1
|
Tensaouti F, Courbière N, Cabarrou B, Pollidoro L, Roques M, Sévely A, Péran P, Baudou E, Laprie A. Metabolic Profile of Cerebellum in Posterior Fossa Tumor Survivors: Correlation With Memory Impairment. Clin Oncol (R Coll Radiol) 2024; 36:e439-e447. [PMID: 39107208 DOI: 10.1016/j.clon.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
AIMS The cerebellum is a key structure in working and procedural memory. The aim of the present prospective exploratory study was to investigate, the metabolic characteristics of the cerebellum in posterior fossa tumor (PFT) survivors using 3D proton magnetic resonance spectroscopy imaging (3D MRSI), to determine whether metabolites could be useful biomarkers of memory impairment. MATERIALS AND METHODS Sixty participants were included in the IMPALA study, divided into three groups: 22 irradiated PFT, 17 nonirradiated PFT, and 21 healthy controls matched with irradiated PFT for age, sex, and handedness. PFT survivors were treated at least 5 years ago, either by surgery or a combination of surgery, chemotherapy, and radiotherapy. All participants underwent working and procedural memory tests and multimodal MRI including a 3D MRSI sequence. N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac) metabolite values were extracted from the cerebellum for comparisons between groups, correlations with neurocognitive test scores, and radiotherapy doses. RESULTS Median (range) age at neurocognitive tests was 18 (7-26) years. Median Cho, Cr, NAA, and Lac values, and the ratio of NAA to the sum of metabolites were significantly lower for PFT survivors than for healthy controls (p < 0.05). Scores on working and procedural memory tests were significantly lower for PFT survivors (p < 0.004) and correlated with median and maximum Cho and NAA values (0.28 CONCLUSION Results revealed changes in cerebellar metabolic values in PFT survivors that were closely correlated with memory deficits, suggesting that some metabolites could be used as markers of cognitive decline, but this will require validation on a larger sample size.
Collapse
Affiliation(s)
- F Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - N Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - B Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - L Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - M Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - A Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - E Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - A Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
2
|
Ostojic J, Kozic D, Ostojic S, Ilic ADJ, Galic V, Matijasevic J, Dragicevic D, Barak O, Boban J. Decreased Cerebral Creatine and N-Acetyl Aspartate Concentrations after Severe COVID-19 Infection: A Magnetic Resonance Spectroscopy Study. J Clin Med 2024; 13:4128. [PMID: 39064167 PMCID: PMC11277668 DOI: 10.3390/jcm13144128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to evaluate brain metabolism using MR spectroscopy (MRS) after recovery from Coronavirus disease (COVID-19) and to test the impact of disease severity on brain metabolites. Methods: We performed MRS on 81 individuals (45 males, 36 females, aged 40-60), who had normal MRI findings and had recovered from COVID-19, classifying them into mild (17), moderate (36), and severe (28) groups based on disease severity during the acute phase. The study employed two-dimensional spectroscopic imaging above the corpus callosum, focusing on choline (Cho), creatine (Cr), and N-acetylaspartate (NAA). We analyzed Cho/Cr and NAA/Cr ratios as well as absolute concentrations using water as an internal reference. Results: Results indicated that the Cho/Cr ratio was higher with increasing disease severity, while absolute Cho and NAA/Cr ratios showed no significant differences across the groups. Notably, absolute Cr and NAA levels were significantly lower in patients with severe disease. Conclusions: These findings suggest that the severity of COVID-19 during the acute phase is associated with significant changes in brain metabolism, marked by an increase in Cho/Cr ratios and a reduction in Cr and NAA levels, reflecting substantial metabolic alterations post-recovery.
Collapse
Affiliation(s)
- Jelena Ostojic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Dusko Kozic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Sergej Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Aleksandra DJ Ilic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Vladimir Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Jovan Matijasevic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Dusan Dragicevic
- Oncology Institute of Vojvodina, Diagnostic Imaging Center, 21204 Sremska Kamenica, Serbia;
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| | - Jasmina Boban
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (A.D.I.); (V.G.); (J.M.); (O.B.); (J.B.)
| |
Collapse
|
3
|
Murray AJ, Humpston CS, Wilson M, Rogers JC, Zia Ul Haq Katshu M, Liddle PF, Upthegrove R. Measurement of brain glutathione with magnetic Resonance spectroscopy in Schizophrenia-Spectrum disorders - A systematic review and Meta-Analysis. Brain Behav Immun 2024; 115:3-12. [PMID: 37769980 DOI: 10.1016/j.bbi.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress may contribute to declining course and poor outcomes in psychosis. However, in vivo Magnetic Resonance Spectroscopy studies yield disparate results due to clinical stage, sample demographics, neuroanatomical focus, sample size, and acquisition method variations. We investigated glutathione in brain regions from participants with psychosis, and the relation of glutathione to clinical features and spectroscopy protocols. Meta-analysis comprised 21 studies. Glutathione levels did not differ between total psychosis patients (N = 639) and controls (N = 704) in the Medial Prefrontal region (k = 21, d = -0.09, CI = -0.28 to 0.10, p = 0.37). Patients with stable schizophrenia exhibited a small but significant glutathione reduction compared to controls (k = 14, d = -0.20, CI = -0.40 to -0.00, p = 0.05). Meta-regression showed older studies had greater glutathione reductions, possibly reflecting greater accuracy related to spectroscopy advancements in more recent studies. No significant effects of methodological variables, such as voxel size or echo time were found. Reduced glutathione in patients with stable established schizophrenia may provide novel targets for precision medicine. Standardizing MRS acquisition methods in future studies may help address discrepancies in glutathione levels.
Collapse
Affiliation(s)
- Alex J Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | - Clara S Humpston
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Department of Psychology, University of York, York, United Kingdom
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jack C Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom; Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F Liddle
- Institute of Mental Health, Division of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom; Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
4
|
Berger L, Holshouser B, Nichols JG, Pivonka-Jones J, Ashwal S, Bartnik-Olson B. White Matter Metabolite Ratios Predict Cognitive Outcome in Pediatric Traumatic Brain Injury. Metabolites 2023; 13:778. [PMID: 37512485 PMCID: PMC10385309 DOI: 10.3390/metabo13070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
The prognostic ability of global white matter and gray matter metabolite ratios following pediatric traumatic brain injury (TBI) and their relationship to 12-month neuropsychological assessments of intelligence quotient (IQ), attention, and memory is presented. Three-dimensional proton magnetic resonance spectroscopic imaging (MRSI) in pediatric subjects with complicated mild (cMild), moderate, and severe TBI was acquired acutely (6-18 days) and 12 months post-injury and compared to age-matched typically developing adolescents. A global linear regression model, co-registering MRSI metabolite maps with 3D high-resolution magnetic resonance images, was used to identify longitudinal white matter and gray matter metabolite ratio changes. Acutely, gray matter NAA/Cr, white matter NAA/Cr, and white matter NAA/Cho ratios were significantly lower in TBI groups compared to controls. Gray matter NAA/Cho was reduced only in the severe TBI group. At 12 months, all metabolite ratios normalized to control levels in each of the TBI groups. Acute gray matter and white matter NAA ratios were significantly correlated to 12-month assessments of IQ, attention, and memory. These findings suggest that whole brain gray matter and white matter metabolite ratios reflect longitudinal changes in neuronal metabolism following TBI, which can be used to predict neuropsychological outcomes in pediatric subjects.
Collapse
Affiliation(s)
- Luke Berger
- School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Joy G Nichols
- Department of Pediatrics, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Jamie Pivonka-Jones
- Department of Pediatrics, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Health, Loma Linda, CA 92354, USA
- Division of Child Neurology, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Health, Loma Linda, CA 92354, USA
| |
Collapse
|
5
|
Bose A, Prasad U, Kumar A, Kumari M, Suman SK, Sinha DK. Characterizing Various Posterior Fossa Tumors in Children and Adults With Diffusion-Weighted Imaging and Spectroscopy. Cureus 2023; 15:e39144. [PMID: 37378152 PMCID: PMC10292159 DOI: 10.7759/cureus.39144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Background The posterior fossa is situated between the tentorium cerebelli above and the foramen magnum below. Vital structures like the cerebellum, the pons, and the medulla are situated within it; hence, tumors within the posterior fossa are considered one of the most critical brain lesions. Children are more likely to develop posterior fossa tumors than adults. Diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) sequences along with the conventional MRI help in providing additional information in the characterization of the various posterior fossa tumors. We hereby present a series of 30 patients with clinically suspected posterior fossa masses who underwent preoperative MRI. Objectives This study aims to differentiate the neoplastic from non-neoplastic posterior fossa mass by evaluating the diffusion restriction pattern on DWI, quantifying the apparent diffusion coefficient (ADC) map in various posterior fossa tumors, and comparing the different metabolites of various posterior fossa tumors on MRS. Results Out of the 30 patients with posterior fossa lesions, 18 were males and 12 were females. Eight of them were in the pediatric age group, while twenty-two of them were adults. Metastasis was the most common posterior fossa lesion in our study sample and was found in six patients (20%), followed by vestibular schwannomas (17%) and arachnoid cysts (13%), meningiomas, medulloblastoma, and pilocytic astrocytoma (10% each) and epidermoid, ependymoma, and hemangioblastoma (7% each). The mean ADC value of benign tumors was higher than that of malignant tumors, and this difference was found to be significant (p = 0.012). The cut-off ADC value 1.21x 10-3mm2/s had a sensitivity of 81.82% and specificity of 80.47%. MRS metabolites played an additional role in differentiating benign from malignant tumors. Conclusion A combination of conventional MRI, DWI, ADC values, and MRS metabolites showed good diagnostic accuracy to differentiate between the various posterior fossa neoplastic tumors both in adults and children.
Collapse
Affiliation(s)
- Arjita Bose
- Radiodiagnosis, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Umakant Prasad
- Radiodiagnosis, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Amit Kumar
- Radiodiagnosis, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Manisha Kumari
- Radiology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Sanjay K Suman
- Radiodiagnosis, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Dhiraj K Sinha
- General Surgery, Rajendra Institute of Medical Sciences, Ranchi, IND
| |
Collapse
|
6
|
Tal A. The future is 2D: spectral-temporal fitting of dynamic MRS data provides exponential gains in precision over conventional approaches. Magn Reson Med 2023; 89:499-507. [PMID: 36121336 PMCID: PMC10087547 DOI: 10.1002/mrm.29456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Many MRS paradigms produce 2D spectral-temporal datasets, including diffusion-weighted, functional, and hyperpolarized and enriched (carbon-13, deuterium) experiments. Conventionally, temporal parameters-such as T2 , T1 , or diffusion constants-are assessed by first fitting each spectrum independently and subsequently fitting a temporal model (1D fitting). We investigated whether simultaneously fitting the entire dataset using a single spectral-temporal model (2D fitting) would improve the precision of the relevant temporal parameter. METHODS We derived a Cramer Rao lower bound for the temporal parameters for both 1D and 2D approaches for 2 experiments: a multi-echo experiment designed to estimate metabolite T2 s, and a functional MRS experiment designed to estimate fractional change ( δ $$ \delta $$ ) in metabolite concentrations. We investigated the dependence of the relative standard deviation (SD) of T2 in multi-echo and δ $$ \delta $$ in functional MRS. RESULTS When peaks were spectrally distant, 2D fitting improved precision by approximately 20% relative to 1D fitting, regardless of the experiment and other parameter values. These gains increased exponentially as peaks drew closer. Dependence on temporal model parameters was weak to negligible. CONCLUSION Our results strongly support a 2D approach to MRS fitting where applicable, and particularly in nuclei such as hydrogen and deuterium, which exhibit substantial spectral overlap.
Collapse
Affiliation(s)
- Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Yap KH, Abdul Manan H, Yahya N, Azmin S, Mohamed Mukari SA, Mohamed Ibrahim N. Magnetic Resonance Imaging and Its Clinical Correlation in Spinocerebellar Ataxia Type 3: A Systematic Review. Front Neurosci 2022; 16:859651. [PMID: 35757531 PMCID: PMC9226753 DOI: 10.3389/fnins.2022.859651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a complex cerebrocerebellar disease primarily characterized by ataxia symptoms alongside motor and cognitive impairments. The heterogeneous clinical presentation of SCA3 necessitates correlations between magnetic resonance imaging (MRI) and clinical findings in reflecting progressive disease changes. At present, an attempt to systematically examine the brain-behavior relationship in SCA3, specifically, the correlation between MRI and clinical findings, is lacking. Objective We investigated the association strength between MRI abnormality and each clinical symptom to understand the brain-behavior relationship in SCA3. Methods We conducted a systematic review on Medline and Scopus to review studies evaluating the brain MRI profile of SCA3 using structural MRI (volumetric, voxel-based morphometry, surface analysis), magnetic resonance spectroscopy, and diffusion tensor imaging, including their correlations with clinical outcomes. Results Of 1,767 articles identified, 29 articles met the eligibility criteria. According to the National Institutes of Health quality assessment tool for case-control studies, all articles were of excellent quality. This systematic review found that SCA3 neuropathology contributes to widespread brain degeneration, affecting the cerebellum and brainstem. The disease gradually impedes the cerebral cortex and basal ganglia in the late stages of SCA3. Most findings reported moderate correlations (r = 0.30–0.49) between MRI features in several regions and clinical findings. Regardless of the MRI techniques, most studies focused on the brainstem and cerebellum. Conclusions Clinical findings suggest that rather than individual brain regions, the connectivity between different brain regions in distributed networks (i.e., cerebellar-cerebral network) may be responsible for motor and neurocognitive function in SCA3. This review highlights the importance of evaluating the progressive changes of the cerebellar-cerebral networks in SCA3 patients, specifically the functional connectivity. Given the relative lack of knowledge about functional connectivity on SCA3, future studies should investigate possible functional connectivity abnormalities in SCA3 using fMRI.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.,Department of Radiology and Intervency, Hospital Pakar Kanan-Kanak, Children Specialist Hospital, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Shahizon Azura Mohamed Mukari
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Increased Glutamate concentrations during prolonged motor activation as measured using functional Magnetic Resonance Spectroscopy at 3T. Neuroimage 2020; 223:117338. [DOI: 10.1016/j.neuroimage.2020.117338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
|
10
|
Ostojic SM. Brain creatine for predicting clinical course in white matter disorders. Mult Scler Relat Disord 2020; 45:102441. [DOI: 10.1016/j.msard.2020.102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
|
11
|
Wolf H, Stampalija T, Monasta L, Lees CC. Reply. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:292-293. [PMID: 32738108 DOI: 10.1002/uog.22144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- H Wolf
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - T Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - L Monasta
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - C C Lees
- Imperial College School of Medicine, Imperial College London, London, UK
- Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College NHS Trust, London, UK
| |
Collapse
|
12
|
Thielen J, Gancheva S, Hong D, Rohani Rankouhi S, Chen B, Apostolopoulou M, Anadol‐Schmitz E, Roden M, Norris DG, Tendolkar I. Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction. Hum Brain Mapp 2019; 40:4287-4295. [PMID: 31264324 PMCID: PMC6865552 DOI: 10.1002/hbm.24702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with an accelerated episodic memory decline, but the underlying pathophysiological mechanisms are not well understood. Hallmarks of T2D comprise impairment of insulin secretion and insulin sensitivity. Insulin signaling modulates cerebral neurotransmitter activity, including the excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) systems. Here we tested the hypothesis that the glutamate and GABA systems are altered in T2D patients and this relates to memory decline and insulin resistance. Using 1 H-magnetic resonance spectroscopy (MRS), we examined glutamate and GABA concentrations in episodic memory relevant brain regions (medial prefrontal cortex and precuneus) of T2D patients and matched controls. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps and memory performance was assessed using a face-profession associations test. T2D patients exhibited peripheral insulin resistance and had a decreased memory for face-profession associations as well as elevated GABA concentration in the medial prefrontal cortex but not precuneus. In addition, medial prefrontal cortex GABA concentration was negatively associated with memory performance suggesting that abnormal GABA levels in the medial prefrontal cortex are linked to the episodic memory decline that occurs in T2D patients.
Collapse
Affiliation(s)
- Jan‐Willem Thielen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department for Psychiatry and Psychotherapy, Faculty of MedicineUniversity of Duisburg‐EssenEssenGermany
| | - Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | | | - Bixia Chen
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Evrim Anadol‐Schmitz
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine UniversityDüsseldorfGermany
- German Center for Diabetes ResearchMünchen‐NeuherbergGermany
| | - David G. Norris
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschedethe Netherlands
| | - Indira Tendolkar
- Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
- Donders Institute for Brain Cognition and Behavior, Radboud University and Radboud University Medical CenterNijmegenthe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
13
|
Kirov II, Whitlow CT, Zamora C. Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion. Neuroimaging Clin N Am 2018; 28:91-105. [DOI: 10.1016/j.nic.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs. PLoS One 2017; 12:e0188737. [PMID: 29211751 PMCID: PMC5718608 DOI: 10.1371/journal.pone.0188737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Purpose Injurious mechanical ventilation causes white matter (WM) injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI) can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO) increases brain injury at 24 h. Methods Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT) injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only), or occluded (INJ+UCO; inflammatory and haemodynamic pathway). The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham), and lambs that did not undergo surgery (unoperated control; Cont). Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) techniques. Results Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively); no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively). Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04). DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit lower WM diffusivity than INJ lambs. Conclusions Twenty-four hours after injurious ventilation, DTI and MRS showed increased brain injury in the injuriously ventilated lambs compared to controls. DTI colour mapping threshold approach provides evidence that the haemodynamic and inflammatory pathways have additive effects on the progression of brain injury compared to the inflammatory pathway alone.
Collapse
|
15
|
Calik M, Sen Dokumaci D, Sarikaya S, Demir M, Isik I, Kazanasmaz H, Kaya C, Kandemir H. Brain metabolite values in children with breath-holding spells. Neuropsychiatr Dis Treat 2017; 13:1655-1660. [PMID: 28721046 PMCID: PMC5499924 DOI: 10.2147/ndt.s135842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Breath-holding spells are benign, paroxysmal events with apnea and postural tone changes after a crying episode in infants. The objective of this study was to investigate the pathologies in brain metabolite values in the absence of seizure in children with breath-holding spells by using magnetic resonance spectroscopy (MRS). Brain MRS examination was performed on 18 children with breath-holding spells and 13 neurologically normal children who were included as the control group. There was no significant difference in terms of N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), and myoinositol (mI) levels and also in terms of NAA/Cr, Cho/Cr, and mI/Cr ratios between the patients and the control group (all P>0.05). Our study suggested that there is no permanent neuronal damage in patients with breath-holding spells. This result confirms the previous studies, which reported no permanent neuronal damage in patients with breath-holding spells.
Collapse
Affiliation(s)
| | | | | | - Mahmut Demir
- Department of Pediatrics, Harran University School of Medicine
| | - Ilhan Isik
- Department of Pediatric Neurology, Eyyubiye Training and Research Hospital
| | | | - Cemil Kaya
- Department of Pediatrics, Harran University School of Medicine
| | - Hasan Kandemir
- Department of Child and Adolescent Psychiatry, Harran University School of Medicine, Sanliurfa, Turkey
| |
Collapse
|