Behar KL, Mason GF, Rothman DL, de Graaf RA. Measurement of neuro-energetics and neurotransmission in the rat olfactory bulb using 1H and 1H-[ 13C] NMR spectroscopy. NMR IN BIOMEDICINE 2024; 37:e4957. [PMID: 37088548 PMCID: PMC10590826 DOI: 10.1002/nbm.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The olfactory bulb (OB) plays a fundamental role in the sense of smell and has been implicated in several pathologies, including Alzheimer's disease. Despite its importance, high metabolic activity and unique laminar architecture, the OB is not frequently studied using MRS methods, likely due to the small size and challenging location. Here we present a detailed metabolic characterization of OB metabolism, in terms of both static metabolite concentrations using 1H MRS and metabolic fluxes associated with neuro-energetics and neurotransmission by tracing the dynamic 13C flow from intravenously administered [1,6-13C2]-glucose, [2-13C]-glucose and [2-13C]-acetate to downstream metabolites, including [4-13C]-glutamate, [4-13C]-glutamine and [2-13C]-GABA. The unique laminar architecture and associated metabolism of the OB, distinctly different from that of the cerebral cortex, is characterized by elevated GABA and glutamine levels, as well as increased GABAergic and astroglial energy metabolism and neurotransmission. The results show that, despite the technical challenges, high-quality 1H and 1H-[13C] MR spectra can be obtained from the rat OB in vivo. The derived metabolite concentrations and metabolic rates demonstrate a unique metabolic profile for the OB. The metabolic model provides a solid basis for future OB studies on functional activation or pathological conditions.
Collapse
Affiliation(s)
- Golam M. I. Chowdhury
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L. Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F. Mason
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Shang Y, Theilenberg S, Gajdošík M, Schreiber LM, Juchem C. High resolution simulation and measurement demonstrate oscillatory spatiotemporal B 0 fluctuations across the human cardiac cycle. Magn Reson Med 2024; 91:91-104. [PMID: 37598417 DOI: 10.1002/mrm.29831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE Functional cardiac MRI scans employing balanced steady-state free precession sequences suffer from dark band artifacts in the myocardium due to B0 inhomogeneity. We recently introduced a novel method for the theoretical derivation of B0 distributions in the human heart. This study aims to simulate the B0 distributions in the heart across the cardiac cycle using structural MR images and validate the simulations via in vivo measured cardiac phase-specific B0 maps on the same subjects at 3T. METHODS Cardiac phase-specific B0 field maps were acquired from eight healthy subjects at 3T. B0 conditions were simulated based on tissue masks created from the cardiac-phase specific structural images from the in vivo B0 map scan and anatomical images from a thoracic MRI scan, adopting our recently published approach. The simulations and in vivo measurements were compared by calculating the spatial correlation of their B0 distributions and temporal correlation of the derived spherical harmonic coefficients throughout the cardiac cycle. RESULTS The spatial comparison of B0 maps between the simulation and in vivo measurement indicates an overall average correlation coefficient of 0.91 across the cardiac cycle in all subjects. Both groups show consistent high-level B0 patterns. Temporal variations of B0 conditions exhibit sinusoidal characteristics and are strongly correlated between simulation and in vivo. CONCLUSION Theoretical simulations employing regional anatomical features were validated by direct in vivo B0 mapping in the same subjects. The spatial B0 condition throughout the cardiac cycle exhibits oscillatory characteristics due to structural distortions of cardiac motion.
Collapse
Affiliation(s)
- Yun Shang
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Sebastian Theilenberg
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Martin Gajdošík
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Department of Radiology, Columbia University in the City of New York, New York, New York, USA
| |
Collapse
|
6
|
Theilenberg S, Shang Y, Ghazouani J, Kumaragamage C, Nixon TW, McIntyre S, Vaughan JT, Parkinson B, Garwood M, de Graaf RA, Juchem C. Design and realization of a multi-coil array for B 0 field control in a compact 1.5T head-only MRI scanner. Magn Reson Med 2023; 90:1228-1241. [PMID: 37145035 PMCID: PMC10330274 DOI: 10.1002/mrm.29692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE To design and implement a multi-coil (MC) array for B0 field generation for image encoding and simultaneous advanced shimming in a novel 1.5T head-only MRI scanner. METHODS A 31-channel MC array was designed following the unique constraints of this scanner design: The vertically oriented magnet is very short, stopping shortly above the shoulders of a sitting subject, and includes a window for the subject to see through. Key characteristics of the MC hardware, the B0 field generation capabilities, and thermal behavior, were optimized in simulations prior to its construction. The unit was characterized via bench testing. B0 field generation capabilities were validated on a human 4T MR scanner by analysis of experimental B0 fields and by comparing images for several MRI sequences acquired with the MC array to those acquired with the system's linear gradients. RESULTS The MC system was designed to produce a multitude of linear and nonlinear magnetic fields including linear gradients of up to 10 kHz/cm (23.5 mT/m) with MC currents of 5 A per channel. With water cooling it can be driven with a duty cycle of up to 74% and ramp times of 500 μs. MR imaging experiments encoded with the developed multi-coil hardware were largely artifact-free; residual imperfections were predictable, and correctable. CONCLUSION The presented compact multi-coil array is capable of generating image encoding fields with amplitudes and quality comparable to clinical systems at very high duty cycles, while additionally enabling high-order B0 shimming capabilities and the potential for nonlinear encoding fields.
Collapse
Affiliation(s)
- Sebastian Theilenberg
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Yun Shang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Jalal Ghazouani
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Ben Parkinson
- Robinson Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Mike Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
D’Astous A, Cereza G, Papp D, Gilbert KM, Stockmann JP, Alonso-Ortiz E, Cohen-Adad J. Shimming toolbox: An open-source software toolbox for B0 and B1 shimming in MRI. Magn Reson Med 2023; 89:1401-1417. [PMID: 36441743 PMCID: PMC9910837 DOI: 10.1002/mrm.29528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.
Collapse
Affiliation(s)
- Alexandre D’Astous
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The
University of Western Ontario, London, Ontario, Canada
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de
Montréal, Montréal, QC, Canada
- Mila - Quebec AI Institute, Montréal, QC,
Canada
- Centre de recherche du CHU Sainte-Justine,
Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
de Arce KP, Ribic A, Chowdhury D, Watters K, Thompson GJ, Sanganahalli BG, Lippard ETC, Rohlmann A, Strittmatter SM, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nat Commun 2023; 14:459. [PMID: 36709330 PMCID: PMC9884278 DOI: 10.1038/s41467-023-36042-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.
Collapse
Affiliation(s)
- Karen Perez de Arce
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Neuroscience Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Katherine Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Garth J Thompson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | | | - Elizabeth T C Lippard
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Texas, Austin, TX, USA
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
He H, Wei S, Wang H, Yang W. Analysis of coil element distribution and dimension for matrix gradient coils. MAGMA (NEW YORK, N.Y.) 2022; 35:967-980. [PMID: 35689695 DOI: 10.1007/s10334-022-01021-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The goal of this work is to analyze the influence of the distributions and dimensions of the coil elements and to present a method for improving the performance of the matrix gradient coil. METHODS Three typical models (five structures in total) are presented, and a double-layer biplanar matrix gradient coil is used to install coil elements. Two metrics, namely, the role of coil elements and mutual inductance between coil elements, are proposed to assess the performance of coil systems. An optimization approach to design matrix gradient coils is introduced based on analyzing the distributions and dimensions of coil elements. The flexibility of the magnetic field generation of the designed coil structure is demonstrated by generating full third-order spherical harmonic fields and different oblique gradient fields. RESULTS Matrix gradient coils with suitable distributions are capable of generating target magnetic fields. The role of coil elements quantitatively illustrates that the coil elements have different impacts on generating magnetic fields. Increasing the coil element dimension within a certain range can reduce the mutual inductance between coil elements and improve the performance of the coil system. The designed novel double-layer biplanar matrix gradient coil achieves an acceptable performance in generating different magnetic fields. CONCLUSIONS The proposed metrics can provide theoretical support for designing matrix gradient coils and evaluating their performance. The role of coil elements contributes to analyzing the distributions of coil elements to decrease the number of coil elements and power amplifiers. The mutual inductance between coil elements can be a reference for designing the dimensions of coil elements.
Collapse
Affiliation(s)
- Hongyan He
- Institute of Electrical of Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Chinese Academy of Sciences, Beijing, 100049, China
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Shufeng Wei
- Institute of Electrical of Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huixian Wang
- Institute of Electrical of Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenhui Yang
- Institute of Electrical of Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Chen Q, Luo C, Tie C, Cheng C, Zou C, Zhang X, Liu X, Zheng H, Li Y. A 5‐channel local B
0
shimming coil combined with a 3‐channel RF receiver coil for rat brain imaging at 3 T. Magn Reson Med 2022; 89:477-486. [DOI: 10.1002/mrm.29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaoyan Chen
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Chao Luo
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Changjun Tie
- Institute of Computing Technology, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Peng Cheng Laboratory Shenzhen China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering State University of New York at Buffalo Buffalo New York USA
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province Shenzhen China
| |
Collapse
|
11
|
Shang Y, Theilenberg S, Terekhov M, Mattar W, Peng B, Jambawalikar SR, Schreiber LM, Juchem C. High-resolution simulation of B 0 field conditions in the human heart from segmented computed tomography images. NMR IN BIOMEDICINE 2022; 35:e4739. [PMID: 35393706 DOI: 10.1002/nbm.4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
B0 inhomogeneity leads to imaging artifacts in cardiac magnetic resonance imaging (MRI), in particular dark band artifacts with steady-state free precession pulse sequences. The limited spatial resolution of MR-derived in vivo B0 maps and the lack of population data prevent systematic analysis of the problem at hand and the development of optimized B0 shim strategies. We used readily available clinical computed tomography (CT) images to simulate the B0 conditions in the human heart at high spatial resolution. Calculated B0 fields showed consistency with MRI-based B0 measurements. The B0 maps for both the simulations and in vivo measurements showed local field inhomogeneities in the vicinity of lung tips with dominant Z3 spherical harmonic terms in the field distribution. The presented simulation approach allows for the derivation of B0 field conditions at high spatial resolution from CT images and enables the development of subject- and population-specific B0 shim strategies for the human heart.
Collapse
Affiliation(s)
- Yun Shang
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Sebastian Theilenberg
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Maxim Terekhov
- Section of Medical Physics, Department of Radiology, Mainz University Hospital, Mainz, Germany
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Wolfram Mattar
- Section of Medical Physics, Department of Radiology, Mainz University Hospital, Mainz, Germany
| | - Boyu Peng
- Department of Radiology, Columbia University in the City of New York, New York, New York, USA
| | - Sachin R Jambawalikar
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Department of Radiology, Columbia University in the City of New York, New York, New York, USA
| | - Laura M Schreiber
- Section of Medical Physics, Department of Radiology, Mainz University Hospital, Mainz, Germany
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Department of Radiology, Columbia University in the City of New York, New York, New York, USA
| |
Collapse
|
12
|
Lu M, Yang Z, Wang F, Drake G, Chen LM, Gore JC, Yan X. Optimization of a quadrature birdcage coil for functional imaging of squirrel monkey brain at 9.4T. Magn Reson Imaging 2021; 79:45-51. [PMID: 33741436 DOI: 10.1016/j.mri.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
A quadrature transmit/receive birdcage coil was optimized for squirrel monkey functional imaging at the high field of 9.4 T. The coil length was chosen to gain maximum coil efficiency/signal-to-noise ratio (SNR) and meanwhile provide enough homogenous RF field in the whole brain area. Based on the numerical simulation results, a 16-rung high-pass birdcage coil with the optimal length of 9 cm was constructed and evaluated on phantom and in vivo experiments. Compared to a general-purpose non-optimized coil, it exhibits approximately 25% in vivo SNR improvement. In addition to the volume coil, details about how to design and construct the associated animal preparation system were provided.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai, Shandong, China
| | - Zhangyan Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gary Drake
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Hock M, Terekhov M, Stefanescu MR, Lohr D, Herz S, Reiter T, Ankenbrand M, Kosmala A, Gassenmaier T, Juchem C, Schreiber LM. B 0 shimming of the human heart at 7T. Magn Reson Med 2020; 85:182-196. [PMID: 32700791 DOI: 10.1002/mrm.28423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Inhomogeneities of the static magnetic B0 field are a major limiting factor in cardiac MRI at ultrahigh field (≥ 7T), as they result in signal loss and image distortions. Different magnetic susceptibilities of the myocardium and surrounding tissue in combination with cardiac motion lead to strong spatio-temporal B0 -field inhomogeneities, and their homogenization (B0 shimming) is a prerequisite. Limitations of state-of-the-art shimming are described, regional B0 variations are measured, and a methodology for spherical harmonics shimming of the B0 field within the human myocardium is proposed. METHODS The spatial B0 -field distribution in the heart was analyzed as well as temporal B0 -field variations in the myocardium over the cardiac cycle. Different shim region-of-interest selections were compared, and hardware limitations of spherical harmonics B0 shimming were evaluated by calibration-based B0 -field modeling. The role of third-order spherical harmonics terms was analyzed as well as potential benefits from cardiac phase-specific shimming. RESULTS The strongest B0 -field inhomogeneities were observed in localized spots within the left-ventricular and right-ventricular myocardium and varied between systolic and diastolic cardiac phases. An anatomy-driven shim region-of-interest selection allowed for improved B0 -field homogeneity compared with a standard shim region-of-interest cuboid. Third-order spherical harmonics terms were demonstrated to be beneficial for shimming of these myocardial B0 -field inhomogeneities. Initial results from the in vivo implementation of a potential shim strategy were obtained. Simulated cardiac phase-specific shimming was performed, and a shim term-by-term analysis revealed periodic variations of required currents. CONCLUSION Challenges in state-of-the-art B0 shimming of the human heart at 7 T were described. Cardiac phase-specific shimming strategies were found to be superior to vendor-supplied shimming.
Collapse
Affiliation(s)
- Michael Hock
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maxim Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria Roxana Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stefan Herz
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.,Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Markus Ankenbrand
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, New York, USA.,Department of Radiology, Columbia University, New York, New York, USA
| | - Laura Maria Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
14
|
Geiger Y, Tal A. Optimal echo times for multi-gradient echo-based B 0 field-mapping. NMR IN BIOMEDICINE 2020; 33:e4316. [PMID: 32339348 DOI: 10.1002/nbm.4316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
B0 field maps are used ubiquitously in neuroimaging, in disciplines ranging from magnetic resonance spectroscopy to temperature mapping and susceptibility-weighted imaging. Most B0 maps are acquired using standard gradient-echo-based vendor-provided sequences, often comprised of two echoes spaced a few milliseconds apart. Herein, we analyze the optimal spacing of echo times, defined as those maximizing precision-minimizing the standard deviation-for a fixed total acquisition time. Field estimation is carried out using a weighted least squares estimator. The standard deviation is shown to be approximately inversely proportional to the total acquisition time, suggesting a law of diminishing returns, whereby substantial gains are obtained up to a certain point, with little improvement beyond that point. Validations are provided in a phantom and a group of volunteers. Multi-gradient echo sequences are readily available on all manufacturer platforms, making our recommendations straightforward to implement on any modern scanner.
Collapse
Affiliation(s)
- Yasmin Geiger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| |
Collapse
|
15
|
Juchem C, Theilenberg S, Kumaragamage C, Mullen M, DelaBarre L, Adriany G, Brown PB, McIntyre S, Nixon TW, Garwood M, de Graaf RA. Dynamic multicoil technique (DYNAMITE) MRI on human brain. Magn Reson Med 2020; 84:2953-2963. [PMID: 32544274 DOI: 10.1002/mrm.28323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Spatial encoding for MRI is generally based on linear x, y, and z magnetic field gradients generated by a set of dedicated gradient coils. We recently introduced the dynamic multicoil technique (DYNAMITE) for B0 field control and demonstrated DYNAMITE MRI in a preclinical MR environment. In this study, we report the first realization of DYNAMITE MRI of the in vivo human head. METHODS Gradient fields for DYNAMITE MRI were generated with a 28-channel multicoil hardware arranged in 4 rows of 7 coils on a cylindrical surface (length 359 mm, diameter 344 mm, maximum 5 A per coil). DYNAMITE MRIs of a resolution phantom and in vivo human heads were acquired with multislice gradient-echo, multislice spin-echo, and 3D gradient-echo sequences. The resultant image fidelity was compared to that obtained with conventional gradient coil technology. RESULTS DYNAMITE field control enabled the realization of all imaging sequences with average gradient errors ≤ 1%. DYNAMITE MRI provided image quality and sensitivity comparable to conventional gradient technology without any obvious artifacts. Some minor geometric deformations were noticed primarily in the image periphery as the result of regional field imperfections. The imperfections can be readily approximated theoretically through numerical integration of the Biot-Savart law and removed through image distortion correction. CONCLUSION The first realization of DYNAMITE MRI of the in vivo human head has been presented. The obtained image fidelity is comparable to MRI with conventional gradient coils, paving the way for full-fledged DYNAMITE MRI and B0 shim systems for human applications.
Collapse
Affiliation(s)
- Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, New York, USA.,Department of Radiology, Columbia University, New York, New York, USA
| | | | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael Mullen
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Peter B Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Zhan H, Huang Y, Chen Z. High-Resolution Probing of Heterogeneous Samples by Spatially Selective Pure Shift NMR Spectroscopy. J Phys Chem Lett 2019; 10:7356-7361. [PMID: 31718190 DOI: 10.1021/acs.jpclett.9b03092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid NMR spectroscopy generally encounters two major challenges for high-resolution measurements of heterogeneous samples, namely, magnetic field inhomogeneity caused by spatial variations in magnetic susceptibility and spectral congestion induced by crowded NMR resonances. In this study, we demonstrate a spatially selective pure shift NMR approach for high-resolution probing of heterogeneous samples by suppressing effects of field inhomogeneity and J coupling simultaneously. A Fourier phase encoding strategy is proposed and implemented for spatially selective pure shift experiments to enhance signal intensity and further boost the applicability. The spatially selective pure shift method can serve as an effective tool for high-resolution probing of heterogeneous samples, thus presenting interesting prospects for extensive applications in the fields of chemistry, physics, biology, and food science.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - Yuqing Huang
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - Zhong Chen
- Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
18
|
Aghaeifar A, Mirkes C, Bause J, Steffen T, Avdievitch N, Henning A, Scheffler K. Dynamic B0shimming of the human brain at 9.4 T with a 16-channel multi-coil shim setup. Magn Reson Med 2018; 80:1714-1725. [DOI: 10.1002/mrm.27110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Aghaeifar
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tuebingen; Tuebingen Germany
| | | | - Jonas Bause
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tuebingen; Tuebingen Germany
| | - Theodor Steffen
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
| | - Nikolai Avdievitch
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- Institute of Physics; Ernst-Moritz-Arndt University; Greifswald Germany
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- Institute of Physics; Ernst-Moritz-Arndt University; Greifswald Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics; Tuebingen Germany
- Department of Biomedical Magnetic Resonance; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
19
|
Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 2018; 172:586-596. [PMID: 29374582 DOI: 10.1016/j.neuroimage.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.
Collapse
Affiliation(s)
- Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Juchem C, de Graaf RA. The public multi-coil information (PUMCIN) policy. Magn Reson Med 2017; 78:2042-2047. [PMID: 27905145 PMCID: PMC5453847 DOI: 10.1002/mrm.26558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE Multi-coil (MC) magnetic field modeling has emerged as a viable alternative to conventional field generation based on spherical harmonic shapes, and an active MC community is forming. Although all MC applications share the same modeling concept, the specific MC designs can largely differ as a result of disparities in region of interest (eg, human versus rodent), intended MR application (eg, B0 shimming versus spatial encoding), or other experimental constraints (eg, available bore space or integration with radiofrequency technology). To date, a lack of detailed information on existing MC designs complicates the assessment and precludes a meaningful comparison. METHODS Here, we suggest that future publications involving the MC technique not only report the benefits for the application at hand, but also include an explicit description of the MC wire pattern used. RESULTS This public multi-coil information (PUMCIN) policy represents a voluntary commitment to promoting free public access to the details necessary for reproducing and benefiting from MC research. CONCLUSIONS The PUMCIN policy is expected to initiate a paradigm shift with respect to the way MC innovation is reported. By setting an example, we hope to encourage the evolving MC community to maximize the benefits for science and society by embracing it. Magn Reson Med 78:2042-2047, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christoph Juchem
- Yale University School of Medicine, Dept. of Radiology and Biomedical Imaging
- Yale University School of Medicine, Department of Neurology
| | - Robin A. de Graaf
- Yale University School of Medicine, Dept. of Radiology and Biomedical Imaging
- Yale University, Department of Biomedical Engineering
| |
Collapse
|
21
|
Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem 2017; 529:245-269. [DOI: 10.1016/j.ab.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
|
22
|
Fernandez B, Leuchs L, Sämann PG, Czisch M, Spoormaker VI. Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. Neuroimage 2017; 156:65-77. [PMID: 28483719 DOI: 10.1016/j.neuroimage.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Standard T2* weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation.
Collapse
Affiliation(s)
- Brice Fernandez
- Applications & Workflow, GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany.
| | - Laura Leuchs
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Philipp G Sämann
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Michael Czisch
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Victor I Spoormaker
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
23
|
Amirmohseni S, Wachsmuth L, Just N, Faber C. Performance of MRS in metabolic profiling of the lumbar spinal cord in rat and mice. Magn Reson Imaging 2016; 34:1155-60. [DOI: 10.1016/j.mri.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/03/2016] [Indexed: 01/24/2023]
|
24
|
Juchem C, de Graaf RA. B 0 magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem 2016; 529:17-29. [PMID: 27293215 DOI: 10.1016/j.ab.2016.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
The homogenization of B0 conditions is necessary for every magnetic resonance spectroscopy (MRS) investigation. Its direct consequence is narrow spectral lines, on which reliable separation and quantification of biochemicals, and thus experimentally obtainable metabolic information, fundamentally relies. Besides spectral linewidth, unwanted B0 inhomogeneity also impairs other aspects of the MRS experiment, such as water suppression and editing efficiency, that rely on exact frequency definition. Therefore, experimental B0 homogenization, called B0 shimming, is mandatory for meaningful MRS, and high-level B0 shimming is arguably one of the most important ingredients for successful MRS investigations. In this review, we describe the relevance of B0 homogeneity for in vivo MRS and summarize common concepts and specific solutions for its experimental optimization.
Collapse
Affiliation(s)
- Christoph Juchem
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Sanganahalli BG, Rebello MR, Herman P, Papademetris X, Shepherd GM, Verhagen JV, Hyder F. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping. Neuroimage 2015; 126:208-18. [PMID: 26631819 DOI: 10.1016/j.neuroimage.2015.11.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022] Open
Abstract
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa(2+)) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa(2+) and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa(2+) and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa(2+) can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Michelle R Rebello
- Department of Neurobiology, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Xenophon Papademetris
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neurobiology, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA.
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Shu CY, Sanganahalli BG, Coman D, Herman P, Rothman DL, Hyder F. Quantitative β mapping for calibrated fMRI. Neuroimage 2015; 126:219-28. [PMID: 26619788 DOI: 10.1016/j.neuroimage.2015.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
The metabolic and hemodynamic dependencies of the blood oxygenation level-dependent (BOLD) signal form the basis for calibrated fMRI, where the focus is on oxidative energy demanded by neural activity. An important part of calibrated fMRI is the power-law relationship between the BOLD signal and the deoxyhemoglobin concentration, which in turn is related to the ratio between oxidative demand (CMRO2) and blood flow (CBF). The power-law dependence between BOLD signal and deoxyhemoglobin concentration is signified by a scaling exponent β. Until recently most studies assumed a β value of 1.5, which is based on numerical simulations of the extravascular BOLD component. Since the basal value of CMRO2 and CBF can vary from subject-to-subject and/or region-to-region, a method to independently measure β in vivo should improve the accuracy of calibrated fMRI results. We describe a new method for β mapping through characterizing R2' - the most sensitive relaxation component of BOLD signal (i.e., the reversible magnetic susceptibility component that is predominantly of extravascular origin at high magnetic field) - as a function of intravascular magnetic susceptibility induced by an FDA-approved superparamagnetic contrast agent. In α-chloralose anesthetized rat brain, at 9.4 T, we measured β values of ~0.8 uniformly across large neocortical swathes, with lower magnitude and more heterogeneity in subcortical areas. Comparison of β maps in rats anesthetized with medetomidine and α-chloralose revealed that β is independent of neural activity levels at these resting states. We anticipate that this method for β mapping can help facilitate calibrated fMRI for clinical studies.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Juchem C, Nahhass OM, Nixon TW, de Graaf RA. Multi-slice MRI with the dynamic multi-coil technique. NMR IN BIOMEDICINE 2015; 28:1526-34. [PMID: 26419649 PMCID: PMC4710146 DOI: 10.1002/nbm.3414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/10/2015] [Accepted: 08/25/2015] [Indexed: 05/22/2023]
Abstract
To date, spatial encoding for MRI is based on linear X, Y and Z field gradients generated by dedicated X, Y and Z wire patterns. We recently introduced the dynamic multi-coil technique (DYNAMITE) for the generation of magnetic field shapes for biomedical MR applications from a set of individually driven localized coils. The benefits for B0 magnetic field homogenization have been shown, as well as proof of principle of radial and algebraic MRI. In this study the potential of DYNAMITE MRI is explored further and the first multi-slice MRI implementation in which all gradient fields are purely DYNAMITE based is presented. The obtained image fidelity is shown to be virtually identical to that of a conventional MRI system with dedicated X, Y and Z gradient coils. Comparable image quality is a milestone towards the establishment of fully functional DYNAMITE MRI (and shim) systems.
Collapse
Affiliation(s)
- Christoph Juchem
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), New Haven, CT 06520, USA
| | | | - Terence W. Nixon
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), New Haven, CT 06520, USA
| | - Robin A. de Graaf
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), New Haven, CT 06520, USA
| |
Collapse
|
28
|
Shu CY, Herman P, Coman D, Sanganahalli BG, Wang H, Juchem C, Rothman DL, de Graaf RA, Hyder F. Brain region and activity-dependent properties of M for calibrated fMRI. Neuroimage 2015; 125:848-856. [PMID: 26529646 DOI: 10.1016/j.neuroimage.2015.10.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels.
Collapse
Affiliation(s)
- Christina Y Shu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Peter Herman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Helen Wang
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
29
|
Wei Z, Yang J, Chen Y, Lin Y, Chen Z. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields. J Chem Phys 2015; 142:134202. [DOI: 10.1063/1.4916520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhiliang Wei
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Jian Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Youhe Chen
- Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
| | - Yanqin Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
30
|
Juchem C, Umesh Rudrapatna S, Nixon TW, de Graaf RA. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla. Neuroimage 2014; 105:462-72. [PMID: 25462795 DOI: 10.1016/j.neuroimage.2014.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners.
Collapse
Affiliation(s)
- Christoph Juchem
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA.
| | - S Umesh Rudrapatna
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Terence W Nixon
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Robin A de Graaf
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
31
|
Juchem C, Herman P, Sanganahalli BG, Brown PB, McIntyre S, Nixon TW, Green D, Hyder F, de Graaf RA. DYNAmic Multi-coIl TEchnique (DYNAMITE) shimming of the rat brain at 11.7 T. NMR IN BIOMEDICINE 2014; 27:897-906. [PMID: 24839167 PMCID: PMC4120278 DOI: 10.1002/nbm.3133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 05/22/2023]
Abstract
The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation; however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task because of a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating for shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radiofrequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF set-up is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first- through third-order SH shapes. The EPI signal over the rat brain increased by 31%, and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, together with the achievable large brain coverage of this method, will be crucial when signal pathways, cortical circuitry or the brain's default network are studied. Together with the efficiency gains of MC-based shimming compared with SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small-bore animal scanners.
Collapse
Affiliation(s)
- Christoph Juchem
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Peter Herman
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Basavaraju G. Sanganahalli
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Peter B. Brown
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Scott McIntyre
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Terence W. Nixon
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Dan Green
- Agilent Technologies, Research Products Division, Yarnton, OX5 1QU, United Kingdom
| | - Fahmeed Hyder
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| | - Robin A. de Graaf
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
32
|
Juchem C, Green D, de Graaf RA. Multi-coil magnetic field modeling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 236:95-104. [PMID: 24095841 PMCID: PMC3866212 DOI: 10.1016/j.jmr.2013.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 05/30/2023]
Abstract
The performance of multi-coil (MC) magnetic field modeling is compared to dedicated wire patterns for the generation of spherical harmonic (SH) shapes as these are the workhorse for spatial encoding and magnetic field homogenization in MR imaging and spectroscopy. To this end, an example 48 channel MC setup is analyzed and shown to be capable of generating all first through fourth order SH shapes over small and large regions-of-interest relevant for MR investigations. The MC efficiency for the generation of linear gradient fields shares the same order of magnitude with classic and state-of-the-art SH gradient coils. MC field modeling becomes progressively more efficient with the synthesis of more complex field shapes that require the combination of multiple SH terms. The possibility of a region-specific optimization of both magnetic field shapes and generation performance with the MC approach are discussed with emphasis on the possible trade-off between the field accuracy and generation efficiency. MC shimming has been shown previously to outperform current SH shimming. Along with the efficiency gains of MC shimming shown here, the MC concept has the potential to (1) replace conventional shim systems that are based on sets of dedicated SH coils and (2) allow optimal object-specific shim solutions similar to object-specific RF coils.
Collapse
Affiliation(s)
- Christoph Juchem
- Yale University School of Medicine, Department of Diagnostic Radiology, MR Research Center (MRRC), 300 Cedar Street, New Haven, CT 06520, USA.
| | | | | |
Collapse
|